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Flapping Flight for Biomimetic Robotic Insects:
Part I—System Modeling

Xinyan Deng, Luca Schenato, Wei Chung Wu, and Shankar Sastry

Abstract— This paper presents the mathematical modeling of
flapping flight inch-size micro aerial vehicles (MAVs), namely
Micromechanical Flying Insects (MFIs). The target robotic
insects are electromechanical devices propelled by a pair of
independent flapping wings to achieve sustained autonomous
flight, thereby mimicking real insects. In this paper we describe
the system dynamic models which include several elements that
are substantially different from those present in fixed or rotary
wing MAVs. These models include the wing-thorax dynamics, the
flapping flight aerodynamics at a low Reynolds number regime,
the body dynamics, and the biomimetic sensory system consisting
of ocelli, halteres, magnetic compass and optical flow sensors.
The mathematical models are developed based on biological
principles, analytical models and experimental data. They are
presented in the Virtual Insect Flight Simulator (VIFS), and
are integrated together to give a realistic simulation for MFI
and insect flight. VIFS is a software tool intended for modeling
flapping flight mechanisms and for testing and evaluating the
performance of different flight control algorithms.

Index Terms— Flapping flight, micro aerial vehicles, bio-
mimetic, modeling, low Reynolds number, flying insects.

I. I NTRODUCTION

Micro aerial vehicles (MAVs) have drawn a great deal of
interest in the past decade due to the advances in microtech-
nology. Most research groups working on MAVs today based
their designs on fixed, rotary, or bird-like (ornithopter) flapping
wings [1], [2], [3], [4], [5], [6]. Among these types fixed
or ornithopter MAVs are better suited for outdoor missions
which require higher speed and greater range; but due to
their lack of ability to hover, they can not be practically
applied in urban or indoor environments. Although rotary
wing MAVs have the potential ability to hover, they are more
susceptible to environmental disturbances such as wind gusts,
and are slow in response. All the above MAVs depend on
conventional aerodynamics and may not further scale down
well to miniature size vehicles. On the other hand, flapping
flying insects, such as fruit flies and house flies, besides being
at least two orders of magnitude smaller than today’s smallest
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Fig. 1. MFI model based on a blow flyCalliphora, with a mass
of 100 mg, wing length of11 mm, wing beat frequency of150 Hz,
and battery power of20 mW . Each of the wing has two degrees
of freedom: flapping and rotation. (Courtesy of R. Fearing and R.J.
Wood)

manmade vehicles, demonstrate extraordinary performance,
unmatched maneuverability, and hovering capability as a result
of their three degree of freedom wing motion. These attributes
are beneficial in obstacle avoidance and in navigation in small
spaces. Therefore, inspired by insects, researchers have started
using biomimetic principles to develop MAVs with flapping
wings that will be capable of sustained autonomous flight [7],
[8]. In particular, the work in this paper has been developed
for a Micromechanical Flying Insect (MFI), an autonomous
flapping wing MAV targeting the size and performance of
typical housefly [7]. Fig. 1 shows a conceptual view of the
designed robotic fly.

Recently, considerable effort has been directed toward un-
derstanding the complex structure of insect flapping flight by
examining its components, particularly its sensors [9], [10],
[11], [12], the neural processing of external information [13],
[14], the biomechanical structure of the wing-thorax system
[15], [16], the wing aerodynamics [17], [18], the flight control
mechanisms [19], and the trajectory planning [20], [21]. How-
ever, still little is known about how these elements interact with
one another to give rise to the complex behaviors observed in
true insects. Therefore, in order to accurately simulate robotic
flying insects, mathematical models have been developed for
each of the following systems: wing aerodynamics, body dy-
namics, actuator dynamics, sensors, external environmentand
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flight control algorithms. These models have been integrated
together into a single simulator, called the Virtual InsectFlight
Simulator (VIFS), aimed both at giving a realistic analysisand
at improving the design of sensorial information fusion and
flight control algorithms. The mathematical models are based
on today’s best understanding of true insect flight, which is
far from being complete.

This paper is organized as follows. Section II gives a brief
overview of the MFI project. Section III presents the modular
architecture of VIFS. Sections IV through VII describe in
detail, respectively, the mathematical modeling of flapping
flight in a low Reynolds number regime, the insect body
dynamics, the wing-thorax actuator dynamics, and the sensory
system represented by the ocelli, the halteres, the magnetic
compass and the optical flow sensors. Finally, Section VIII
summarizes conclusions and proposes some directions for
future work.

II. MFI OVERVIEW

The design of the MFI is guided by the studies of flying
insects. The requirements for a successful fabrication, such
as small dimensions, low power consumption, high flapping
frequency, and limited on-board computational resources are
challenging, and they forced the development of novel ap-
proaches to electromechanical design and flight control algo-
rithms.

The goal of the MFI project is the fabrication of an inch-
size electromechanical device capable of autonomous flight
and complex behaviors, mimicking a blowflyCalliphora. The
fabrication of such a device requires the design of several
components. In particular, it is necessary to identify five main
units (Fig. 2), each of them responsible for a distinct task:the
locomotory unit, the sensory system unit, the power supply
unit, the communication unit and thecontrol unit.
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Fig. 2. MFI structure

The locomotory unit, composed of the electromechanical
thorax-wings system, is responsible for generating the neces-
sary wing motion for the flight, and thus for the MFI dynamics.
One of the most challenging parts of this project is the design
of a mechanical structure that provides sufficient mobilityto
the wings to generate the desired wings kinematics. These

issues are not considered in this paper, and the interested
reader can find more detailed analysis in [22], [23], [24] and
references therein. At present, the current design provides two
independent wings both with two degrees of freedom: flapping
and rotation.

The sensory system unit is made up of different sensors. The
halteres are biomimetic gyros for angular velocity detection.
The ocelli are biomimetic photosensitive devices for roll-pitch
estimation and horizon detection. The magnetic compass is
used for heading estimation. The optical flow detectors are
utilized for self-motion detection and object avoidance. These
sensors provide the control unit with the input information
necessary to stabilize the flight and to navigate the environ-
ment. Other kinds of miniaturized sensors can be installed,
such as temperature and chemical sensors, which can be used
for search and recognition of particular objects or hazardous
chemicals.

The power supply unit, which consists of three thin sheets
of solar cells at the base of the MFI body, is the source of
electric energy necessary to power the wing actuators and
the electronics of all the units. One sheet of solar cells can
generate up to20mWcm−1. Underneath the solar cell, thin
films of high energy-density lithium-polymer batteries can
store energy for dim-lit or night condition operation. The
combination of solar panels and batteries should be able to
provide up to100mW .

The communication unit, based on micro Corner Cube
Reflectors (CCR) [25] ( a novel optoelectronic transmitter)or
on ultra-low-power RF transmitters, provides a MFI with the
possibility to communicate with a ground base or with other
MFIs.

Finally, the control unit, embedded in the MFI computa-
tional circuitry, is responsible both for stabilizing the flight
and for planning the appropriate trajectory for each desired
task.

III. SYSTEM MODELING ARCHITECTURE

In accordance with the major design units of the MFI, the
VIFS is decomposed into several modular units, each of them
responsible for modeling a specific aspect of flapping flight,
as shown in Fig. 3.
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Fig. 3. Simulator (VIFS) architecture

The Aerodynamic Module takes as input the wing mo-
tion and the MFI body velocities, and gives as output the
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corresponding aerodynamic forces and torques. This module
includes a mathematical model for the aerodynamics, which
is described in the next section.

The Body Dynamics Module takes the aerodynamics forces
and torques generated by the wing kinematics and integrates
them along with the dynamical model of the MFI body, thus
computing the body’s position and the attitude as a function
of time.

The Sensory System Module models the sensors used by
the MFI to stabilize flight and to navigate the environment.
It includes the halteres, the ocelli, the magnetic compass,and
optical flow sensors. This module will also include a model
for simple environments,i.e. a description of the terrain and
the objects in it. It takes as input the MFI body dynamics
and generates the corresponding sensory information whichis
used to estimate the MFI’s position and orientation.

The Control Systems Module takes as input the signals
from the different sensors. Its task is to process the sensor
signals and to generate the necessary control signals to the
electromechanical wings-thorax system to stabilize flightand
navigate the environment.

TheActuator Dynamics Module takes as input the electrical
control signals generated by the Control System Module and
generates the corresponding wing kinematics. It consists of the
model of the electromechanical wings-thorax architectureand
the aerodynamic damping on the wings.

The VIFS architecture is extremely flexible since it allows
ready modifications or improvements of one single module
without rewriting the whole simulator. For example, different
combinations of control algorithms and electromechanical
structures can be tested, giving rise to the more realistic
setting of flight control with limited kinematics due to electro-
mechanical constraints. Moreover, morphological parameters
such as dimensions and masses of the wings and body can
be modified to analyze their effects on flight stability, power
efficiency and maneuverability. Finally, as better flapping
flight aerodynamic models become available, the aerodynamic
module can be updated to improve accuracy. The following
sections present a detailed mathematical description for the
different modules, including simulations and comparisonswith
experimental results.

IV. A ERODYNAMICS
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Rotational Lift

Stroke angle
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Body Velocity
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Fig. 4. Block diagram of the Aerodynamical Module

Insect flight aerodynamics, which belongs to the regime
of Reynolds number between30 − 1000, has been a very
active area of research in the past decades after the seminal
work of Ellington [26]. Although, at present, some numerical
simulations of unsteady insect flight aerodynamics based on
the finite element solution of the Navier-Stokes equations give
accurate results for the estimated aerodynamics forces [27],

[28], their implementation is unsuitable for control purposes
since they require several hours of processing for simulating
a single wingbeat, even on multiprocessor computers. How-
ever, several advances have been achieved in comprehending
qualitatively and quantitatively unsteady-state aerodynamic
mechanisms thanks to scaled models of flapping wings [17],
[29]. In particular, the apparatus developed by Dickinson and
his group, known as Robofly [17], consists of a two25cm-long
wings system that mimics the wing motion of flying insects.
It is equipped with force sensors at the wing base, which can
measure instantaneous wing forces along a wingbeat.

Results obtained with this apparatus have identified three
main aerodynamics mechanisms peculiar to the unsteady state
nature of flapping flight:delayed stall, rotational lift andwake
capture. Here we briefly describe these mechanisms and the
interested reader is addressed to the review paper by Sane [30]
for details on insect flight aerodynamics.

When a thin wing flaps at a high angle of attack, the airflow
separates at the leading edge and reattaches before the trailing
edge, leading to the formation of a leading edge vortex. The
presence of the attached leading edge vortex produces very
high lift forces. In a 2-D pure translational motion, if the wing
continues to translate at a high angle of attack, the leading
edge vortex grows in size until flow reattachment is no longer
possible and the vortex is shed in the wake [17]. When this
happens, there is a drop in lift and the wing is said to have
stalled. Fortunately, in flapping wings the leading edge vortex
has been observed to remain attached to the wing during the
whole wing stroke [31], [17], [32], thus producing very high
lift and preventing stalling. For this reason, the phenomenon
is also known as ’delayed stall’. Besides insect flight, delayed
stall also plays a very important role in fish swimming [33],
[34] and helicopter flight [35].

The second mechanism is the rotational lift, also known as
the ”Kramer effect” [30], which results from the interaction
of translational and rotational velocities about the span-wise
axis of the wing at the end of the two half-strokes, when the
wing decelerates and rotates. Depending on the direction of
the rotation, the flow circulation causes rotational forcesthat
either add or subtract from the net force due to translation
[36], [28], [37].

Finally, the wake capture is the result of the interaction of
the wing with the fluid wake generated in the previous stroke
when the wing inverts its motion. In fact, the fluid behind the
wing tends to maintain its velocity due to its inertia, therefore
when the wing changes direction, the relative velocity between
the wing and the fluid is larger than the absolute wing velocity,
thus giving rise to larger force production at the beginningof
each half-stroke [17] [38].

The mathematical aerodynamic modeling presented below
is a combination of an analytical model, based on quasi-
steady state equations for the delayed stall and rotationallift,
and an empirically matched model with the estimation of the
aerodynamic coefficients based on experimental data. Wake
capture cannot be easily modeled by quasi-steady state equa-
tions, and it has not been considered in this work. However,
this mechanism is observed to have a small contribution for
sinusoidal-like motion of the wings, motion that it is widely
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Fig. 5. Definition of wing kinematic parameters: (left) 3D view of left wing, (center) side view of wing perpendicular to wing axis of
rotation~r, (right) top view of insect stroke plane

used in our simulations and flight control algorithms [39].
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Fig. 6. Aerodynamic force coefficients empirically matched to
experimental data [17].

A quasi-steady state aerodynamic model assumes that the
force equations derived for 2D thin aerofoils translating with
constant velocity and constant angle of attack, can be applied
also to time varying 3D flapping wings. It is well known from
aerodynamics theory [40] that, in steady state conditions,the
aerodynamic force per unit length exerted on a aerofoil is given
by:

F ′
tr,N =

1

2
CN (α)ρ cU2

F ′
tr,T =

1

2
CT (α)ρ cU2 (1)

whereF ′
tr,N and F ′

tr,T are the normal and tangential com-
ponents of the force with respect to the aerofoil profile,c

is the cord width of the aerofoil,ρ is the density of air,
α is the angle of attack defined as the angle between the
wing profile and the wing velocityU relative to the fluid,
andCN andCT are the dimensionless force coefficients. The
orientation of these forces is always opposite to the wing
velocity. Fig. 5 shows a graphical representation of these
parameters. Flapping flight is the result of unsteady-stateaero-
dynamic mechanisms, therefore the aerodynamic coefficients
CN , CT are time-dependent even for constant angle of attack
α. However, it has been observed that a good quasi-steady
state empirical approximation for the force coefficients due to

delayed stall is given by:

CN (α) = 3.4 sinα

CT (α) =

{

0.4 cos2(2α) 0 ≤ α ≤ 45o

0 otherwise
(2)

which were derived using experimental results given in [17].
These coefficients have been obtained from Equations (1)
by experimentally measuring aerodynamic forces for different
angles of attack and translational velocities and then solving
for the aerodynamic coefficients. Fig. 6 shows the plots of
Equations (2). It is clear how, for high angles of attack, the
tangential component, mainly due to skin friction, gives only
a minor contribution.

In the aerodynamics literature, it is more common to find
the lift and drag force coefficients,CL andCD. Lift, FL and
drag,FD are defined, respectively, as the normal and tangential
components of the total aerodynamic force with respect to the
stroke plane, i.e. the plane of motion of the wings with respect
to the body (see Fig. 5a). However, the force decomposition
in normal and tangential components is more intuitive, since
aerodynamic forces are mainly a pressure force which acts
perpendicularly to the surface. Nevertheless, the lift anddrag
coefficients can be readily computed as:

CL(α) = CN (α) cosα− CT (α) sinα
CD(α) = CN (α) sinα+ CT (α) cosα

(3)

and they are plotted in Fig. 6. Note how the maximum lift
coefficient is achieved for angles of attack of approximately
45o, considerably different from fixed and rotary wings which
produce maximum lift for angles of about15o.

The theoretical aerodynamic force per unit length exerted
on a aerofoil due to rotational lift is given by [41]:

F ′
rot,N =

1

2
Crotρ c

2 U ω (4)

whereCrot = 2π
(

3
4 − x̂o

)

is the rotational force coefficient,
approximately independent of the angle of attack,x̂o is the
dimensionless distance of the longitudinal rotation axis from
the leading edge, andω is the angular velocity of the wing
with respect to that axis. In most flying insectsx̂o is about14 ,
which correspond to the theoretical value of the mean centerof
pressure along the wing chord direction. This is a pure pressure
force and therefore acts perpendicularly to the wing profile,
in the opposite direction of wing velocity. In flapping flight,
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as for the delayed stall, the rotational force coefficientCrot
is time-dependent, however the theoretical quasi-steady state
modeling given above has been observed to give satisfactory
predictive capabilities [36].

According to the quasi-steady state approach, the total force
on a wing is computed by dividing the wing into infinitesimal
blades of thicknessdr, as shown in Fig. 5(c). First, the total
force is calculated on each blade:

dFtr,N (t, r) =
1

2
CN (α(t))ρ c(r)U2(t, r) dr

dFtr,T (t, r) =
1

2
CT (α(t))ρ c(r)U2(t, r) dr

dFrot,N (t) =
1

2
Crotρ c(r)

2 U(t, r) α̇(t) dr

U(t, r) = φ̇(t)r (5)

whereφ is the stroke angle, and the wing angular velocity,ω is
approximatelyα̇. Then the forces are integrated in Equations
(5) along the wing, i.e.Ftr,N (t) =

∫ L

0
dFtr,N (t, r), to get:

Ftr,N (t) =
1

2
ρAw CN (α(t))U2

cp(t) (6)

Ftr,T (t) =
1

2
ρAw CT (α(t))U2

cp(t) (7)

Frot,N (t) =
1

2
ρAw Crot ĉ cm α̇(t)Ucp(t) (8)

Ucp(t) = r̂2L φ̇(t) (9)

where Aw is the wing area,L is the wing length,Ucp is
the velocity of the wing at the center of pressure,r̂2 is the
normalized center of pressure,cm is maximum wing chord
width, and ĉ is the normalized rotational chord. The former
two parameters are defined as follows:

r̂22 =
R

L

0
c(r) r2 dr

L2Aw

ĉ =
R

L

0
c2(r) r dr

r̂2LAwcm

The normalized center of pressure,r̂2, and the normalized
rotational chord,ĉ, depend only on the wing morphology,
and in most flying insects their range is approximatelyr̂2 =
0.6 − 0.7 and ĉ = 0.5 − 0.75 [26]. As a result of this
approach, the wing forces can be assumed to be applied at
a distance,rcp = r̂2L, from the wing base. According to thin
aerofoil theory, the center of pressurercp lies about14 of chord
length from the leading edge (see Fig. 5(b)). This has been
confirmed by numerical simulations of insect flight which do
not assume a quasi-steady state aerodynamic regime [27], and
by experiments performed with a scaled model of insect wings
[17].

If the velocity of the insect body is comparable with the
mean wing velocity of the center of pressure, as during forward
flight, a more accurate model for estimating the aerodynamic
forces is based on finding the absolute velocity of the center
of pressure of the wing relative to an inertial frame, which is
obtained by substituting Equation (9) with the following:

Ucp(t) = r̂2L φ̇(t) + vb(t) (10)

wherevb(t) is the velocity of the insect body relative to the
inertial frame represented in the wing frame coordinate system.

Recently, an alternative quasi-steady state model based onthe
tip velocity ratio, defined as the ratio of the chordwise com-
ponents of flow velocity at the wing tip due to translation and
revolution, has been proposed to take into account the effect of
insect body translation velocity present during forward flight
[42]. The total lift and drag forces acting on the wing can be
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lift and drag forces (solid) calculated from Equation (11) compared
with experimental data (dashed) from the Robofly during the course
of two wingbeats (Robofly data are courtesy of M. H. Dickinson).

derived through a trigonometric transformation analogousto
the one used in Equations (3) as follows:

FN (t) = Ftr,N (t) + Frot,N (t)
FT (t) = Ftr,T (t)
FD(t) = FN (t) cosα(t) − FT (t) sinα(t)
FL(t) = FN (t) sinα(t) + FT (t) cosα(t)

(11)

whereFtr,N , Ftr,T , Frot,N are given in Equations (6),(7), and
(8), respectively, andUcp(t) is given in Equation (10).

The aerodynamic forces used for simulation are based on
Equations (11). Fig. 7 shows the simulated aerodynamic forces
for a typical wing motion and the corresponding experimental
results obtained with a dynamically scaled model of insect
wing (Robofly traces). Despite some small discrepancies due
to the undermodeling of the wake capture mechanism present
at the beginning of the two half-strokes, the mathematical
model presented here predicts the experimental data suffi-
ciently well.

The flapping flight aerodynamics module implementation is
summarized in the block diagram of Fig. 4.

V. BODY DYNAMICS

The body dynamic equations compute the evolution of the
position of the insect center of mass and the orientation of the
insect body, with respect to an inertial frame. This evolution
is the result of the wings’ inertial forces, and the external
forces, specifically aerodynamic forces, body damping forces,
and the force of gravity. Since the mass of the wings is only
a small percentage of the insect body mass, and as they move



6

Mass

τ c
a

af c

DynamicsPlane

Body

. . .

Stroke

Transformation

Coordinate

FixedF  (t)

φ(t)
α (t)

D

L
F  (t)

τa

af b

b

p = [x, y, z]

V, ω

Position

Velocity

Orientation

Wing
length angle

plane
Stroke

center
Gravity

Θ = [ψ, θ, ϕ]

Angle attack
Stroke angle

Drag

Lift

Body
inertia
matrix

Fig. 8. Body Dynamics Block Diagram

almost symmetrically, their effect on insect body dynamicsis
likely to cancel out within a single wingbeat. In fact, even if
wing inertial forces are larger than aerodynamic forces, non-
holonomic rotations would be possible for frictionless robots
with moving links (see [43] Example 7.2), only if the links,
in our case the wings, would flap out of synchronization with
each other, an activity not observed in true insects. Therefore,
based on this observation, it seems safe to disregard inertial
forces due to the wings, as the system model is clearly
dynamic rather than kinematic.

As shown in [43], the equations of motion for a rigid
body subject to an external wrenchF b = [f b, τ b]T applied
at the center of mass and specified with respect to the body
coordinate frame, are given as:�

m I 0
0 I

� �
v̇b

ω̇b

�
+

�
ωb

× mvb

ωb
× Iωb

�
=

�
fb

τ b

�
(12)

wherem is the mass of the insect,I is the insect body inertia
matrix relative to the center of mass,I is the 3 × 3 identity
matrix, vb andωb are the linear and angular velocity vectors
in body frame coordinates. The values for the body and wing
morphological parameters, such as lengths and masses, usedin
our simulations are those of a typical blowfly. However, they
can be changed, thus allowing for the simulation of different
species and MFI designs.

The total forces and torques in the body frame are given by
the sum of the three external forces: the aerodynamic forces,
f ba, the body damping forces,f bd , and the gravity force,f bg :

f b = f ba + f bg + f bd
τ b = τ ba + τ bg + τ bd .

(13)

The aerodynamic forces and torques relative to the insect
center of mass, can be obtained by a sequence of fixed
coordinate transformations, starting from lift and drag forces
and wings kinematics calculated by the aerodynamic module
as follows:

f ba(t) = f la(t) + fra (t)
τ ba(t) = pl(t) × f la(t) + pr(t) × fra (t)

(14)

where the subscriptsl, r stand for left and right wing, respec-
tively, andp(t) is the position vector of the center of pressure
of the wing relative to the body center of mass.

Since the lift and drag forces given by Equations (11) are
calculated relative to thestroke plane frame, a coordinate
transformation is necessary before obtaining the forces and
torques acting on thebody frame. The insect body frame is
defined as the coordinate system attached to the body center
of gravity and with x-axis oriented from tail to head, the y-
axis from right wing hinge to left wing hinge, and the z-axis
from ventral to dorsal side of the abdomen. Since these are

the axes of symmetry of the insect, the matrix of inertia is
almost diagonal in the body frame. Thestroke plane frame is
the coordinate system attached to the center of the thorax at
the center of the wings base, whose x-y plane is defined as
the plane to which the wing motion is approximately confined
during flapping flight.

Given the lift and drag generated by aerodynamics, together
with the stroke angle, the forces and torques in thestroke plane
can be calculated as

f
c
a =

24 F l
D cos φl + F r

D cos φr

F l
D sin φl − F r

D sin φr

F l
L + F r

L

35
τ

c
a = r̂2L

24 −F l
D cos φl + F r

L cos φr

−F l
D sin φl − F r

D sin φr

F l
D − F r

D

35
where it was usedpl(t) = r̂2L(sinφl, cosφl, 0) and pr(t) =
r̂2L(sinφr, cosφr, 0). To obtain the aerodynamic forces and
torques in thebody frame, the following coordinate transfor-
mation is performed:�

fb
a

τ b
a

�
=

�
RT

cb 0
−RT

cbp̂cb RT
cb

� �
fc

a

τ c
a

�
(15)

whereRcb is the rotation matrix of the body frame relative
to the stroke plane, andpcb represents the translation of the
origin of the body frame from the stroke plane. This is a fixed
transformation that depends only on the morphology of the
insect or MFI.

The gravitational forces and torques in thebody frame are
given by: �

fb
g

τ b
g

�
=

2664 RT

24 0
0

mg

35
0

3775 (16)

whereR is the rotational matrix of the body frame relative to
the spatial frame, andg is the gravitational acceleration.

The viscous damping exerted by the air on the insect body
is approximately given by:�

fb
d

τ b
d

�
=

�
−b vb

0

�
(17)

whereb is the viscous damping coefficient. The reason for the
linearity in the velocity of the drag force is that the velocity
of the insect is small relative to insect size, therefore vis-
cous damping prevails over quadratic inertial drag. Empirical
evidence for linear damping has been recently observed by
the authors by analyzing the free flight dynamics of true
fruit flies. Moreover, experimental data [44] indicate that
rotational damping of the insect body is negligible relative
to aerodynamic forces even during rapid body rotation and
can therefore be neglected.

Numerical solution of Equations (12) have been imple-
mented in MATLABc© using Euler’s angle representation
for the rotation matrix [45]. In particular, consider the new
variablesṖ = vp = Rvb andω̂b = RT Ṙ. ForR ∈ SO(3), the
matrixR is parameterized byZY X Euler’s angles withϕ, θ,
andψ aboutx,y,z axes respectively, and henceR = eẑψeŷθex̂η

with x = [1 0 0]T , y = [1 0 0]T ,z = [0 0 1]T and
x̂, ŷ, ẑ ∈ so(3). By differentiatingR with respect to time,
it is possible to show thaṫΘ = Wωb, where the matrixW is
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a function of the Euler’s anglesΘ = [η θ ψ]T . By defining
the state vector[P,Θ] ∈ R

3 × R
3 whereP is the position of

the center of mass w.r.t. the inertia frame, andΘ are the euler
angles which we use to parameterize the rotation matrixR,
we can rewrite the equations of motion of a rigid body as:

Θ̈ = (IW )−1[τ b −W Θ̇ × IW Θ̇ − IẆ Θ̇]

P̈ =
1

m
Rf b (18)

where the body forces and torques(f b, τ b) are time-varying,
nonlinear functions of the wing kinematics and body orienta-
tion and are given by Equations (13).

Euler angles are not the only possible representation for a
rotation matrix. Quaternion, for example, is another widely
used representation for simulating rigid body dynamics [45],
and it has the advantage of having no numerical singularity.
On the other, an Euler angle representation has the advantage
of being easily linearized about a desired configuration, and
is more intuitive. Numerical degradation of the simulation
near the singularity configuration is avoided by switching to
a different set of Euler’s angles, such as theY XZ, any time
the Euler’s angles approach the singularity.

The body dynamic module implementation is summarized
in the block diagram in Fig. 8.

VI. A CTUATOR DYNAMICS

Fig. 9. Wing-Thorax structure. Courtesy of [24]

Each wing is moved by the thorax, a complex trapezoidal
structure actuated by two piezoelectric actuators at its base, as
shown in Fig. 9. A complete nonlinear model for the thorax,
developed in [24], can be written as follows

M

�
θ̈2

β̈

�
+B

�
θ̇2

β̇

�
+K

�
θ2

β

�
+

�
0

f(β̇)

�
= T

�
u1

u2

�
(19)

wheref(β̇) = 1
2m

′

ω,2(β̇)2, θ2 is the leading edge flapping
angle from the four bar mechanism,β = θ1 − θ2 is the

phase difference between the four bar output angles,u1 and
u2 are the control input torques to the actuators,M and
B are the inertia and damping matrices, which are assumed
to be constant. However, parameters inK and T matrices
include some slowly time-varying terms, and the control inputs
(u1, u2) are limited to10µNm by physical constraints.

The relationship between the state variables in Equation (19)
and the wing motion variables (stroke angleφ and rotation
angle ϕ, see Fig. 5) can be approximated asφ = θ2 and
ϕ = 2β. Based on Equation (19), with a change of variables,
neglecting the nonlinear components, we can derive the linear
actuator model as

M0

[

φ̈

ϕ̈

]

+B0

[

φ̇

ϕ̇

]

+K0

[

φ

ϕ

]

= T0

[

u1

u2

]

(20)

whereM0, B0, K0, andT0 are constant matrices calculated
from the data provided in [24].

Equation (20) is a stable linear MIMO system and can
also be written using a transfer function representation inthe
frequency domain:

Y (jω) = G(jω)U(jω)

whereY andU are the Fourier transform of the output vector
y = (φ, ϕ) and the input vectoru = (u1, u2), respectively.
The electromechanical structure has been designed so that
the input-output frequency response of the system is almost
decoupled at all frequencies, i.e.|G11(jω)| ≃ |G22(jω)| ≫
|G12(jω)| ≃ |G21(jω)|,∀ω, whereGik represents thei − k

entry of the matrixG, andω = 2πf . Moreover, the system
has also been designed to achieve a quality factorQ =
3 at the desired resonant frequency off0 = 150Hz, i.e.
|Gii(j2πf0)| ≃ |Gii(0)|. A low quality factorQ is necessary
to easily control the wing trajectory even when the wingbeat
frequency is the same as the resonant frequency. In fact, large
Qs would practically remove all higher order harmonics from
the input signals and the wing would simply oscillate along
the same sinusoidal trajectory.

VII. SENSORYSYSTEM

This section briefly describes the sensory systems of the
MFI, which include the ocelli, the magnetic compass, the
halteres, and the optic flow sensors. The ocelli can be used
to estimate the roll and pitch angles, the magnetic compass to
estimate the yaw angle, the halteres to estimate the three angu-
lar velocities, and the optic flow sensors for object avoidance
and navigation.

The development of these novel biomimetic sensors is
necessary because the sensors currently adopted for avionics
and transportation applications are too heavy and require too
much power for the target robotic fly. In fact the target fly
should weight about100mg and have a total power budget
of 100mW , thus posing formidable technological challenges.
For example, the smallest commercially available rate gyro
weight around500mg, and requires about30mW , while the
proposed halteres have a weight of30mg and a power con-
sumption of1mW [46]. Also, the smallest magnetic compass,
which is based on magneto-resistance material, the Hitachi
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Fig. 10. (a) Graphical rendering of ocelli present in flying insects. Four
photoreceptors,P1, P2, P3, and P4, collect light from different regions of
the sky. The shadowed area represents such a region for photoreceptorP3;
(b) Photo of the ocelli sensor prototype.

HM55B, consumes about10mW versus1mW of the piezo-
resistive proposed in [47] and reported here. Similar arguments
motivate the choice of the ocelli and the optic flow sensors
over traditional sensors.

In this paper we only provide the mathematical modeling of
these sensors. Their role in flight stabilization and navigation
are presented in [46] and in the references therein. These
sensors are currently being implemented, and preliminary
results of their prototypes are presented in [47].

A. Ocelli

Ocelli form a sensory system present in many flying insects.
This system comprises three wide angle photoreceptors placed
on the head of the insect. They are oriented in such a way that
they collect light from different regions of the sky. The ocelli
are believed to play an important role in attitude stabilization
in insect flight as they compare the light intensity measured
by the different photoreceptors, which in turn act as horizon
detectors [11] [48]. Inspired by the ocelli of true insects,a
biomimetic ocelli-like system composed of four photorecep-
tors has been proposed [46]. Interestingly, ocelli seem to work
similarly to the commercial products FMA co-pilot and the
Futaba PA-2 usually adopted for RC aircrafts (see [46] for
a more detailed discussion). The light intensity function for
a point on the sky sphereI = I(α, β) is a function of the
latitude,α, and longitude,β, relative to the fixed frame. This
modeling is sufficient to realistically describe light intensity
distributions for different scenarios, such as indoor, outdoor
and urban environments.

The ocelli system is modeled as four ideal photoreceptors,
P1, P2, P3, andP4, fixed with respect to the body frame. They
are oriented symmetrically with the same latitude, and, if their
axes are drawn, one would see that the axes form a pyramid
whose top vertex is located at the center of the insect’s head.
Every photoreceptor collects light from a conic regionAi in
the sky sphere around its ideal orientationPi as shown in
Fig. 10a.

The measurements from the photoreceptors are simply sub-
tracted pairwise and these two signals are the output from the
ocelli:

yo1 = I(P1) − I(P2), yo2 = I(P3) − I(P4) (21)
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Fig. 11. Light intensity distribution projected on unit sphere using experimen-
tal data collected from an ocelli prototype [46]. Small arrows point towards
the estimated position of light source.

where I(Pi) is the output from thei-th photodiode. The
orientation of the photodiodes relative to the fixed frame, i.e.,
the latitude and longitude of the area of sky they are pointing
at, is a function of the insect orientation, i.e.,Pi = Pi(R),
whereR is the body orientation matrix. Therefore, if the light
intensity function,I = I(α, β) is defined, given the orientation
of the insect body,R, the output of the ocelli can be computed
from Equation (21). If the light intensity in the environment
is a monotonically decreasing function of its latitude relative
to the light source, i.e.,I = I(α), then it is shown in [46]
that the outputs from the ocelli can be used as an estimate
of the orientation of the ocelli reference frame relative tothe
light source. In fact, for small deviations from the vertical
orientation we haveyo1 ≃ ko ψ and yo2 ≃ ko θ, whereko is
a positive constant, and(ψ, θ) are the roll and pitch body
angles, respectively. More general theoretical and experimental
results for attitude stabilization using ocelli are given in [46].
Even if in real environments light intensity is not exactly a
monotonically decreasing function, the ocelli can still estimate
robustly the orientation of the body frame relative to the light
source, as shown in Fig. 11 where the light intensity function
I(α, β) was collected using the ocelli prototype shown in Fig.
10b.

B. Magnetic Compass

Although the ocelli system provides a means for a flying
insect to reorient its body towards a specific orientation,
its heading remains arbitrary. Since maintaining the heading
is fundamental for forward flight and maneuvering, is has
been proposed to use a magnetic compass for the MFI [47].
This magnetic sensor can estimate the heading based on
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Fig. 12. (a) Schematic of a magnetic compass; (b) Photo of the magnetic
sensor prototype. Courtesy of [50].

the terrestrial geomagnetic field. The magnetic compass has
three “U-shaped” suspended structures as shown in Fig. 12b,
similarly to the design proposed in [49] for a MEMS magnetic
sensor. Electric current flows through these loops, interacting
with the terrestrial geomagnetic field, and induces the Lorentz
force given byFl = 3Li × B, whereFl is the total force
at the base of the cantilever,3L is the length of one loop of
the cantilever,i is the total current, andB is the terrestrial
geomagnetic field. The deflection of the cantilever, which is
proportional to the force perpendicular to the cantilever,i.e.,
Fc = Fl·n wheren is the sensing direction of the strain gauge,
is sensed at the base by strain gauges. Thus, the outputs from
the strain gauges can be used to estimate the heading of the
MFI and it is given by:

yc = aFc = aL(i × B) · n = kc sin γ = kcf(R) (22)

wherea is a constant that depends on the size of the cantilever
and the strain gauge,γ is the angle between the insect
heading and the direction of the Earth magnetic field, and
f(R) is a linear function of the body rotation matrixR. The
function f(R) can be computed easily once the orientation
of the current vectorib and the gauge sensing directionnb,
with respect to body frame, and the orientation of the Earth
magnetic fieldBf , relative to the fixed frame, are known.

C. Halteres

Biomechanical studies on insect flight revealed that in order
to maintain stable flight, insects use structures, called halteres,
to measure body rotations via gyroscopic forces [51]. The
halteres of a fly resemble small balls at the end of thin sticks
as shown in Fig. 13a. During flight the two halteres beat up
and down in non-coplanar planes through an angle of nearly
180◦ anti-phase to the wings at the wingbeat frequency. This
non-coplanarity of the two halteres is essential for a fly to
detect rotations about all three turning axes because a fly with
only one haltere is unable to detect rotations about an axis
perpendicular to the stroke plane of that haltere [10], [52].

As a result of insect motion and haltere kinematics, a
complex set of forces acts on the halteres during flight:
gravitational, inertial, angular acceleration, centrifugal, and
Coriolis forces.

F = mg−ma−mω̇ × r−mω × (ω × r)− 2mω ×v (23)

where m is the mass of the haltere,r, v, and a are the
position, velocity, and acceleration of the haltere relative
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Fig. 13. (a) Schematic of the halteres (enlarged) of a fly; (b) Photo of the
haltere prototype. Courtesy of [50].

Fig. 14. Block diagram of the haltere process.R is the insect body rotation
matrix. Details of the demodulation scheme are presented in [50].

to the insect body,ω and ω̇ are the angular velocity and
angular acceleration of the insect, andg is the gravitational
constant (see Fig. 14). However, by taking the advantage of
the unique characteristics (frequency, modulation, and phase)
of the Coriolis signals on the left and right halteres, a de-
modulation scheme has been proposed to decipher roll, pitch,
and yaw angular velocities from the complex haltere forces
[50]. Fig. 15 shows the decoupled angular velocities of a
fly estimated by processing the haltere force measurements
during a steering flight mode, obtained using simulations of
insect flight according to the body dynamics described in the
previous section. It is shown in [46] that the haltere outputs
are almost equivalent to the following smoothed version of the
insect angular velocities:

yh1 (t) = kh1

T

∫ t

t−T
ωx(τ)dτ = ω̄x(t)

yh2 (t) = kh2

T

∫ t

t−T
ωy(τ)dτ = ω̄y(t)

yh3 (t) = kh3

T

∫ t

t−T
ωz(τ)dτ = ω̄z(t)

(24)

whereT is the period of oscillation of the halteres,kh1, kh2,
and kh3 are positive constants, and̄ωi are the mean angular
velocities of the insect during one period of oscillation ofthe
halteres. Fig. 13b shows the prototype of the haltere sensor.

D. Optic Flow Sensors

Research on insects’ motion-dependent behavior contributed
to the characterizations of certain motion-sensing mechanisms
in flying insects. The correlation model of motion detection
represents the signal transduction pathway in a fly’s visualsys-
tem [53], [54]. The basic element of the Reichardt correction-
based motion sensor is an elementary motion detector (EMD),
as shown in Fig. 16. When a moving stimulus is detected by an
EMD, the perceived signal in one photoreceptor is compared
to the delayed signal in a neighboring photoreceptor. If the
signal in the left photoreceptor correlates more strongly to
the delayed signal in the right photoreceptor, the stimulus
is moving from right to left and vice versa. In the EMD
implementation, as in [55], the photoreceptor can be modeled
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Fig. 16. Elementary motion detector (EMD) architecture.

as a bandpass filter whose transfer function is given by

P (s) =
K · τH · s

(τH · s+ 1)(τphoto · s+ 1)
(25)

whereτH is the time constant of the DC-blocking high-pass
filter, τphoto is the time constant defining the bandwidth of the
photoreceptor, andK is the constant of proportionality. The
delay operation of the EMD can be realized by a low-pass
filter with time constantτ :

D(s) =
1

τ · s+ 1
(26)

The correlation is achieved by multiplying the delayed signal
in one leg of the EMD with the signal in the adjacent
leg and the signals in the two legs are subtracted, and the
detector output is thus the remainder. Finally, the outputsof
the individual units in the array are added together to obtain
an overall sensor output:

yf (t) =
∑

κ

o(κ, t) (27)

Fig. 17. A fly follows the topography of the ground (top) basedon the
perceived optic flow (bottom) during the flight.

where κ is the number of EMDs in the array. This spatial
summation has the effect of reducing oscillations in the output
of a single EMD [56].

Image motions seen by an insect’s eyes are encoded by the
perceived optic flow. Higher image motions result in greater
optic flow. Therefore, when an insect flies toward an object, the
quick expansion of that object in the insect’s visual field would
induce large optic flow across its eyes. This kind of flow signal
can be exploited to perform tasks such as obstacle avoidance
and terrain following [57], [58]. In the simulation of a fly
following a simple topography of the ground (see top panel of
Fig. 17), optic flow measurements are estimated by simulating
an array of EMDs based on the configuration in Fig. 16, and
calculating the signals using Equations (25), (26), and (27)
according to the fly’s elevation. The flow sensor is assumed to
face downward by60◦ on the head of the fly. The bottom
panel shows the accumulated optic flow perceived by the
sensor during the flight. When the fly is closer to the ground,
the patterns on the ground cause the optic flow to increase
quickly. An upper threshold for the perceived optic flow is set
such that when this value is reached, the fly would elevate in
order to maintain a safe distance to the ground. On the other
hand, when the fly is at a higher position, the patterns on the
ground do not induce significant optic flow and hence the flow
signals decrease due to leakage over time. Accordingly, thefly
would descend when a preset lower threshold is reached. By
selecting appropriate upper and lower threshold values, the fly
can follow the topography of the ground properly.

VIII. C ONCLUSION

In this paper a mathematical model for flapping flight inch-
size micromechanical flying vehicles is presented. The aero-
dynamics, the electromechanical architecture, and the sensory
system for these vehicles differ considerably from larger rotary
and fixed-winged aircrafts, and require specific modeling.
Based on latest research developed in the biological com-
munity, and the understanding of physical limitations of the
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actual device, is has been built a realistic simulation testbed,
called Virtual Insect Flight Simulator, which captures themost
important features for this kind of flapping wing micro aerial
vehicles. Mathematical modeling and simulations have been
presented for the aerodynamics, the insect body dynamics, the
electromechanical wing-thorax dynamics, and the biomimetic
sensory system including the ocelli, the halteres, the magnetic
compass, and the optical flow sensors. Comparison between
simulations and experimental results have been given, when
possible, to validate the modeling. This simulator has been
used extensively to test flight control architectures and al-
gorithms, which are presented in a companion paper [39].
The modularity of the implementation is intended to ease
the modification of the simulator as better modeling becomes
available or additional elements are included in the future,
such as a modeling for the wake capture in the aerodynamics
module, integration of experimental results from real MFI
robotic data, the compound-eye visual processing for object
fixation, and recognition in the sensory system.
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