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Abstract— Functional near-infrared spectroscopy (fNIRS) uses 
near-infrared light to measure changes in the concentration of 
oxygenated (HbO) and deoxygenated hemoglobin (HbR). 
Physiological processes, such as heart beat, respiration, 
vasomotor waves, induce concentration changes of HbO and 
HbR well detectable in the fNIRS signal. Some of these 
physiological components, as well as random disturbances, can 
interfere with the estimation of the stimulus-evoked 
hemodynamic response (HR), a key function for the quantitative 
understanding of the functional activity of the cerebral cortex 
evoked by cognitive tasks. In fact, the HR spectrum overlaps with 
that of the above mentioned physiological components, 
complicating the use of filtering techniques to extract HR from 
fNIRS measurements. Furthermore, the HR is characterized by a 
marked variability in shape, according to the type of experiment, 
or across conditions, brain regions and subjects. Given these 
observations, the development of a method to estimate stimulus-
evoked HR from fNIRS measurements is challenging. In this 
work we present a new methodology for HR estimation from 
fNIRS data, based on the so-called  general linear model (GLM). 
First a parametric model of the HR is identified for each subject, 
HbO and HbR separately. Then, this model of HR, together with 
its temporal derivative, is used as basis function of the GLM, 
which is applied to each channel and condition to estimate the 
corresponding HR. The automatic identification of the basis 
functions and the robustness of GLM with respect to 
measurement noise make the proposed method suitable for most 
fNIRS experimental paradigms. In the present work, results on 
simulated data show that the methodology  is superior to other 
widely used methods for HR estimation, i.e. conventional 
averaging and band-pass filtering. Encouraging preliminary 
results are also obtained from real data collected during a simple 
finger tapping task. 
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I.  INTRODUCTION  
Functional near-infrared spectroscopy (fNIRS) is a 

neuroimaging technique that provides the opportunity to 
monitor hemodynamic activity within the human head in a low 
cost and noninvasive manner [1]. Although fNIRS provides 
measurements  limited to the cerebral cortex, it provides 

several advantages with respect to other neuroimaging 
technologies: it is safe, portable and relatively robust to 
movement artifacts. Infrared light is sent into the head at the 
surface of the scalp (source) and then detected at another 
location on the scalp (detector). The distance between each 
source/detector pair (hereafter, channel) is typically 3 cm, to 
ensure penetration through scalp and skull into the underlying 
cerebral cortex. Fluctuations in the detected signal are related 
to temporal changes in concentration of oxygenated 
hemoglobin (HbO) and deoxygenated hemoglobin (HbR) via 
the modified Beer Lambert Law (MBLL) [2]. Notably, fNIRS 
is used to investigate functional activity of the cerebral cortex 
in a wide variety of cognitive tasks. The signal acquired with 
fNIRS is naturally affected by disturbances engendering from 
ongoing physiological activity (e.g., cardiac, respiratory, 
vasomotor wave) and random measurement noise. Several 
methods have been proposed in the literature to estimate the 
stimulus-evoked hemodynamic response (HR) from fNIRS 
signal, but the so-called conventional averaging (CA) 
technique is still probably the most used method [3], [4]. 
Succinctly, the HR is determined by averaging the fNIRS 
recordings (trials) collected after N identical stimuli, with N 
being often in the order of several tenth. Estimation of the HR 
is achieved by assuming both the independence of the 
background noise from the activity elicited by the to-be-
processed stimulus, and the difference in phase of the 
physiological components from stimulus to stimulus. Other 
broadly used methods for HR estimation are based on band-
pass filtering [5], principal component analysis (PCA) [6] and 
adaptive filtering [7]. Although each of these methods is 
generally associated with increases in signal-to-noise ratio, 
they often require specific expedients (e.g., the acquisition of 
resting state data before each stimulus, or the registration of 
hemodynamic activity of the whole head) and each of them 
presents some drawbacks. Indeed, band-pass filtering might 
equally reduce both noise and HR, because of their 
overlapping in terms of frequency spectra. Problems with PCA 
include its tendency to decrease the amplitude of the 
hemodynamic response in the activated regions and to 
propagate noise from noisy channels to all other channels. 
Adaptive filtering approaches require the use of reference 
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channels, which involve additional sources and detectors that 
are not always available. Promising methods to estimate HR 
from fNIRS measurements are based on the so-called general 
linear model (GLM) [8], and a free GLM-based software for 
analyzing fNIRS signal is available [9]. The GLM, which has 
become a standard method for analyzing fMRI data, explains 
data as a linear combination of an explanatory variable 
(composed by basis functions) plus an error term. GLM is 
robust in sub-optimal registrations, where there has been a 
severe optical signal attenuation due to scattering or poor 
contact. In event-related paradigms and, in particular, in rapid 
event-related paradigms (with an inter-stimulus interval, ISI, 
of few seconds), GLM-based approaches provides better 
results compared to the conventional approaches [10]. 
Nevertheless, several fundamental issues remain to be 
addressed. A matter of concern regarding GLM approaches 
regards the choice of the functions used to model the 
hemodynamic response (basis functions). Moreover, the same 
basis functions are often used for both HbO and HbR without 
accounting for their differences and the dependency on 
individual subjects, as well as the kind of experiment (note 
that the shape of the HR is strongly influenced by several 
characteristics, such as the stimulus type, the analyzed brain 
areas, the ISI).  

In the present work, a method able to automatically 
identify the most suitable basis functions is presented with the 
aim of obtaining an approach that might be adopted in the 
large majority of fNIRS experiments. 

II. MATERIALS AND METHODS 
The proposed algorithm consists of (A) a pre-processing 

stage of the raw data, (B) the identification of the basis 
functions that will be used, and (C) the implementation of the 
general linear model. The methodology is assessed against a 
test set composed by (D) synthetic data generated according to 
(E) real data. 

A. Pre-processing 
In order to reduce the effect of physiological and noisy 

components which might compromise HR estimation, raw 
optical data were filtered with a Butterworth band-pass filter 
(4th order), with low and high cutoff frequencies of 0.01 and 3 
Hz, respectively. The filter removed slow drifts and other 
noise with frequencies distant from the signal band. 

B. Identification of the Basis Functions 
The stimulus-evoked hemodynamic response was modeled 

with a gamma-function-based model (1), time dependent (t): 
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where p=[a,b,d]T was the unknown parameter vector. 
The model was identified, on a subject-by-subject basis, on 

the signal obtained by averaging all trials belonging to the 
same condition: trials from all channels were block-averaged 
considering a period of 12 seconds after the stimulus onset. In 
particular, parameter vector p was obtained, for each 
condition, using Weighted Non-Linear Least Squares 
according to the equation (2): 

 2);(min 1−Σ−=
V
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where z was the signal obtained after the block-average and 
matrix V was a diagonal matrix whose entries were used to 
weight the corresponding time-points of the signal. As the 
most meaningful part of the HR profile is the one related to 
the peak (4-5 seconds after the onset),  a small weight has 
been given to the first and last 2 seconds  of the signal. HbO 
and HbR data were modeled separately, for both conditions. 
The models obtained for each of the two conditions and their 
temporal derivatives formed the basis functions. An example 
of the identified HR model for HbO and its temporal 
derivative is reported in Fig.1. 

 
Fig.1: Identified HR model for HbO (red) and its temporal derivative used as 
basis funtions (blue). 

C. Genear Linear Model (GLM) 
For each subject, the general linear model was applied to 

the pre-processed data (A), using the basis functions identified 
in (B). GLM is a statistical model that describes data as a 
linear combination of functions plus an error term. Functions 
were obtained by multiplying the design matrix X with the 
parameter matrix . Columns of X contained a  “convolution” 
between the “experimental design referred to each condition” 
(i.e. a vector having “1” in the time-points corresponding to 
the times of presentation of the stimuli and “0” elsewhere) and 
each basis function.  contained the unknown parameters that 
multiply each column of X: each parameter correspond to the 
amplitude of each basis function in each channel. Thus, the 
corresponding model was (3): 

 εβ +⋅= XY  (3) 

where Y was the pre-processed data, X was the design matrix, 
 was the unknown parameter matrix and  was the error term. 

The matrix  was obtained with the linear least squares 
estimation (4): 

 ( ) YXXX TT ⋅⋅⋅= −1β  (4) 

Once obtained the matrix  , the final estimation of HR 
was obtained for each condition and channel, by multiplying 
the basis functions with the relative amplitude (element of ). 

D. Synthetic Data 
Simulated data were generated to assess the performance 

of the developed algorithm as in [11], [12]. For each of the 30 
simulated subjects, the time series relative to 10 channels for 
HbO and the corresponding 10 channels for HbR were 
generated. The HR was modeled by a linear combination of 
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two gamma-variant functions. Fluctuations due to 
physiological components were expressed as a linear 
combination of sinusoids, while the measurement noise was 
modeled as a gaussian white noise process. Numbers of trials, 
amplitude and latency of the HRs, frequency and amplitude of 
the sinusoids and standard deviation of the white normal 
process were chosen according to real data. 

E. Real Data 
Ten right-handed participants (5 females, mean age 28, 

from 24 to 37) performed the experiment after providing 
informed consent. Each participant was seated in a 
comfortable chair placed before a computer screen and a 
keyboard, and performed a simple finger-tapping protocol: 
when an arrow head pointing to the left or right appeared on 
the screen,  the participant had to press twice the “A” key or 
the “L” key, with the forefinger of his left or right hand 
respectively. A fixation cross was presented at the center of 
the screen for 2 seconds, alerting participants about the 
incoming presentation of the stimulus. Participants performed 
a total of 80 trials within an event-related paradigm (with ISI 
ranging from 12 to 15 seconds): on 50% of them, the arrow 
was pointing to the right (condition 1) while on the other 50% 
it was pointing to the left (condition 2). Trials were organized 
in 2 consecutive blocks (with a short pause between 
successive blocks), and each block included 40 trials; trial 
order was randomized in both blocks. This simple protocol 
was chosen to validate the proposed method for two main 
reasons: first, it has been extensively investigated in fNIRS 
studies [6]; furthermore, the cortical areas which are involved 
in such task are well known. Subject had to move only twice 
the forefinger so as to elicit a limited hemodynamic response, 
which might be comparable to those obtained with other 
event-related paradigms [13], [14]. 

 

 
Fig.2: Probe placement: sources (red circles) and detectors (blue circles) 
overlaid on the head surface of the ICBM152 template. 

The fNIRS signal was acquired with a multi-channel 
frequency-domain NIR spectrometer (ISS ImagentTM, 
Champaign, Illinois), equipped with 20 laser diodes (10 
emitting light at 690 nm, and 10 at 830 nm) and 2 photo-
multiplier tubes. Sources and detectors were held in place on 
the scalp using a custom-made holder and velcro straps. Each 
source location comprised two source optical fibers, one for 
each wavelength. The distance between each source/detector 
pair was 3 cm, and they were placed in the motor area (parietal 
lobe): their position is reported in Fig.2 on a template [15]. 
Each channel contains about 12000 time-points, corresponding 
to 25 minutes (1500 seconds). The sampling frequency was 
7.8125 Hz. 

III. RESULTS 

A. Synthetic Data 
The proposed methodology was applied to simulated data 

and compared with widely used methods: conventional 
averaging and band-pass filtering. For each method, raw data 
were first band-pass filtered (Butterworth, pass band: from 
0.01 Hz to 3 Hz) to further remove any slowly drifting signal 
components and other noise with frequencies far from the 
signal band. The band-pass filtering consisted in a classical 
Butterworth, band-pass, from 0.01 to 0.3 Hz. The obtained 
HRs were then smoothed with a Savitzky and Golay’s filter 
with polynomial order equal to 3 and framesize equal to 25 
time-points. An example of the obtained HRs is shown in 
Fig.3. 

 
Fig.3: HR estimate (subject 28, channel 5, condition 1, HbO) obtained with 
CA (red), band-pass filtering (green) and the proposed method (GLM, blue). 
The true HR is reported in black. 

In order to give a quantitative measure of the goodness of 
the obtained estimates, the estimation error was defined (5): 

 2
true

2
trueHR uuuE /100 −⋅=  (5) 

where  was the estimate of the HR and utrue was the HR used 
to generate the simulated data. The value of EHR is a sort of 
percentage estimation error. The parameters used to measure 
brain activation are the peak amplitude and latency of the 
HRs. Thus, the absolute percentage error of the estimate of 
these two parameters, EA and EL respectively, has been 
evaluated. The indexes EHR, EA and EL were obtained for CA, 
band-pass filtering and the proposed method. They are 
reported in table I. 

The best estimation error (EHR) is obtained with the 
proposed method (14 ± 8, for HbO), which reduces EHR of 
42% and 33% with respect to CA and Band-pass filtering, 
respectively. The improvement in EHR is significant (p<0.01) if 
compared both with CA and Band-Pass. The proposed method 
achieved good estimates of peak’s amplitude and excellent 
estimate of peak’s latency for HbO. For HbO, EA and EL 
obtained with the three methods are not significantly different 
from each other. The higher values of EHR in estimates relative 
to HbR are due to the presence of higher noise with respect to 
HR amplitude, and underline the complexity in analyzing HbR 
data [16]. The reduced amplitude of HR with respect to 
physiological components and measurement noise leads the 
GLM to fail in HbR peak’s latency estimation: this could be 
solved with a more sophisticated pre-processing strategy 
aimed at attenuating global trend [17]. 
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TABLE I 

% CA Band-Pass Proposed Method 

H
bO

 EHR 24 ± 21 21 ± 18 14 ± 8 

EA 22 ± 17 20 ± 15 25 ± 16 

EL 7 ± 5 6 ± 5 5 ± 4 

H
bR

 EHR 42 ± 44 35 ± 37 30 ± 12 

EA 28 ± 21 26 ± 19 28 ± 14 

EL 5 ± 5 4 ± 4 14 ± 3 
Mean and standard deviation of estimation error EHR, absolute percentage 

error on the estimation of peak amplitude EA (%) and peak latency EL (%) 
obtained with CA, band-pass filtering and the proposed method. 

B. Real Data 
For each method, the values of peak amplitude were 

considered (for both HbO and HbR), and a one tail t-test was 
performed to identify the channels showing a significant 
activation increase relative to the baseline. As expected, all 
channels resulted active. For each condition, the obtained peak 
amplitude were compared in all symmetric channels: A1-B1, 
A2-B2, A3-B3, A4-B4, A5-B5 (see Fig.2). For condition 1, 
corresponding to the movement of the forefinger of the right 
hand, no significant difference was found. The right hand was 
the dominant hand of our subjects, its movement induced a 
lower activation, similar in both hemisphere [13]. For 
condition 2, movement of the forefinger of the left hand, a 
significant larger amplitude was found in channel B4, 
confirming a greater activation in the right hemisphere, 
contralateral to the moved hand [14]. The mean difference 
between peak amplitude of the HR corresponding to condition 
2 in channel A4 and B4 obtained with the proposed method 
(61 nM) was greater than that obtained with CA and Bandpass 
(32 and 33 nM, respectively), suggesting that the proposed 
method achieves a more proper HR estimation. 

IV. CONCLUSIONS 
The completely automatic identification of the basis 

functions makes the proposed method usable with both event-
related design or block design and it does not require, unlike 
the public available software GLM-based (NIRS-SPM) [9], a 
priori knowledge about the evoked HR profile. The block-
average of trials from all channels is useful to obtain a good 
preliminary description of the HR, whose amplitude and 
latency are then better estimated, for each channel and 
condition, with the GLM approach. The use of the temporal 
derivative as basis function of GLM allows to correctly 
estimate peak latency and the undershoot, which is not 
considered in the initial model (only one gamma-function) of 
the HR. An improvement of the proposed method can be done 
by adding to the basis functions the second temporal 
derivative of HR model or the derivative computed with 
respect to one of the parameters of the model, as in NIRS-
SPM. In conclusion, even if an exhaustive evaluation of the 
proposed method has still to be conducted on real data, the 
preliminary results are encouraging, given that the method is 
able to provide a good estimate of the functional 
hemodynamic response in comparison to other widely used 

methods. Results on simulated and real date underline that the 
proposed GLM-based methodology is a general and flexible 
way to properly estimate evoked hemodynamic response, and 
it can be employed for a wide variety of fNIRS experiments. 
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