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Abstract— The paper considers the Linear Quadratic Gaus-
sian (LQG) optimal control problem in the discrete time
setting and when data loss may occur between the sensors i
and the estimation-control unit and between the latter and e+l System Tt
the actuation points. We consider the case where the arrival of
the control packet is acknowledged at the receiving actuator, Yit1
as it happens with the common Transfer Control Protocol
(TCP). We start by showing that the separation principle
holds. Additionally, we can prove that the optimal LQG control
is a linear function of the state. Finally, building upon our
previous results on estimation with unreliable communication,

Controller

the paper shows the existence of critical arrival probabilities Kgl'lrjr‘:: Ti+1

below which the optimal controller fails to stabilize the system. T
This is done by providing analytic upper and and lower bounds = M e Ut
on the cost functional. vt [ ©

I. INTRODUCTION

A growing number of applications demand remote control
of plants over unreliable networks. Examples are wirelessg. 1. Overview of the system.We study the statistical convergence
sensor networks used for estimation and control of dynanef the expected state covariance of the discrete time LQG, where both
ical systems [1]. In these systems issues of communicatid}f oPservation and the control signal, traveliing over an unreliable
. L communication channel, can be lost at each time step with probability
delay, data loss, and time synchronization between comp-_ ) and1 — v respectively.
nents play a key role. In short, communication and control
become tightly coupled such that the two issues cannot be
addressed independently. (LQG) optimal control problem —modeling the arrival of
Consider, for example, the problem of navigating a vehian observation as a random process whose parameters are
cle based on the estimate from a sensor web of its currertlated to the characteristics of the communication chan-
position and velocity. The measurements underlying thisel. Accordingly, we consider two independent Bernoulli
estimate can be lost or delayed due to the unreliability gfrocesses, of parameteysand 7, that govern packet loss
the wireless links. What is the amount of data loss that theetween the sensors and the estimation-control unit, and
control loop can tolerate to reliably perform the navigatiorbetween the latter and the actuation points, see Figure 1.
task? Can communication protocols be designed to satisfyWe first show that in the TCP case the separation prin-
this constraint? The goal of this paper is to examine sonwple holds and the optimal controller is a linear function
control-theoretic implications of using unreliable networksof the state. We extend our previous results on estimation
for control. These require a generalization of classicakith missing observation packets [2] to the control case,
control techniques that explicitly take into account theshowing the existence of critical values for the parameters of
stochastic nature of the communication channel. the Bernoulli arrival processes, below which a transition to
Communication channels typically use one of two kindnstability occurs and the optimal controller fails to stabilize
of protocols: Transmission Control (TCP) or User Datathe system. In other words, in order to have stability, the
gram (UDP). In the first case there is acknowledgement gfacket loss rate must be below a given threshold that
received packets, while in the second case no-feedbackdspends on the dynamics of the system.
provided on the communication link. We study the effect of Study of stability of dynamical systems where component
data losses due to the unreliability of the network links irare connected asynchronously via communication channels
the TCP case. We generalize the Linear Quadratic Gaussiaas received considerable attention in the past few years



and our contribution can be put in the context of the I[l. PROBLEM FORMULATION

previous literature. Hassibi, Zhang and Seiler [3], [4], [5]. cConsider the following linear stochastic system with
Ling and Lemmon [6], in a series of papers, proposed gtermittent observations:

compensator approach for some data loss models. They

consider an optimal compensator design when data loss Tpy1 = Azp +vpBug 4wy 1)

is i.i.d. A different approach was considered in [7] which yr = Czp+ v, @)
proposed to place an estimator, i.e. a Kalman filter, at the o e

sensor side of the link and without assuming any statistic?:{‘fhere”“"’C €R IS the sFate vectoy;, < R LS the outp:t
model for the data loss process . The work of [8] is th&/ector, uy, qu is the "_’p”t vectorzo € R, Wk G.R
closest to the present paper. We consider the more gene‘?g ve €R are Gaussian, uncorrelat_ed, white, with zero
case when the matri' is not the identity and there is M&an and covariandd®, @, Riy,) respectivelyRy, =y, R+

5 F .
noise in the observation. Moreover we analyze the infinite! — 7)o~ 1, and and(%”’f) are i.i.d. Bernouljl random
horizon case variable withP(y, = 1) = 7 and P(v, = 1) = . Let us

. . .., define the following information set:
Nilsson [9] presents the LQG optimal regulator with g
bounded delays between sensors and controller, and be- I 2 {y*,~* v 1, (3)
tween the controller and the actuator, but he does not A k
address the packet-loss case. This is considered by Half€rey" = (Wk: Y-+, ¥1)s 7° = (s T—15- -5 1)
jcostis and Touri [10], where dropped measurements a?é‘d” = (Vs V=155 1) .
, . Consider also the following cost function:
replaced by zeros. Other approaches include using the

last received sample for control, or designing a dropout  , , £ Lo i W " 7
compensator [11], [6]. We consider the alternative approacﬁv(Ul )=E |on Wiy + kz_o("rk ko + veupUsuk) | I

where the external compensator feeding the controller is the (4)
optimal time varying Kalman gain. Moreover, we analyze We now look for control input sequenca*V~! that
the proposed solution in state space domain rather thafinimizes the above functional given that the information
in frequency domain as it was presented in [6], and w&, is available at timek, i.e.

consider the more general Multiple Input Multiple Output . . _ N
(MIMO) case. Jy = min Iy (@) = Iy (@) (5)

The separation principle states that observer and p'%ereu;@ — u}(Z)) andZ is defined in Equation 3.
of a linear system can be designed independently. We first '

show that this principle continues to hold in the case of I1l. M ATHEMATICAL BACKGROUND
data loss between the sensor and the estimator. This allowsBefore proceeding, let us define the following variables:
us to use our result in [2], [12] to show the existence of a

. A
critical loss probability below which the resulting optimal Tre = Elze [ T,
. . A ~
controller fails to stabilize the system. el = Tk — Lk (6)
. . . . . A
In our previous work on Kalman Filtering with inter- Py = E[ek‘ke;c‘k | Z]-

mittent observations [2], [12] we proved the existence of
a critical loss probability under which the expected erro
covariance of the filter diverges. The aim of this work is t
extend this result to the optimal control problem showing emma 1. The following facts are true:
the existence of a transition from bounded to unbounded (5) E[(zx — &)%), | Zi) = E [expi), | Zu] =0
states in the closed loop system as well, when the rate of () E [z, Sy, | Ty) = @S¢ + trace (SPyy) =
observation loss exceeds a given threshld 2 Sk +E e} Sex| ), VS

Following the procedure and using the result in [2], [12] (¢) E[E[ g(zx+1) |Zrs1] | Zx] = Eg(zra1) | Zk],  Vg(+)
we are able to prove the existence of a critical value for Proof: (a) It follows directly from the definition
the arrival rate above which the optimization problem iﬁ fact: E. e 1 T = Eled — s | T — '
bounded, and below which the cobgoes unbounded. This -, 2" [Exk Tk)T, | Tk] = Elopdy, — iy | Tu] =

B[z | I &), — 2,3, =0

is accomplished by finding deterministic upper and lower (b) Using 'standard algebraic operations and the previous
bounds for the expected optimal cost and their convergengget we have:

conditions. E [z Sz |Zi] E ( b+ ) S( B+ ) |Ti]
The paper is organized as follows. The next section will RO ¥y xk T . ,k § Axk *
TStk + E [(mk — Zx)' S(xk — xk)} +

provide a mathematical formulation for the problem. In

In the following derivation we will make use of the
ollowing facts

~! ~
section 1l we provide some preliminary results in the form + 2B [&3S(x — k) | T
. . . ~l A A ~l
of lemmas, which we then use to prove our main results in = &St + 2trace{SE[(zr — Tk )2k |Zr]} +
section IV. We finally conclude and provide directions for +  trace{SE[(zx — &&)(wx — &x)" |Zk]}

future work in section V. &4 S%k + trace{S Py, }



where we used the independencewf and 7. Since
(c) Let (X, Y, Z) be any random vectorg,-) any func-  Yk+1,Vk+1, wi andZ, are all independent of each other

tion, andp the probability distribution, then and following the same approach described in [2], then
' ' correction step is given by:

By z[g(X.Y,2) | X]= Trpprerr = Tepip F Ve Kepr Uk — Cppape)  (13)

= / / 9(X,Y, Z)p(Y, Z|X)dY dZ Chtllktl = Thtl — Thyalkt

ZJY Trr1 — @rg1ie + Yor1 K1 (1 — CZpqaik)
ert1k — Ve+1 K41 (Cxg1 + Vi1 — CRpya)r)
(I =7k +1Kp11C)ep 1)k — Yo+1Krr1ve(14)
Priije — Ye+1 K 11C Py, (15)

Pyi1jsC'(CPoya,C" + R) 7Y, (16)

:/Z/Yg(X,Y,Z)p(Y|Z,X)p(Z\X)deZ

-/ [ [ sy 21z 00y | pzixiaz - P
Z Y
By Ey[g(X,Y.2) | Z,X] | X]. Hen

EY
where we took the limiv — +oo0.

where we used the Bayes' Rule. Since by hypothZgis The initial conditions for the estimator iterative equations

Zr+1, then fact (c) follows from the above equality by

- are:
substitutingZ, = X andZ;.1 = (X, Z2). [ |
We now compute some quantities that will prove to be Zo-1 = 0 (17)
useful when deriving the equation for the optimal LQG
controller. Let us compute the following expectation: Po-r = B (18)
Elzhi1SThr1 | k] = B. Controller design
= E[(Azk + vk Buk + wi) S(Azr + vk Bur +wi) | il = To derive the optimal feedback control law and the
= E[z},A’'S Az, + viu), B'SBuy + w),Swy, + corresponding value for the objective function we will
+2upul, B S Az + 2(Axy, + v, Buy)wy | Zi] = follow the dynamic programming approach based on the
= E[z},A'S Az, | Tp.] + vul,B'SBuy, + cost-to-go iterative procedure.
+20uy, B'SAE[zy, | Zi] + trace(SE[wrwy, | Zi]) = Define the optimal value functiol,(z;) as follows:
— / ’ —_— ! A
E[m[kAlSAxk ‘ Ik] + vuy, B SBuy + VN(xN) a E[I‘Q\[WNJZN ‘ IN]
+20uy, B'SA Ty, + trace(SQ) @

A . / /
. Vi 2 minE[z. W U Vi A
where we used independencewgf wy,, 21, and zero-mean w(7k) e [} Wik 4 vl Uptg, + Vit (2e41) | Zi]

property ofwy. The previous expectation hold true for bOthUsing dynamic programming theory [13] [14], one can

the information setg;, = {Zj, Gx}. Also show thatJ% = Vi (o).
E[G;dkTekUc 1 7,] = trace(TIE[ek‘ke;‘k | Z,]) = trace(T Py, aSWe claim that the value functiolr;(z;) can be written
(8) '
IV. FINITE AND INFINITE HORIZON LQG Vi(wr) = E[ 2}, Skak | Fil+ck, k=0,....,N (19)

We first start finding the optimal estimator, which will where the matrixS;, and the scalat;, are to be determined
be needed to solve the LQG controller design, as it will band are independent of the information etVe will prove
shown later. it by induction. The claim is certainly true fdr = N with

. . the following choice of parameters:
A. Estimator Desighg — +o0

We derive the equations for optimal estimator using Sy = Wy (20)
similar arguments used for the standard Kalman filtering N = 0 (21)
equations. The innovation step is given by:
Suppose now that the claim is true fdr + 1, i.e.
Vir1(rg1) = E[ 23 Skr1%rr1 | Frga] + cry1, and
we use it to compute the value function at time steps

-’i‘kﬁ-l\k é E[$k+1|l/k,zk] = E[Aack + v Bug + wk‘l/k,zk]
AE[zk|Z] + vk Buk

= Ay + viBu 9  follows:
A R
Ck+1lk = Th4+l — Tk41|k
Az + v Buk + wi — (AZ + v Bug) (10)
Aeg + Wi (11)

Pesije = Elersipneip [vr, Tl =

=E [(A€k|k + wi) (Aerr + wk), |Vka]

= AE[eg ke x| Tr] A + Elwgwy]

= AP A+ Q 12)



TCP is given by:

Vie(zg) = Jn = Volzo) = E[zySowo] +
N-1
+ Z (trace ((A/S]H_lA + Wy, — Sk)IE,Y [Pk\k:D +
= min]E[mﬁCWka:k + vpuy Upur, + Vi1 (Zp+1) | Zk] k=0
Uk ]E[ "W, + " + + trace(Sk+1Q))
T R TR TR T VRS U R = TySoTo + trace(SyPy) +
4+ Elhi1Ser1Th41 + Chrt | Frga] | Tk N-1
= minE[z,Wizk + veupUrtr + Thop1 Skt1Tht1 + + Z (trace ((A/Sk+1A + Wy — Sk)E, [Pk\k}) +
k k=0
+ ks |Zk]
+ trace(Sk11Q (28)
+ trace(Ses1Q) + Elcnsr | Tn] + The matrices{Py;},—, are stochastic since they are
" function of the sequencéy,}. The exact expected value

— . ! ! ’ / ~
v min (i, (Us + B'Sper Bluk + 20 B'Sk1A%1k32) - of these matrices cannot be computed analytically, since

they are nonlinear function of the arrival sequenge as

where we used Lemma 1(c) in the third line, and Equatiof?0Wn in [2]. However, they can bounded by computable
(7) in the last two lines. The value function is a quadrati eterminiatic quantities. In fact let us consider the following

: . L X uation:
function of the input, therefore the minimizer can be simply q

obtained by solving%‘f: = 0, which gives: ﬁk+1\k = Aﬁk\k—lA, +Q -
+  FAPyx 1C (CPys_1C' + R)"'CPyp_1 A (29)
Up = —(B,Sk+1B + Uk’)ilB/Sk+1A fk\k =L i‘klk- ﬁk\k = ﬁk\k—l - ’Vﬁk\k—1cl(0ﬁk|k—1c/ + R)_ICﬁkl@—Q)
(23) f’k-‘-uk = (1- :}/)Aﬁk\k—lA/ +Q (31)

The optimal feedback is thus a simple linear feedback of ~

the estimated state. If we substitute the minimizer back into ©*I* (L =) P (32)
Equation (22), and we use the Equation (19) we get: initialized to ﬁOH = 150‘,1 = P,. Using similar ar-
guments as those in [2], it is possible to show that the
Vi(xr) = matrices P,;,'s are concave and monotonic functions of
Py -1, respectively. Therefore, the following bounds are
true:
= E[l’;Wkl’k + ZZ;CA/Sk+1A1‘k | Ik] + trace(SkHQ) + ~ ~
_ P < E,[P < P, 33
+  Elert1 | Zu) — D A'Sks1 B(Uk + B'Sk1B) ' B’ Skp1 Ad bk S EqlPrw] < P (33)
(24) (34)
Therefore we have:
E[z},Skzk | Tn) + ek = IR <IN < TR (35)
JNY = 3(SoTo + trace(SoFPo) +
N-1 R
= E[mchkxk + 2, A'Sp 1 Axy — + Z (trace ((A/Sk+1’4 + Wi — Sk)PkW) +
Y / —1 7 k=0
=+ kaA§k+1B(UkE+ B Sk+zl_B) B Sk+1Axk ‘ Ik} + + trace(Sk+1Q)) (36)
+ t_race( k.s_l1Q)+ [cht1 |,k] + L T = 2S00 + trace(SoPo) +
+ l/tI‘a.CG(A Sk+1B(Uk + B Sk+1B) B S}ﬁq Pk|k)(25) No1
. ) ) + Z (trace ((A'Sk+1A + Wi — Sk)lgk\k)
where we used Lemma 1(b) in the last line. For the previous P,
equation to hold for alk;, we need to have: +  trace(Sk1Q)) (37)
S, = A/Sk+1A+Wk —
— ! / -1 !
T pA Sk+11/3(B Sk1B + Uf) B Sirlf} (26) . Finite and Infinite Horizon LQG control
&= VtraceS(A S’““BE(:U’“ + BIS’““B) B Sis1 Pupe) + The previous equations were derived for the finite horizon
+  trace( ’“tlQ) +Elex [ Zi] LQG. The infinite horizon LQG can be obtained by taking
= trace ((A"Sk1 A+ Wi — Sk) Puji) + the limit for N — 400 of the previous equations. However,
+  trace(Se+1@Q) + Elerta | Zi] (27)  the matrices{ M.} and {Py;} depend on the specific

realization of the observation sequenieg, }, therefore the
minimal costJy is a stochastic function and does not have
Therefore, the cost function for the optimal LQG usinga limit. Differently from standard LQG controller design



where the controller always stabilizes the original systemand the matricesS.., Poo, P
in the case control packet loss, the stability can be lost if A5 A o , “ipig 4
the arrival probabilityr, 5 is below a certain threshold. In = f‘x’ ,+ W= f""B,(Bf""B,+ U)lef“’ ,
particular the Equation for the cost matS is the solution £ = APcA +Q —7APC(CPxC + R) CPoA
of a modified Riccati Algebraic Equation (MARE) which £ (1-9)AP A +Q

was already introduced and studied in our previous WorkMoreover the assumptions above arecessary and suf-
[2]. In particular, Equation (26) is the dual of the esumatorﬁciem conditions for boundedness of cost function under

equation presented in [2]. Therefore, the same conclusi_oE&G feedback. The critical probabilities, i, andv,i,can
can be. drown and we are now ready summarize the Previoya computed via the solution of the following LMIs opti-
result in the following theorem: mization problems:

Theorem 1 (Finite Horizon LQG under TCP). Consider
the system (1)-(2) and consider the problem of minimizing
the cost function (4) with policy,, = f(Zx), whereZ

Yenin = argmin;/\I/A,(Y, Z)>0, 0<Y <I.

is the information available under TCP communication,  Y~(Y:2) =
given in Equation (3). Then, the optimal control idimear \[(A’YY o2 ﬁ(Y/)l/Jr ZC) /1 —O’YYA
function of the estimated system state given by Equation ST AY 0 v

(23), where the matrixS; can be computed iteratively
using Equation (26). Theeparation principlestill hold
under TCP communication, since the optimal estimator
is independent of the control input,. The optimal state
estimator is given by Equations (9)-(13) and (12)-(16), and ~ ¥»(Y;2) =

Vmin = argmin, ¥, (Y, Z) >0, 0<Y < 1.

the minimal achievable cost is given given by Equation (28). Y V(YA +ZB') V1—vY A
= | VU(AY + BZ') Y 0
Theorem 2 (Infinite Horizon LQG under TCP). Consider V1—vAY 0 Y

the same systems as defined in the previous theorem with
the following additional hypothesid¥y = W, = W and
U = U. Moreover, let(A, B) and (4, Q%) be controllable, Motivated by applications where control is performed
and let(4,C) and (A, W z) be observable. Let us considerover a communication network, in this paper we extend
the limiting case N — +oo, then, there exist arrival our previous results on optimal control with intermittent
probabilities v,,,;, and v,,;, which satisfy the following observations to the case where control packets may be lost
property: due to the presence of an unreliable communication channel
between the controller and the actuator. We assume that
min (1 1— 1 ) <y o<1 (3g) an acknowledgement of the arrival of the control packet is
T Pmae(A)2) T always available to the controller (TCP). First, we showed
that the separation principle holds also in this case. Then
1 ) < <1 (39) we proved that the optimal LQG control is a linear function
Amac(A)2) ~ Ymin = 5 of the state. Finally, by providing analytic upper and and
lower bounds on the cost functional we could show the
where|\,...(A4)| is the eigenvalue of matrid with largest existence of critical arrival probabilities below which the
absolute value, such that for ajl > v,,,;,, we have: optimal controller fails to stabilize the system. Future work
will involve the analysis for the case when the controller
Ly = Lo = —(B'SeeB+U) " 'B'SecA (40)  does not receive any acknowledgement to whether its packet
% Jmin < % Ty < % Jma (41) has been received by the actuator or not.

V. CONCLUSION

min <1, 1-—
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