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Abstract— This paper describes a novel consensus-based
protocol, referred as Average TimeSync (ATS), for synchronizing
a wireless sensor. This algorithm is based on a class of popular
distributed algorithms known as consensus, agreement, gossip
or rendezvous whose main idea is averaging local information.
The proposed algorithm has three main features. Firstly, it
is fully distributed and therefore robust to node failure and
to new node appearance. Secondly, it compensates for clock
skew differences among nodes, thus maintaining the network
synchronized for longer periods than using simple clock offset
compensation. Finally, it is computationally lite as it involves
only simple sum/product operations. The algorithm has been
implemented and preliminary experimental results are pro-
vided.

I. INTRODUCTION

Recent advances in technology have made low cost, low
power wireless sensors a reality. For several applications
of a wireless sensor networks, such as mobile target track-
ing, event detection, efficient TDMA scheduling, and sleep
scheduling with very low duty cycle, it is essential that the
nodes act in a coordinated and synchronized fashion. All
these applications require a global clock synchronization,
that is all the nodes of the network need to refer to a common
notion of time. In fact, for example, let us consider the
problem of tracking a moving target using proximity sensors,
where some nodes are deployed in the environment and their
proximity sensors detect when the moving object passes in
their vicinity [13]. Assuming that the position of the sensors
is known, it is essential that the instants of detection are
precisely time-stamped for determining the trajectory (direc-
tion and speed) of the moving object. Clearly, the precision
of the tracking algorithm based on this system is limited by
the accuracy of the clock synchronization. Another important
application needing a time-synchronization service, is habitat
monitoring [16] [17], where many battery-powered nodes are
deployed in the area of interest for an extended period of time
without possibility of battery replacement. In this scenario
the nodes have to operate with very low duty cycle, i.e. they
need to be turned off for most of the time since listening
the channel for receiving a transmission is the most power
consuming operation in low-power wireless nodes (see for
example [11], pag.14). Therefore, it is necessary to design
a time schedule in which all nodes turn on their radios at
designated times, transmit the data they have recorded to the

L. Schenato is with Faculty of Department o Information Engineering,
University of Padova, Italy schenato@dei.unipd.it

G. Gamba is a Ph.D. candidate at the Department o Information Engi-
neering, University of Padova, Italy giogamba@dei.unipd.it

This work has been partially supported by European Union project
SENSNET founded by Marie Curie IRG grant n.014815

base station via multi-hop, and then turn off the radio again.
If nodes are awake at different times, the sensor network
might not be fully connected and therefore packets might
not be correctly delivered to the base station. Therefore,
time synchronization accuracy is directly related to power
consumption, since it is necessary to increase the duration
of the awake intervals, i.e. the intervals when the radios
are turned on an expecting to receive a transmission, to
compensate for synchronization errors. First, let us consider
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Fig. 1. Local time, τ , of two nodes with different clock skews relative to
absolute time, t. The dashed line correspond to synchronizing clock after
skew compensation relative to the reference clock (left). Periodic offset
synchronization of one clock relative a reference clock (right).

the problem of synchronizing two clocks. This is generally
solved by selecting one clock and synchronizing it relative
to the other clock. Synchronization is achieved by adding
to the current local time of one clock the instantaneous
time difference with the other clock. However, due to small
fabrication variations or ambient conditions, clocks have
slightly different skews, i.e. they run at different speeds (see
solid lines in Fig. 1(left)), therefore if no skew compensation
is adopted, the offset resetting between two clocks needs to
be performed quite often, as shown in Fig. 1(right). To avoid
frequent offset resetting, many synchronization algorithms
adopt skew compensations techniques, i.e. they estimate how
fast the node to be synchronized is running with respect to
the reference node and then they use this to compensate the
synchronizing clock reading, as shown in the dashed line
in Fig. 1(left). By combining skew compensation and offset
resetting it is possible to maintain two clocks synchronized
for long periods of time.

Time-synchronization of a wireless sensor network adds
two major problems to the previous discussion. The first
problem emerges from the fact that in a sensor network the
nodes cannot communicate directly with each other but they
have to do it via multi-hop. Therefore, it is not possible to
choose a reference node to which all other nodes can be



synchronized to. The second problem is a consequence of
the unpredictable time delay between the clock reading in
one node and its processing at the receiver node, thus causing
poor performance. In fact, delivery time of radio messages in
WSNs are subject to random variations due to many factors,
such as interference, backoff due to occupied radio channel,
and scheduling of the host operating system of the motes.
These delays can be magnitudes larger than the required
precision of time synchronization. Different strategies has
been proposed to solve these two problem. The next section
reviews some of the most important ones.

II. PREVIOUS WORK

A. Communication topology

One natural approach to deal with the multi-hop nature
of a sensor network is to organize the network in a rooted
tree as suggested in the Time-synchronization Protocol for
Sensor Networks (TPSN) proposed by Ganeriwal et al. [7]:
initially one node is elected to be the clock reference, then
a spanning tree rooted at that node is builded, and the offset
of any node with respect to the root is obtained simply by
adding the offset of the edges in the unique path from each
node to the root, as graphically shown in Fig.2(center).

The offset between two nodes (in adjacent levels of the
tree) is calculated with a two-way message exchange, which
bounds the transmit and propagation delay. This approach
suffers from two limitations. The first limitation arises be-
cause if the root node or parent node dies, then a new root-
election or parent-discovery procedure needs to be initiated,
thus adding substantial overhead to the code and long periods
of network de-synchronization. The second limitation is due
to the fact that geographically close nodes, such as the
node i and j in Fig.2(center) might be far in terms of
the tree distance, which is directly related to the clocks
error. This is particularly harmful for many applications such
as object tracking or TDMA scheduling, for which it is
really important that clock errors between one node and
the other should degrade sufficiently smoothly as a function
of geographic distance. More recently, a similar scheme,
the Flooding Time Synchronization Protocol (FTSP, [10])
proposed to use broadcast communications and MAC layer
time-stamping to achieve better precision. Topologically, it
is similar to the TPSN approach since it builds a rooted tree,
but it implements also mechanisms for skew compensation,
dynamic topology adaptation and root failure recovery. These
mechanisms increase performance and robustness, but still do
not completely solve the issues aforementioned.

Another approach to the same problem is to divide the
network in interconnected single-hop clusters, as suggested
in the Reference Broadcast Synchronization (RBS) scheme
[4] and graphically illustrated in Fig.2(right). In this protocol,
within every cluster a reference node is selected to synchro-
nize all the other nodes. The reference nodes of different
clusters are synchronized together and acts as gateways by
converting local clocks of one cluster into local clocks of
another cluster when needed. As the TPSN, also RBS suffers
from large overhead necessary to divide the network into

clusters and to elect the reference nodes, and it is fragile to
node failures.

The last approach is have a fully distributed commu-
nication topology where there are no special nodes such
as roots or gateways, and all nodes run exactly the same
algorithm. This approach has the advantage to be very robust
to node failure and new node appearance, but requires novel
algorithms for the synchronization as there is no reference
node. One example of a completely distributed synchro-
nization strategy is the Reachback Firefly Algorithm (RFA),
inspired by firefly synchronization mechanism [19]. In this
algorithm every node periodically broadcasts a synchroniza-
tion message and anytime they hear a message they advance
of a small quantity the phase of their internal clock that
schedules the periodic message broadcasting. Eventually all
nodes will advance their phase till they are all synchronized,
i.e. they “fire” a message at the same time. This approach
however does not compensate for clock shew, therefore
the firing period needs to be rather small. Recently, Solis
et al. [15] proposed a Distributed Time Synchronization
Protocol (DTSC) which is fully distributed and compensate
also for clock skews. This protocol is similar to our Average
TimeSync protocol, but it is formulated as a distributed
gradient descent optimization problem [8], while ours as a
consensus problem. However, further investigation of simi-
larities and differences of the two algorithms is needed.

B. Delivery time delay

As mentioned in the previous section, the other major
problem to be faced in WSN clock synchronization, is the
random delivery time of messages. In particular, it is possible
to decompose the total delivery time into different parts, as
thoroughly analyzed in [7] and [10] and pictorially shown in
Fig. 3:
• Send Time, Ts: time needed to read the local clock,

assemble the message, and do the send-request to the
MAC layer on the transmitter side. Depending on the
system call overhead of the OS and on the current
processor load, the send time is non deterministic and
can be as high as hundreds of milliseconds.

• Access Time, Ta: waiting time to access the channel
until transmission begins. It depends on the traffic on
the radio channel and the backoff time of the CDMA
protocol implementation. It varies from milliseconds up
to seconds depending on the current network traffic.

• Transmission time, Tt: time necessary for the sender to
transmit the message. This time is in the order of tens
of milliseconds depending on the length of the message
and the speed of the radio.

• Propagation time, Tp: travel time of a message from
sender to receiver. The propagation time is highly de-
terministic and it depends only on the distance between
the two nodes. This time is less than one microsecond
for node distances under 300 meters.

• Reception time, Trp: time necessary for the receiver to
receive the message. It is the same as the transmission
time, i.e. Trp = Tt.
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Fig. 2. Sensor network graph with available communication links (left). Tree-based synchronization (TPSN and FTSP): a feasible communication tree is
determined and then every node synchronize with its parent. Decreasing intensity circle color indicates hops distance from root, and dotted lines represent
unused communication links (center). Cluster-based synchronization (RBS): every node in a cluster is synchronized to its gateway node, and gateway nodes
synchronize with themselves. Arrows indicates direction of clock synchronization messages. Shaded circles represent gateway nodes (right).

• Receive time, Trv: time required to process the incoming
message and to notify the reception to the application.
It is similar to the send time.
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Fig. 3. Temporal illustration of packet transmission and reception delays
between two wireless sensor nodes.

The total delivery delay, Td is then given by:

Td = Ts + Ta + Tp + Trp + Trv (1)

which is directly related to the minimum achievable synchro-
nization error. Delay can be compensated for as long as it
can be computed accurately. Propagation time is negligible
in WSN, as it is much smaller than the clock resolution.
Transmission time and Reception time are predictable from
the speed of the radio and the length of the message to
transmit. However, Access time, Send time and Receive time
are rather unpredictable, causing delay uncertainty on the
order of hundreds of milliseconds.

Different strategies has been proposed to limit this prob-
lem. The simplest strategy is performed via monodirectional
transmission: node i reads its clock τi at time t1 and sent it
to node j which reads its own local clock τj at time t2 and
then computes the clock offset as oji = τj(t2)− τi(t1). The
delivery delay Td = t2− t1 cannot be estimated exactly due
to randomness of Ts, Ta and Trv .

A more efficient strategy is obtained via bidirectional
transmission by re-sending back to the sender node i a packet
with clock reading of node j as soon j has received the
packet from i. If the delivery delay Td was constant on both
packet transmission from node i to j and vice versa, then
this strategy could compute it exactly and remove it from

the clock offset estimation as oji = τj(t2) − τi(t1) − Td '
τj(t1)− τi(t1). This scheme has been used, for example, in
the Lightweight Time Synchronization (LTS) protocol [18]
and in the TPSN [7]. Unfortunately, due to the delivery delay
randomness of any transmission, only a limited benefit can
be obtained. Better performance can be obtained by repeating
this process and averaging the offset estimate, at the price of
higher communication load.

An alternative approach to avoid some randomness in
the delivery delay is the broadcast-based synchronization,
which adopts a beacon node to synchronize two or more
other nodes within its transmission range. In this strategy a
reference packet is broadcasted from the beacon node k at
time tk1 , then all nodes that receive that packet reads their
local clock, i.e. τi(ti2) = τi(tk1 + T k

s + T k
a + Tp + T k

t + T i
rv)

and τj(t
j
2) = τj(tk1 +T k

s +T k
a +Tp +T k

t +T j
rv), and finally

they communicate each other their readings to compute the
clocks offset as oji = τj(t

j
2)−τi(ti2). This approach removes

the randomness from the sender side as the delay in the clock
readings of node i and j is tj2−ti2 = T j

rv−T i
rv , thus giving a

much better precision than the round-trip strategy described
above. Nonetheless, still some uncertainty persists due to the
possible difference between the receive time Trv of the two
nodes. This strategy has been used, for example, in the RBS
protocol [4].

The most effective strategy, whenever technologically
possible, is to use MAC-layer time-stamping, as proposed
in the FTSP [10]. In this approach, the clock reading of
sender node i is performed right after the first bit of the
packet is sent by the receiver, i.e. τi(tMAC

1 ), and the clock
reading of the receiver node j is performed right after
the first bit has arrived, i.e. τj(tMAC

2 ), as shown in Fig.3.
Since the propagation time is negligible, then we can safely
assume that clock reading on the two nodes is performed
instantaneously, i.e. tMAC

1 ' tMAC
2 , thus removing the

randomness of the packet delivery time from both sender
and receiver side.

The Average TimeSync protocol proposed in this paper
is fully distributed, i.e. does not require any special root,
includes skew compensation, and exploits MAC-layer time-



distrib. skew comp. MAC timestamp
TPSN [7] no no no
LTS [18] no no no

FTSP [10] no yes yes
RBS [4] no yes yes
RFA [19] yes no yes

DTSP [15] yes yes yes
ATS yes yes yes

TABLE I
TIME-SYNCHRONIZATION FEATURES FOR DIFFERENT PROTOCOLS.

stamping for higher accuracy. Besides the DTSP, none of
today’s available protocols possesses all these features, as
summarized in Table I.

III. MODELING

In this section, we provide a mathematical modeling for
wireless sensor network clocks. Every node i in a WSN has
its own local clock whose first order dynamics is given by:

τi(t) = αit + βi (2)

where τi is the local clock reading, αi is the local clock skew
which determine the clock speed, and βi is the local clock
offset. Since the absolute reference time t is not available to

Fig. 4. Clocks dynamics as a function of absolute time t (left), and relative
to each other (right).

the nodes, it is not possible to compute the parameters αi and
βi. However, it is still possible to obtain indirect information
about them by measuring the local clock of one node i with
respect to another clock j. In fact, if we solve Eqn. (2) for
t, i.e. t = τi−βi

αi
and we substitute it into the same equation

for node j we get:

τj =
αj

αi
τi + (βj − αj

αi
βi)

= αij τi + βij (3)

which is still linear as shown in Fig. 4(right). We want to
synchronize all the nodes with respect to a virtual reference
clock, namely:

τv(t) = αvt + βv (4)

Every local clock keeps an estimate of the virtual time using
a linear function of its own local clock:

τ̂i = α̂iτi + ôi (5)

Our goal is to find (α̂i, ôi) for every node in the WSN such
that:

lim
t→∞

τ̂i(t) = τv(t), i = 1, . . . , N (6)

where N is the total number of nodes in the WSN. Therefore,
if the previous expression is satisfied, then all nodes will have
a common global reference time given by the virtual clock
time. The previous expression can be rewritten differently by
first substituting Eqn.(2) into Eqn.(5) to get:

τ̂i(t) = α̂iαit + α̂iβi + ôi (7)

therefore Eqn. (6) is equivalent to:

lim
t→∞

α̂i(t) =
αv

αi
, (8)

lim
t→∞

ôi(t) =βv−α̂i(t)βi = βv−αv

αi
βi, i = 1, .., N(9)

Before moving to the next section which present how the
ATS protocol updates (α̂i, ôi) to satisfy the previous expres-
sion, it is important to remark few points. The first regards
the clock modeling of Eqn.(4). In reality the parameters
αi(t), βi(t) are time varying due to ambient conditions or
aging, therefore the updating period of the synchronization
protocol should be shorter than the variations of these
parameters.

The second point is that the virtual reference clock it is a
fictitious clock and it not fixed a priori. In fact, the values
of its parameters (αv, βv) are not important, since what it
is really relevant is that all clocks converge to one common
virtual reference clock. Indeed, as it will be shown in the
next section, the parameters (αv, βv) to which the local clock
estimates converge depend on the initial condition and the
communication topology of the WSN.

The last remark is that by using MAC-layer time-stamping,
we can safely assume that the reading of the local clock
τi(t1), packet transmission and reading of the local clock
τj(t2) is instantaneous, i.e. t1 = t2. If this not the case, our
synchronization protocol cannot be used as it is and needs to
be modified to cope with packet delivery delay. However, this
does not seem very harmful as most of new generation sensor
network nodes, such as the Tmote Sky mote [11], include
MAC-layer time-stamping. In fact, it is widely adopted in all
recently proposed protocols as indicated in Table I.

IV. THE ATS PROTOCOL

The Average TimeSync protocol includes three main parts:
the relative skew estimation, the skew compensation, and the
offset compensation.

A. Relative Skew Estimation

This part of the protocol is concerned with deriving an
algorithm to estimate for each clock i the relative skew with
respect its neighbors j. Let Ni the number of nodes that can
transmit packets to node i with a single hop. Every node i
tries to estimate the relative skews αij = αj

αi
with respect

to its neighbor nodes j. This is accomplished by storing
the current local time τj(t1) of node j into a broadcast
packet, then the node i that receives this packet immediately



record its own local time τi(t1). As discussed in the previous
section, we can assume that the readings of the two local
clocks is instantaneous since we are using MAC-layer time-
stamping. Therefore, node i records in its memory the pair(
τi(t1), τj(t1)

)
. When a new packet from node j arrives to

node i, the same procedure is applied to get the new pair(
τi(t2), τj(t2)

)
, as shown in Fig.4(right), and the estimate

of the relative skew αij is performed as follows:

η+
ij = ρηηij + (1− ρη)

τj(t2)− τj(t1)
τi(t2)− τi(t1)

(10)

where the symbol η+
ij indicates the new value assumed by

the variable ηij , and ρη ∈ (0, 1) is a tuning parameter. If
there is no measurement error and the skew is constant, then
the variable ηij converges to the variable αij as stated in the
following proposition:

Proposition 1: Let us consider the update Equation (10)
where 0 < ρη < 0 and each τi evolves according to
Equation (2). Then

lim
k→∞

ηij(tk) = αij (11)

for any initial condition ηij(0) = η(0), where tk indicates
the update instants.

Proof: The proof follows easily from the fact that
τj(t2)−τj(t1)
τi(t2)−τi(t1)

= αij regardless of the two sampling instants
t1 and t2. In fact we have that

ηij(tk) = ρk
ηη(0) +

k−1∑

l=1

(1− ρη)lαij = ρk
ηη(0) + αij(1− ρk

η)

Since 0 < ρη < 1, if we take the limit for k → ∞, we
obtain the claim.
In practise, Eqn. (10) acts a low pass filter where the
parameter ρη is used to tune the trade-off between the speed
of convergence (ρη close to zero) and noise immunity (ρη

close to unity). In fact, filtering is necessary because the
quantity τj(t2)−τj(t1)

τi(t2)−τi(t1)
is not constant but it is slowly time-

varying and affected by quantization noise. It is important to
remark that it is not necessary to perform the update at a fixed
frequency, i.e. the packet inter-arrival t2 − t1 can vary, thus
making this algorithm particularly useful for asynchronous
communication. The other important advantage of this algo-
rithm is that it requires little memory. In fact, each node i
needs to store only the current Ni relative skew estimates
ηij and the last local clock pairs

(
τi(t1), τj(t1)

)
recorded.

Since the parameter Ni is in general small even for large
networks, this algorithm is also rather scalable.

B. Skew Compensation

This part of the algorithm is the core of the Average
TimeSync protocol, as it forces all the nodes to converge to
a common virtual clock rate, αv , as defined in Eqn. (4). The
main idea is to use a distributed consensus algorithm based
only on local information exchange. In consensus algorithms
any node keeps its own estimate of a global variable, and it
updates its value by averaging it relative to the estimate of
its neighbors [12]. In practice, every node bootstraps each
other till all of them converge to a common value, i.e. till

they agree upon a global value. The algorithm is very simple,
in fact every node stores its own virtual clock skew estimate
α̂i, defined in Eqn. (5). As soon as it receives a packet from
node j, it updates α̂i as follows:

α̂+
i = ρvα̂i + (1− ρv)ηij α̂j (12)

where α̂j is the virtual clock skew estimate of the neighbor
node j. The initial condition for the virtual clock skews of all
nodes are set to α̂i(0) = 1. According to Eqn. (8), we need to
shown that the previous equation leads to limt→∞ α̂i = αv

αi
,

which is equivalent to limt→∞ α̂iαi = αv . To do so, we
define the useful variable xi = α̂iαi. If we assume that
Eqn. (11) holds, then after an initial transient period, we
can assume that ηij = αij , therefore if we multiply all terms
in Eqn. (12) by αi, then it can be written as:

x+
i = ρvxi + (1− ρv)xj (13)

If we define the vectors x = (x1, x2, . . . , xN )T and 1 =
(1, 1, . . . , 1)T , then the previous equation can be written in
matrix form as follows:

x+ = Ax (14)

where the matrix A ∈ RN×N has all ones on the diagonal
and zeros elsewhere, except for the i-th row where Aij =
1 − ρv and Aii = ρv . The rows of the matrix with the
ones on the diagonals, correspond to the nodes that have
not received any message and therefore their α̂ are not
updated. This matrix satisfies Aij ≥ 0 and A1 = 1. Such a
matrix is called stochastic matrix and it has some important
properties [12] [1]. The matrix A is time-varying since it
depends on which nodes are exchanging synchronization
messages. In fact, let us consider the product of matrices
AT = Atn · · ·At2At1 , where ti are the instants where a
message is received by a node. The question is whether the
product of those matrices converge, i.e. if

∏∞
n=1 Atn = A∞.

This is a rather old problem initially studied in the contest of
Markov chains, which has been recently reconsidered in the
context of flocking and distributed consensus [12] [14] [1].
We address the interested reader to the papers [3] [2] and
references therein for a summary of many results related to
necessary and sufficient conditions for convergence. Some of
those results are used to prove convergence of the proposed
skew compensation mechanism in the following theorem:

Theorem 1: Consider the skew update equation given
by Equation (12) with initial condition α̂i(0) = 1 and
0 < ρv < 1. Also assume that ηij = αij for all i, j. Also
suppose that there exist T > 0 such that for any time
window of lenght T each node i in the network transmit at
least once to their neighbors their local skew compensation
parameter α̂i. Finally, let the undeline communication graph
of whole sensor network is strongly connected, i.e. there is
a communication path from any node i to any other node j
in the network. Then

lim
t→∞

α̂i(t)αi = αv, ∀i
exponentially fast, where αv is a constant parameter which
satisfy the condition mini(αi(0)) ≤ αv ≤ maxi(αi(0)).



Proof: Let us consider the time sequence tk = kT . Let
xi(t) = αiα̂i(t) and the vectors x = (x1, x2, . . . , xN )T and
1 = (1, 1, . . . , 1)T , where N is the number of nodes in the
network. Let τk

h the district ordered communication instants
of all the nodes in the network within the time window
tk ≤ t < tk+1, i.e tk ≤ τk

1 < τk
2 < . . . < τk

Hk
< tk+1

where Hk is the total number of communications within the
window. Let jτk,h

which trasmits its α̂j at the time instact τk
h

and assume that all its neigbors which received the message
update their α̂i according to Equation (12). Then we can
define the matrix Aτk,h

such that all extries are zeros except
for [Aτk,h

]i,jτk,h
= 1 − ρv and [Aτk,h

]i,i = ρv where i

is a neighbor of jτk,h
, i.e i ∈ N (

jτk,h

)
. Such a matrix

is a stochastic matrix, i.e. Aτk,h
1 = 1. According to this

terminology, then we have:

x(tk+1) = Aτk,Hk
Aτk,Hk−1 · · ·Aτk,2Aτk,1x(tk) = Akx(tk)

Since each nodes communicates at least once in the k-th
time window tk ≤ t < tk+1, then the graph associated to
Ak is strongly connected and therefore also rooted1 at some
node v independent of k [3]. Let now the new time sequence
t̄l = lNT , then

x(t̄l+1) = AlN+N−1 · · ·AlN+1AlNx(t̄) = Alx(t̄)

According to Proposition 3 (assertion 2) in [3] then graph
corresponding to the matrices Al are all strongly rooted2 at
the same node v, which is a sufficient condition to ensure
that

lim
t→∞

x(t) = lim
l→∞

x(tl) =
∞∏

m=1

Amx(0) = xss1

where xss ∈ R. Since all Am are stochastic, then
max(Amx) ≤ max(x) and min(Amx) ≥ min(x), from
which it follows that min(x(0)) ≤ xss ≤ max(x(0)). By
recalling that xi(t) = αα̂i(t) and xi(0) = αiα̂i(0) = αi, we
prove the statement of the theorem.

There are some important remarks about the previous
theorem. The first remark is that it not important the order
with which the nodes transmit, as long as they transmit from
time to time. Nor it is important the exact time instants
when they transmit. This implies that the protocol is totally
asynchronous and that nodes can transmit with different
rates. The only important condition is that the graph is
sufficiently connected. In fact, the previous theorem could be
relaxed to the case for which the underlying communication
graph is only rooted at some node v and not strongly
connected.

Another important observation is that some messages can
be lost during transmission, nonetheless the conditions on
rooted and strongly rooted graphs used in the theorem to
prove convergence can still be guaranteed, which implies
that the algorithm is robust also to link failure and packet
collision.

1A graph is defined rooted if there exists a node v from which there is
a communication path to any other node in the network

2A graph is defined rooted if there exists a node v from which there is
a communication path of length 1 to any other node in the network.

Fig. 5. Offset compensation of node i after receiving synch message from
node j at time τi graphically represented with an upward rect shift. The
variable ôi refers to the offset estimate relative to the local time τi = 0,
Eqn. (16), and the variable ô∗i refers to the offset estimate relative to the
local time at the last received packet τ∗i , Eqn. (??). Both are equivalent,
but the latter is numerically more stable.

C. Offset compensation

According to the previous analysis, after the skew compen-
sation algorithm is applied, the virtual clock estimators have
all the same skew, i.e. they run at the same speed. Therefore,
the virtual clock estimators of Eqn. (7) can be written as:

τ̂i(t) = αvt +
αv

αi
βi + ôi (15)

At this point it is only necessary to compensate for possible
offset errors. Once again, we adopt a consensus algorithm to
update the virtual clock offset, previously defined in Eqn. (5),
as follows:

ô+
i = ôi + (1− ρo)(τ̂j − τ̂i)

= ôi + (1− ρo)(α̂jτj + ôj − α̂iτi − ôi) (16)

where τ̂j and τ̂i are computed at the same time instant. Fig. 5
graphically illustrates the offset parameter update. According
to Eqn. (9), we now need to show that the offset update
equation above guarantees that limt→∞ ôi + αv

αi
βi = βv

for all nodes. To simplify discussion, let us first define the
variable xi = ôi + αv

αi
βi. If we substitute Eqn. (15) into

Eqn. (16), we get:

x+
i = ρoxi + (1− ρo) xj (17)

which has exactly the same structure of Eqn. (13), therefore
under the same hypotheses of the Theorem in the previ-
ous section all xi will converge to the same value, i.e.
limt→∞ xi = limt→∞ ôi + αv

αi
βi = βv , where βv depends

on the initial conditions and communication sequence. We
can formalize this result in the following theorem:

Theorem 2: Consider the skew update equation given by
Equation (16) with arbitrary initial condition ôi(0) and
0 < ρo < 1. Also assume there exists αv > 0 such that
α̂i(t)αi = αv for all i and t. Also suppose that there exist
T > 0 such that for any time window of length T each node
i in the network transmit at least once to their neighbors
their local virtual clock parameters (ôi, α̂i). Finally, assume



that the underlying sensor network communication graph is
strongly connected, i.e. there is a communication path from
any node i to any other node j in the network. Then

lim
t→∞

τ̂i(t) = τ̂j(t), ∀(i, j)
exponentially fast.
The proof is analogous to Theorem 1 and is therefore
omitted.

V. EXPERIMENTAL RESULTS

In this section, we present some preliminary results of the
Average TimeSync period implemented on Tmote Sky nodes
[11] produced by Moteiv Inc. Each node is equipped with
the Texas Instrument microprocessor MSP430, an internal
oscillator (DCO) running at 1Mhz, and an external oscillator
running at 32kHz. In our experiments, we used the local
clock provided by the external oscillator, which has a gran-
ularity of about 30µs per tic. As explained above, we used
MAC-layer time-stamping to reduce the effects of delivery
delay.

In the first set of experiments we used four nodes with
a synchronization period T = 180s. Every 5s an external
node simultaneously queried the four synchronizing nodes
for their estimated virtual time τ̂i. In all the experiments
we used ρη = ρα = ρo = 0.6. The results are shown
in Fig. 6, where we plotted the error between each virtual
clock τ̂i(t) from the nodes instantaneous mean τ̂mean(t) =
1
N

∑N
i=1 τ̂i(t). From Fig.6 it is evident the benefit of the

skew compensation mechanism. In fact, initially the offset
compensation mechanism reduces the offset but the different
clock skew show a typical saw-tooth behavior as described in
Section I. However, as time passes, all nodes learn their rela-
tive skews and use this information to improve performance.
Obviously, due to measurement and quantization errors the
virtual clocks estimator present some small errors ( 3-5 tics)
which is comparable to the maximum resolution limited by
the quantization error (1 tic).

In Figure 7 we plot the values of the virtual clock
parameters showing the convergence of the relative skew
parameters ηij as well as the skew compensation parameters
α̂i, as expected from the theoretical analysis of the ATS
algorithm.

As a second experiment we tested the algorithm to cope
with dynamic changes of network topology. In particular,
four nodes initially separated into two non communicating
pairs. As shown in Fig.8, the nodes within the same pair get
synchronized, but the pairs drift away. After 30 minutes all
the nodes are placed close to each other and they rapidly
becomes all synchronized.

The experiments presented here are only preliminary re-
sults, and we are currently implementing both protocols on a
multi-hop 8x6 sensor network grid. These experiments will
be ready by the time of the final submission of the paper.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have reviewed the synchronization is-
sues that arise in wireless sensor networks and the current
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Fig. 6. Error between four nodes from their instantaneous mean
τ̂mean(t) = 1

N

∑N
i=1 τ̂i(t) in terms of clock tics (1 tic ' 30µs) (top)

and zoomed portion during steady state (bottom). Synchronization update
period was Tsync = 180s.

state-of-art in terms of synchronization protocols. We have
presented a novel synchronization algorithm, the Average
TimeSync protocol, which is based on a very promising class
of distributed algorithms known in different research areas
as consensus, agreement, gossip or rendezvous algorithm,
whose main idea is to average local information to achieve a
global agreement on a specific quantity of interest. The pro-
posed algorithm is fully distributed, asynchronous, includes
shew compensation and is computationally lite. Moreover, it
is robust to dynamic network topology due, for example, to
node failure and new node appearance. To our knowledge,
only the Distributed Time Synchronization Protocol [15] is
fully distributed and provides skew compensation.

However, extensive work is still necessary to compare the
performance of our proposed approach relative to FTSP [10]
and other protocols over large scale multi-hop sensor network
and over longer periods. Moreover, the parameters ρη, ρα, ρo

have not been optimized to cope with the fact that the clock
skews αi change over time and that there are small measure-
ment time delays. It turns out that these effects correspond
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connected and rapidly all nodes become synchronized.

to add multiplicative noise into the consensus dynamics. We
are currently analyzing these effects to compute estimates
of the expected synchronization errors as a function of the
number of nodes and the communication topology.
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