Flapping Flight for Biomimetic Robotic Insects: Part I—System Modeling
Xinyan Deng, Luca Schenato, Wei Chung Wu, and Shankar Sastry

Abstract—This paper presents the mathematical modeling of flapping flight inch-size micro aerial vehicles (MAVs), namely Micromechanical Flying Insects (MFIs). The target robotic insects are electromechanical devices propelled by a pair of independent flapping wings to achieve sustained autonomous flight, thereby mimicking real insects. In this paper we describe the system dynamic models which include several elements that are substantially different from those present in fixed or rotary wing MAVs. These models include the wing-thorax dynamics, the flapping flight aerodynamics at a low Reynolds number regime, the body dynamics, and the biomimetic sensory system consisting of ocelli, halteres, magnetic compass and optical flow sensors. The mathematical models are developed based on biological principles, analytical models and experimental data. They are presented in the Virtual Insect Flight Simulator (VIFS), and are designed to give a realistic simulation for MFI and insect flight. VIFS is a software tool intended for modeling flapping flight mechanisms and for testing and evaluating the performance of different flight control algorithms.

Index Terms—Flapping flight, micro aerial vehicles, biomimetic, modeling, low Reynolds number, flying insects.

I. INTRODUCTION

Micro aerial vehicles (MAVs) have drawn a great deal of interest in the past decade due to the advances in microtechnology. Most research groups working on MAVs today based their designs on fixed, rotary, or bird-like (ornithopter) flapping wings [1], [2], [3], [4], [5], [6]. Among these types fixed or ornithopter MAVs are better suited for outdoor missions which require higher speed and greater range; but due to their lack of ability to hover, they can not be practically applied in urban or indoor environments. Although rotary wing MAVs have the potential ability to hover, they are more susceptible to environmental disturbances such as wind gusts, and are slow in response. All the above MAVs depend on conventional aerodynamics and may not further scale down well to miniature size vehicles. On the other hand, flapping flying insects, such as fruit flies and house flies, besides being at least two orders of magnitude smaller than today’s smallest manmade vehicles, demonstrate extraordinary performance, unmatched maneuverability, and hovering capability as a result of their three degree of freedom wing motion. These attributes are beneficial in obstacle avoidance and in navigation in small spaces. Therefore, inspired by insects, researchers have started using biomimetic principles to develop MAVs with flapping wings that will be capable of sustained autonomous flight [7], [8]. In particular, the work in this paper has been developed for a Micromechanical Flying Insect (MFI), an autonomous flapping wing MAV targeting the size and performance of typical housefly [7]. Fig. 1 shows a conceptual view of the designed robotic fly.

Recently, considerable effort has been directed toward understanding the complex structure of insect flapping flight by examining its components, particularly its sensors [9], [10], [11], [12], the neural processing of external information [13], [14], the biomechanical structure of the wing-thorax system [15], [16], the wing aerodynamics [17], [18], the flight control mechanisms [19], and the trajectory planning [20], [21]. However, still little is known about how these elements interact with one another to give rise to the complex behaviors observed in true insects. Therefore, in order to accurately simulate robotic flying insects, mathematical models have been developed for each of the following systems: wing aerodynamics, body dynamics, actuator dynamics, sensors, external environment and

This work was funded by ONR MURI N00014-98-1-0671, ONR DURIP N00014-99-1-0720 and DARPA.

Xinyan Deng is with Department of Mechanical Engineering, University of Delaware, 126 Spencer Lab, Newark, DE 19716, United States, Tel: +1-302-831-4464, Fax: +1-302-831-3619, E-mail: deng@me.udel.edu.

Luca Schenato is with the Department of Information Engineering, University of Padova, Italy, Via Gradenigo 6/b, 35131 Padova, Italy, Tel: +39-049-827-7925, Fax: +39-049-827-7699, E-mail: schenato@dei.unipd.it.

Wei Chung Wu and Shankar Sastry are with the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Cory Hall, Berkeley, CA 94720, United States, Tel: +1-510-643-2515 and Tel: +1-510-6642-1857, Fax: +1-510-643-2356, E-mail: wcwu.sastry@eecs.berkeley.edu.

Fig. 1. MFI model based on a blow fly Calliphora, with a mass of 100 mg, wing length of 11 mm, wing beat frequency of 150 Hz, and battery power of 20 mW. Each of the wing has two degrees of freedom: flapping and rotation. (Courtesy of R. Fearing and R.J. Wood)
flight control algorithms. These models have been integrated together into a single simulator, called the Virtual Insect Flight Simulator (VIFS), aimed both at giving a realistic analysis and at improving the design of sensorial information fusion and flight control algorithms. The mathematical models are based on today’s best understanding of true insect flight, which is far from being complete.

This paper is organized as follows. Section II gives a brief overview of the MFI project. Section III presents the modular architecture of VIFS. Sections IV through VII describe in detail, respectively, the mathematical modeling of flapping flight in a low Reynolds number regime, the insect body dynamics, the wing-thorax actuator dynamics, and the sensory system represented by the ocelli, the halteres, the magnetic compass and the optical flow sensors. Finally, Section VIII summarizes conclusions and proposes some directions for future work.

II. MFI OVERVIEW

The design of the MFI is guided by the studies of flying insects. The requirements for a successful fabrication, such as small dimensions, low power consumption, high flapping frequency, and limited on-board computational resources are challenging, and they forced the development of novel approaches to electromechanical design and flight control algorithms.

The goal of the MFI project is the fabrication of an inch-size electromechanical device capable of autonomous flight and complex behaviors, mimicking a blowfly Calliphora. The fabrication of such a device requires the design of several components. In particular, it is necessary to identify five main units (Fig. 2), each of them responsible for a distinct task: the locomotory unit, the sensory system unit, the power supply unit, the communication unit and the control unit.

Fig. 2. MFI structure

The locomotory unit, composed of the electromechanical thorax-wings system, is responsible for generating the necessary wing motion for the flight, and thus for the MFI dynamics. One of the most challenging parts of this project is the design of a mechanical structure that provides sufficient mobility to the wings to generate the desired wings kinematics. These issues are not considered in this paper, and the interested reader can find more detailed analysis in [22], [23], [24] and references therein. At present, the current design provides two independent wings both with two degrees of freedom: flapping and rotation.

The sensory system unit is made up of different sensors. The halteres are biomimetic gyroes for angular velocity detection. The ocelli are biomimetic photosensitive devices for roll-pitch estimation and horizon detection. The magnetic compass is used for heading estimation. The optical flow detectors are utilized for self-motion detection and object avoidance. These sensors provide the control unit with the input information necessary to stabilize the flight and to navigate the environment. Other kinds of miniaturized sensors can be installed, such as temperature and chemical sensors, which can be used for search and recognition of particular objects or hazardous chemicals.

The power supply unit, which consists of three thin sheets of solar cells at the base of the MFI body, is the source of electric energy necessary to power the wing actuators and the electronics of all the units. One sheet of solar cells can generate up to $20mWcm^{-1}$. Underneath the solar cell, thin films of high energy-density lithium-polymer batteries can store energy for dim-lit or night condition operation. The combination of solar panels and batteries should be able to provide up to $100mW$.

The communication unit, based on micro Corner Cube Reflectors (CCR) [25] (a novel optoelectronic transmitter) or on ultra-low-power RF transmitters, provides a MFI with the possibility to communicate with a ground base or with other MFIs.

Finally, the control unit, embedded in the MFI computational circuity, is responsible both for stabilizing the flight and for planning the appropriate trajectory for each desired task.

III. SYSTEM MODELING ARCHITECTURE

In accordance with the major design units of the MFI, the VIFS is decomposed into several modular units, each of them responsible for modeling a specific aspect of flapping flight, as shown in Fig. 3.

Fig. 3. Simulator (VIFS) architecture

The Aerodynamic Module takes as input the wing motion and the MFI body velocities, and gives as output the
corresponding aerodynamic forces and torques. This module includes a mathematical model for the aerodynamics, which is described in the next section.

The Body Dynamics Module takes the aerodynamics forces and torques generated by the wing kinematics and integrates them along with the dynamical model of the MFI body, thus computing the body’s position and the attitude as a function of time.

The Sensory System Module models the sensors used by the MFI to stabilize flight and to navigate the environment. It includes the halteres, the ocelli, the magnetic compass, and optical flow sensors. This module will also include a model for simple environments, i.e. a description of the terrain and the objects in it. It takes as input the MFI body dynamics and generates the corresponding sensory information which is used to estimate the MFI’s position and orientation.

The Control Systems Module takes as input the signals from the different sensors. Its task is to process the sensor signals and to generate the necessary control signals to the electromechanical wings-thorax system to stabilize flight and navigate the environment.

The Actuator Dynamics Module takes as input the electrical control signals generated by the Control System Module and generates the corresponding wing kinematics. It consists of the model of the electromechanical wings-thorax architecture and the aerodynamic damping on the wings.

The VIFS architecture is extremely flexible since it allows ready modifications or improvements of one single module without rewriting the whole simulator. For example, different combinations of control algorithms and electromechanical structures can be tested, giving rise to the more realistic setting of flight control with limited kinematics due to electromechanical constraints. Moreover, morphological parameters such as dimensions and masses of the wings and body can be modified to analyze their effects on flight stability, power efficiency and maneuverability. Finally, as better flapping flight aerodynamic models become available, the aerodynamic module can be updated to improve accuracy. The following sections present a detailed mathematical description for the different modules, including simulations and comparisons with experimental results.

IV. AERODYNAMICS

Fig. 4. Block diagram of the Aerodynamical Module

Insect flight aerodynamics, which belongs to the regime of Reynolds number between 30 – 1000, has been a very active area of research in the past decades after the seminal work of Ellington [26]. Although, at present, some numerical simulations of unsteady insect flight aerodynamics based on the finite element solution of the Navier-Stokes equations give accurate results for the estimated aerodynamics forces [27], [28], their implementation is unsuitable for control purposes since they require several hours of processing for simulating a single wingbeat, even on multiprocessor computers. However, several advances have been achieved in comprehending qualitatively and quantitatively unsteady-state aerodynamic mechanisms thanks to scaled models of flapping wings [17], [29]. In particular, the apparatus developed by Dickinson and his group, known as Robofly [17], consists of a tow 25cm-long wings system that mimics the wing motion of flying insects. It is equipped with force sensors at the wing base, which can measure instantaneous wing forces along a wingbeat.

Results obtained with this apparatus have identified three main aerodynamics mechanisms peculiar to the unsteady state nature of flapping flight: delayed stall, rotational lift and wake capture. Here we briefly describe these mechanisms and the interested reader is addressed to the review paper by Sane [30] for details on insect flight aerodynamics.

When a thin wing flaps at a high angle of attack, the airflow separates at the leading edge and reattaches before the trailing edge, leading to the formation of a leading edge vortex. The presence of the attached leading edge vortex produces very high lift forces. In a 2-D pure translational motion, if the wing continues to translate at a high angle of attack, the leading edge vortex grows in size until flow reattachment is no longer possible and the vortex is shed in the wake [17]. When this happens, there is a drop in lift and the wing is said to have stalled. Fortunately, in flapping wings the leading edge vortex has been observed to remain attached to the wing during the whole wing stroke [31], [17], [32], thus producing very high lift and preventing stalling. For this reason, the phenomenon is also known as ‘delayed stall’. Besides insect flight, delayed stall also plays a very important role in fish swimming [33], [34] and helicopter flight [35].

The second mechanism is the rotational lift, also known as the "Kramer effect" [30], which results from the interaction of translational and rotational velocities about the span-wise axis of the wing at the end of the two half-strokes, when the wing decelerates and rotates. Depending on the direction of the rotation, the flow circulation causes rotational forces that either add or subtract from the net force due to translation [36], [28], [37].

Finally, the wake capture is the result of the interaction of the wing with the fluid wake generated in the previous stroke when the wing inverts its motion. In fact, the fluid behind the wing tends to maintain its velocity due to its inertia, therefore when the wing changes direction, the relative velocity between the wing and the fluid is larger than the absolute wing velocity, thus giving rise to larger force production at the beginning of each half-stroke [17] [38].

The mathematical aerodynamic modeling presented below is a combination of an analytical model, based on quasi-steady state equations for the delayed stall and rotational lift, and an empirically matched model with the estimation of the aerodynamic coefficients based on experimental data. Wake capture cannot be easily modeled by quasi-steady state equations, and it has not been considered in this work. However, this mechanism is observed to have a small contribution for sinusoidal-like motion of the wings, motion that it is widely
used in our simulations and flight control algorithms [39].

\[
\begin{align*}
F_{tr,N} & = \frac{1}{2} C_N(\alpha) \rho c U^2 \\
F_{tr,T} & = \frac{1}{2} C_T(\alpha) \rho c U^2
\end{align*}
\]

where \(F_{tr,N} \) and \(F_{tr,T} \) are the normal and tangential components of the force with respect to the aerofoil profile, \(c \) is the cord width of the aerofoil, \(\rho \) is the density of air, \(\alpha \) is the angle of attack defined as the angle between the wing profile and the wing velocity \(U \) relative to the fluid, and \(C_N \) and \(C_T \) are the dimensionless force coefficients. The orientation of these forces is always opposite to the wing velocity. Fig. 5 shows a graphical representation of these parameters. Flapping flight is the result of unsteady-state aerodynamic mechanisms, therefore the aerodynamic coefficients \(C_N, C_T \) are time-dependent even for constant angle of attack \(\alpha \). However, it has been observed that a good quasi-steady state empirical approximation for the force coefficients due to delayed stall is given by:

\[
\begin{align*}
C_N(\alpha) & = 3.4 \sin \alpha \\
C_T(\alpha) & = \begin{cases}
0.4 \cos^2(2\alpha) & 0 \leq \alpha \leq 45^\circ \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]

which were derived using experimental results given in [17]. These coefficients have been obtained from Equations (1) by experimentally measuring aerodynamic forces for different angles of attack and translational velocities and then solving for the aerodynamic coefficients. Fig. 6 shows the plots of Equations (2). It is clear how, for high angles of attack, the tangential component, mainly due to skin friction, gives only a minor contribution.

In the aerodynamics literature, it is more common to find the lift and drag force coefficients, \(C_L \) and \(C_D \). Lift, \(F_L \) and drag, \(F_D \) are defined, respectively, as the normal and tangential components of the total aerodynamic force with respect to the stroke plane, i.e., the plane of motion of the wings with respect to the body (see Fig. 5a). However, the force decomposition in normal and tangential components is more intuitive, since aerodynamic forces are mainly a pressure force which acts perpendicularly to the surface. Nevertheless, the lift and drag coefficients can be readily computed as:

\[
\begin{align*}
C_L(\alpha) & = C_N(\alpha) \cos \alpha - C_T(\alpha) \sin \alpha \\
C_D(\alpha) & = C_N(\alpha) \sin \alpha + C_T(\alpha) \cos \alpha
\end{align*}
\]

and they are plotted in Fig. 6. Note how the maximum lift coefficient is achieved for angles of attack of approximately \(45^\circ \), considerably different from fixed and rotary wings which produce maximum lift for angles of about \(15^\circ \).

The theoretical aerodynamic force per unit length exerted on a aerofoil due to rotational lift is given by [41]:

\[
F_{rot,N} = \frac{1}{2} C_{rot} \rho c^2 \omega \frac{d}{\hat{x}}
\]

where \(C_{rot} = 2\pi \left(\frac{3}{2} - \frac{1}{2} \right) \) is the rotational force coefficient, approximately independent of the angle of attack, \(\hat{x} \) is the dimensionless distance of the longitudinal rotation axis from the leading edge, and \(\omega \) is the angular velocity of the wing with respect to that axis. In most flying insects \(\hat{x} \) is about \(\frac{1}{4} \), which correspond to the theoretical value of the mean center of pressure along the wing chord direction. This is a pure pressure force and therefore acts perpendicularly to the wing profile, in the opposite direction of wing velocity. In flapping flight,
as for the delayed stall, the rotational force coefficient C_{rot} is time-dependent, however the theoretical quasi-steady state modeling given above has been observed to give satisfactory predictive capabilities [36].

According to the quasi-steady state approach, the total force on a wing is computed by dividing the wing into infinitesimal blades of thickness dr, as shown in Fig. 5(c). First, the total force is calculated on each blade:

$$dF_{\text{tr},N}(t, r) = \frac{1}{2} C_N(\alpha(t)) \rho c(r) U(t, r)^2 dr$$

$$dF_{\text{tr},T}(t, r) = \frac{1}{2} C_T(\alpha(t)) \rho c(r) U(t, r)^2 dr$$

$$dF_{\text{rot},N}(t) = \frac{1}{2} C_{\text{rot}} \rho c(r)^2 U(t, r) \dot{\alpha}(t) dr$$

$$U(t, r) = \phi(t) r$$

where ϕ is the stroke angle, and the wing angular velocity, ω is approximately $\dot{\alpha}$. Then the forces are integrated in Equations (5) along the wing, i.e. $F_{\text{tr},N}(t) = \int_0^L dF_{\text{tr},N}(t, r)$, to get:

$$F_{\text{tr},N}(t) = \frac{1}{2} \rho A_w C_N(\alpha(t)) U_{cp}^2(t)$$

$$F_{\text{tr},T}(t) = \frac{1}{2} \rho A_w C_T(\alpha(t)) U_{cp}^2(t)$$

$$F_{\text{rot},N}(t) = \frac{1}{2} \rho A_w C_{\text{rot}} c_m \dot{\alpha} U_{cp}(t)$$

$$U_{cp}(t) = \frac{\dot{r}_2 L \phi(t)}{\hat{c}}$$

where A_w is the wing area, L is the wing length, U_{cp} is the velocity of the wing at the center of pressure, r_2 is the normalized center of pressure, c_m is maximum wing chord width, and \hat{c} is the normalized rotational chord. The former two parameters are defined as follows:

$$\hat{\alpha} = \frac{1}{r_2} c(r) r^2 dr$$

$$\hat{c} = \frac{1}{r_2} c^2(r) r dr$$

The normalized center of pressure, \hat{r}_2, and the normalized rotational chord, \hat{c}, depend only on the wing morphology, and in most flying insects their range is approximately $\hat{r}_2 = 0.6 - 0.7$ and $\hat{c} = 0.5 - 0.75$ [26]. As a result of this approach, the wing forces can be assumed to be applied at a distance, $r_{cp} = \hat{r}_2 L$, from the wing base. According to thin aerofoil theory, the center of pressure r_{cp} lies about $\frac{1}{4}$ of chord length from the leading edge (see Fig. 5(b)). This has been confirmed by numerical simulations of insect flight which do not assume a quasi-steady state aerodynamic regime [27], and by experiments performed with a scaled model of insect wings [17].

If the velocity of the insect body is comparable with the mean wing velocity of the center of pressure, as during forward flight, a more accurate model for estimating the aerodynamic forces is based on finding the absolute velocity of the center of pressure of the wing relative to an inertial frame, which is obtained by substituting Equation (9) with the following:

$$U_{cp}(t) = \hat{r}_2 L \dot{\phi}(t) + v^b(t)$$

where $v^b(t)$ is the velocity of the insect body relative to the inertial frame represented in the wing frame coordinate system. Recently, an alternative quasi-steady state model based on the tip velocity ratio, defined as the ratio of the chordwise components of flow velocity at the wing tip due to translation and revolution, has been proposed to take into account the effect of insect body translation velocity present during forward flight [42]. The total lift and drag forces acting on the wing can be derived through a trigonometric transformation analogous to the one used in Equations (3) as follows:

$$F_N(t) = F_{\text{tr},N}(t) + F_{\text{rot},N}(t)$$

$$F_T(t) = F_{\text{tr},T}(t)$$

$$F_D(t) = F_N(t) \cos \alpha(t) - F_T(t) \sin \alpha(t)$$

$$F_L(t) = F_N(t) \sin \alpha(t) + F_T(t) \cos \alpha(t)$$

where $F_{\text{tr},N}, F_{\text{tr},T}, F_{\text{rot},N}$ are given in Equations (6),(7), and (8), respectively, and $U_{cp}(t)$ is given in Equation (10).

The aerodynamic forces used for simulation are based on Equations (11). Fig. 7 shows the simulated aerodynamic forces for a typical wing motion and the corresponding experimental results obtained with a dynamically scaled model of insect wing (Robofly traces). Despite some small discrepancies due to the undermodeling of the wake capture mechanism present at the beginning of the two half-strokes, the mathematical model presented here predicts the experimental data sufficiently well.

The flapping flight aerodynamics module implementation is summarized in the block diagram of Fig. 4.

V. BODY DYNAMICS

The body dynamic equations compute the evolution of the position of the insect center of mass and the orientation of the insect body, with respect to an inertial frame. This evolution is the result of the wings’ inertial forces, and the external forces, specifically aerodynamic forces, body damping forces, and the force of gravity. Since the mass of the wings is only a small percentage of the insect body mass, and as they move
almost symmetrically, their effect on insect body dynamics is likely to cancel out within a single wingbeat. In fact, even if wing inertial forces are larger than aerodynamic forces, nonholonomic rotations would be possible for frictionless robots with moving links (see [43] Example 7.2), only if the links, in our case the wings, would flap out of synchronization with each other, an activity not observed in true insects. Therefore, based on this observation, it seems safe to disregard inertial forces due to the wings, as the system model is clearly dynamic rather than kinematic.

As shown in [43], the equations of motion for a rigid body subject to an external wrench $F^b = [f^b, τ^b]^T$ applied at the center of mass and specified with respect to the body coordinate frame, are given as:

$$
\begin{bmatrix}
m1 & 0 & \mathcal{I} \\
0 & \mathcal{I} & \mathcal{I} \\
\mathcal{I} & \mathcal{I} & \mathcal{I}
\end{bmatrix}
\begin{bmatrix}
f^b \\
\dot{\omega}^b \\
\mathcal{I} \omega^b
\end{bmatrix}
+ \begin{bmatrix}
f^b \times m \mathcal{V}^b \\
\omega^b \times \mathcal{I} \mathcal{V}^b \\
\mathcal{I} \omega^b \times \mathcal{I} \mathcal{V}^b
\end{bmatrix}
= \begin{bmatrix}
f^b \\
\tau^b \\
\mathcal{I} \tau^b
\end{bmatrix}
$$

(12)

where m is the mass of the insect, \mathcal{I} is the insect body inertia matrix relative to the center of mass, I is the 3×3 identity matrix, \mathcal{V}^b and ω^b are the linear and angular velocity vectors in body frame coordinates. The values for the body and wing morphological parameters, such as lengths and masses, used in our simulations are those of a typical blowfly. However, they can be changed, thus allowing for the simulation of different species and MFI designs.

The total forces and torques in the body frame are given by the sum of the three external forces: the aerodynamic forces, f^b, the body damping forces, f^b_d, and the gravity force, f^b_g:

$$
\begin{align*}
f^b &= f^b_a + f^b_d + f^b_g \\
\tau^b &= \tau^b_a + \tau^b_d + \omega^b_g
\end{align*}
$$

(13)

The aerodynamic forces and torques relative to the insect center of mass, can be obtained by a sequence of fixed coordinate transformations, starting from lift and drag forces and wings kinematics calculated by the aerodynamic module as follows:

$$
\begin{align*}
f^b(t) &= f^b_a(t) + f^b_d(t) \\
\tau^b(t) &= p_l(t) \times f^b_a(t) + p_r(t) \times f^b_d(t)
\end{align*}
$$

(14)

where the subscripts l, r stand for left and right wing, respectively, and $p(t)$ is the position vector of the center of pressure of the wing relative to the body center of mass.

Since the lift and drag forces given by Equations (11) are calculated relative to the stroke plane frame, a coordinate transformation is necessary before obtaining the forces and torques acting on the body frame. The insect body frame is defined as the coordinate system attached to the body center of gravity and with x-axis oriented from tail to head, the y-axis from right wing hinge to left wing hinge, and the z-axis from ventral to dorsal side of the abdomen. Since these are the axes of symmetry of the insect, the matrix of inertia is almost diagonal in the body frame. The stroke plane frame is the coordinate system attached to the center of the thorax at the center of the wings base, whose x-y plane is defined as the plane to which the wing motion is approximately confined during flapping flight.

Given the lift and drag generated by aerodynamics, together with the stroke angle, the forces and torques in the stroke plane can be calculated as

$$
\begin{align*}
f^a_a &= \begin{bmatrix}
F^a \cos \phi_l + F^a_r \cos \phi_r \\
F^a \sin \phi_l - F^a_r \sin \phi_r \\
F^a_l + F^a_r
\end{bmatrix} \\
\tau^a &= \hat{r}_2 L \begin{bmatrix}
-F^a \sin \phi_l + F^a \cos \phi_r \\
-F^a \sin \phi_r - F^a \sin \phi_r \\
F^a_l - F^a_r
\end{bmatrix}
\end{align*}
$$

(15)

where it was used $p_l(t) = \hat{r}_2 L (\sin \phi_l \cos \phi_l, 0)$ and $p_r(t) = \hat{r}_2 L (\sin \phi_r \cos \phi_r, 0)$. To obtain the aerodynamic forces and torques in the body frame, the following coordinate transformation is performed:

$$
\begin{bmatrix}
f^b_a \\
\tau^b_a
\end{bmatrix} = R_{cb}^T \begin{bmatrix}
f^b_a \\
\tau^b_a
\end{bmatrix}
$$

(16)

where R_{cb} is the rotation matrix of the body frame relative to the stroke plane, and p_{cb} represents the translation of the origin of the body frame from the stroke plane. This is a fixed transformation that depends only on the morphology of the insect or MFI.

The gravitational forces and torques in the body frame are given by:

$$
\begin{bmatrix}
f^g \\
\tau^g
\end{bmatrix} = \begin{bmatrix}
R^T \\
\mathcal{I} \omega^b \times R^T
\end{bmatrix} \begin{bmatrix}
m \mathcal{V}^b \\
0
\end{bmatrix}
$$

(17)

where R is the rotational matrix of the body frame relative to the spatial frame, and g is the gravitational acceleration.

The viscous damping exerted by the air on the insect body is approximately given by:

$$
\begin{bmatrix}
f^b_d \\
\tau^b_d
\end{bmatrix} = \begin{bmatrix}
h b \mathcal{V}^b \\
0
\end{bmatrix}
$$

(18)

where b is the viscous damping coefficient. The reason for the linearity in the velocity of the drag force is that the velocity of the insect is small relative to insect size, therefore viscous damping prevails over quadratic inertial drag. Empirical evidence for linear damping has been recently observed by the authors by analyzing the free flight dynamics of true fruit flies. Moreover, experimental data [44] indicate that rotational damping of the insect body is negligible relative to aerodynamic forces even during rapid body rotation and can therefore be neglected.

Numerical solution of Equations (12) have been implemented in MATLAB© using Euler’s angle representation for the rotation matrix [45]. In particular, consider the new variables $\hat{\mathcal{V}} = \mathcal{V}^b$ and $\hat{\omega}^b = R^T \hat{\mathcal{V}}$. For $R \in SO(3)$, the matrix R is parameterized by ZYX Euler’s angles with φ, θ, and ψ about x, y, z axes respectively, and hence $R = e^{\varphi \mathcal{E}_x} e^{\theta \mathcal{E}_y} e^{\psi \mathcal{E}_z}$ with $x = [1 \ 0 \ 0]^T$, $y = [1 \ 0 \ 0]^T$, $z = [0 \ 0 \ 1]^T$ and $\hat{x}, \hat{y}, \hat{z} \in so(3)$. By differentiating \hat{R} with respect to time, it is possible to show that $\hat{\Theta} = W \omega^b$, where the matrix W is...
a function of the Euler’s angles $\Theta = [\eta \theta \psi]^T$. By defining
the state vector $[P, \Theta] \in \mathbb{R}^3 \times \mathbb{R}^3$ where P is the position of
the center of mass w.r.t. the inertia frame, and Θ are the euler
angles which we use to parameterize the rotation matrix R, we can rewrite the equations of motion of a rigid body as:

$$\begin{align*}
\dot{\Theta} &= (JW)^{-1}[\tau - JW \times \dot{\Theta} - J\dot{W}]
\end{align*}$$

$$\dot{\dot{P}} = \frac{1}{m} R f^b$$

(18)

where the body forces and torques (f^b, τ^b) are time-varying,
nonlinear functions of the wing kinematics and body orientation
and are given by Equations (13).

Euler angles are not the only possible representation for a
rotation matrix. Quaternion, for example, is another widely
used representation for simulating rigid body dynamics [45],
and it has the advantage of having no numerical singularity.
On the other hand, an Euler angle representation has the advantage
of being easily linearized around a desired configuration, and
is more intuitive. Numerical degradation of the simulation
near the singularity configuration is avoided by switching to
a different set of Euler’s angles, such as the YXZ, any time
the Euler’s angles approach the singularity.

The body dynamic module implementation is summarized
in the block diagram in Fig. 8.

VI. ACTUATOR DYNAMICS

![Wing-Thorax structure](https://example.com/wing-thorax.png)

Fig. 9. Wing-Thorax structure. Courtesy of [24]

Each wing is moved by the thorax, a complex trapezoidal
structure actuated by two piezoelectric actuators at its base, as
shown in Fig. 9. A complete nonlinear model for the thorax,
developed in [24], can be written as follows

$$M \begin{bmatrix}
\dot{\theta}_2 \\
\dot{\beta}
\end{bmatrix} + B \begin{bmatrix}
\dot{\theta}_2 \\
\dot{\beta}
\end{bmatrix} + K \begin{bmatrix}
\theta_2 \\
\beta
\end{bmatrix} + \begin{bmatrix}
0 \\
f(\beta)
\end{bmatrix} = T \begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}$$

(19)

where $f(\beta) = \frac{1}{2} m \omega^2 (\beta)^2$, θ_2 is the leading edge flapping
angle from the four bar mechanism, $\beta = \theta_1 - \theta_2$ is the
phase difference between the four bar output angles, u_1 and
u_2 are the control input torques to the actuators, M and
B are the inertia and damping matrices, which are assumed
to be constant. However, parameters in K and T matrices
include some slowly time-varying terms, and the control inputs
(u_1, u_2) are limited to $10 \mu N m$ by physical constraints.

The relationship between the state variables in Equation (19)
and the wing motion variables (stroke angle ϕ and rotation
angle φ, see Fig. 5) can be approximated as $\phi = \theta_2 \varphi = 2\beta$. Based on Equation (19), with a change of variables,
eglecting the nonlinear components, we can derive the linear
actuator model as

$$M_0 \begin{bmatrix}
\dot{\phi} \\
\dot{\varphi}
\end{bmatrix} + B_0 \begin{bmatrix}
\dot{\phi} \\
\dot{\varphi}
\end{bmatrix} + K_0 \begin{bmatrix}
\phi \\
\varphi
\end{bmatrix} = T_0 \begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}$$

(20)

where M_0, B_0, K_0, and T_0 are constant matrices calculated
from the data provided in [24].

Equation (20) is a stable linear MIMO system and can also be written using a transfer function representation in the
frequency domain:

$$Y(j\omega) = G(j\omega)U(j\omega)$$

where Y and U are the Fourier transform of the output vector
$y = (\phi, \varphi)$ and the input vector $u = (u_1, u_2)$, respectively.
The electromechanical structure has been designed so that
the input-output frequency response of the system is almost
decoupled at all frequencies, i.e. $|G_{11}(j\omega)| \approx |G_{22}(j\omega)| \gg
|G_{12}(j\omega)| \approx |G_{21}(j\omega)|, \forall \omega$, where G_{ik} represents the $i-k$
entry of the matrix G, and $\omega = 2\pi f$. Moreover, the system
has also been designed to achieve a quality factor $Q = 3$
at the desired resonant frequency of $f_0 = 150 Hz$, i.e.
$|G_{ii}(j2\pi f_0)| \approx |G_{ii}(0)|$. A low quality factor Q is necessary
to easily control the wing trajectory even when the wingbeat
frequency is the same as the resonant frequency. In fact, large
Qs would practically remove all higher order harmonics from
the input signals and the wing would simply oscillate along
the same sinusoidal trajectory.

VII. SENSORY SYSTEM

This section briefly describes the sensory systems of the
MFI, which include the ocelli, the magnetic compass, the
halteres, and the optic flow sensors. The ocelli can be used
to estimate the roll and pitch angles, the magnetic compass to
estimate the yaw angle, the halteres to estimate the three angular
velocities, and the optic flow sensors for object avoidance
and navigation.

The development of these novel biomimetic sensors is
necessary because the sensors currently adopted for avionics
and transportation applications are too heavy and require too
much power for the target robotic fly. In fact the target fly
should weight about $100 mg$ and have a total power budget
of $100 mW$, thus posing formidable technological challenges.
For example, the smallest commercially available rate gyro
weight around $500 mg$, and requires about $30 mW$, while the
proposed halteres have a weight of $30 mg$ and a power con-
sumption of $1 mW$ [46]. Also, the smallest magnetic compass,
which is based on magneto-resistance material, the Hitachi
Fig. 10. (a) Graphical rendering of ocelli present in flying insects. Four photoreceptors, P_1, P_2, P_3, and P_4, collect light from different regions of the sky. The shadowed area represents such a region for photoreceptor P_5; (b) Photo of the ocelli sensor prototype.

Fig. 11. Light intensity distribution projected on unit sphere using experimental data collected from an ocelli prototype [46]. Small arrows point towards the estimated position of light source.

HM55B, consumes about 10mW versus 1mW of the piezo-resistive proposed in [47] and reported here. Similar arguments motivate the choice of the ocelli and the optic flow sensors over traditional sensors.

In this paper we only provide the mathematical modeling of these sensors. Their role in flight stabilization and navigation are presented in [46] and in the references therein. These sensors are currently being implemented, and preliminary results of their prototypes are presented in [47].

A. Ocelli

Ocelli form a sensory system present in many flying insects. This system comprises three wide angle photoreceptors placed on the head of the insect. They are oriented in such a way that they collect light from different regions of the sky. The ocelli are believed to play an important role in attitude stabilization in insect flight as they compare the light intensity measured by the different photoreceptors, which in turn act as horizon detectors [11] [48]. Inspired by the ocelli of true insects, a biomimetic ocelli-like system composed of four photoreceptors has been proposed [46]. Interestingly, ocelli seem to work similarly to the commercial products FMA co-pilot and the Futuba PA-2 usually adopted for RC aircrafts (see [46] for a more detailed discussion). The light intensity function for a point on the sky sphere $I = I(\alpha, \beta)$ is a function of the latitude, α, and longitude, β, relative to the fixed frame. This modeling is sufficient to realistically describe light intensity distributions for different scenarios, such as indoor, outdoor and urban environments.

The ocelli system is modeled as four ideal photoreceptors, P_1, P_2, P_3, and P_4, fixed with respect to the body frame. They are oriented symmetrically with the same latitude, and, if their axes are drawn, one would see that the axes form a pyramid whose top vertex is located at the center of the insect’s head. Every photoreceptor collects light from a conic region A_i in the sky sphere around its ideal orientation P_i as shown in Fig. 10a.

The measurements from the photoreceptors are simply subtracted pairwise and these two signals are the output from the ocelli:

$$y_1^o = I(P_1) - I(P_2), \quad y_2^o = I(P_3) - I(P_4) \quad (21)$$

where $I(P_i)$ is the output from the i-th photodiode. The orientation of the photodiodes relative to the fixed frame, i.e., the latitude and longitude of the area of sky they are pointing at, is a function of the insect orientation, i.e., $P_i = P_i(R)$, where R is the body orientation matrix. Therefore, if the light intensity function, $I = I(\alpha, \beta)$ is defined, given the orientation of the insect body, R, the output of the ocelli can be computed from Equation (21). If the light intensity in the environment is a monotonically decreasing function of its latitude relative to the light source, i.e., $I = I(\alpha)$, then it is shown in [46] that the outputs from the ocelli can be used as an estimate of the orientation of the ocelli reference frame relative to the light source. In fact, for small deviations from the vertical orientation we have $y_1^o \simeq k_o \psi$ and $y_2^o \simeq k_o \theta$, where k_o is a positive constant, and (ψ, θ) are the roll and pitch body angles, respectively. More general theoretical and experimental results for attitude stabilization using ocelli are given in [46].

Even if in real environments light intensity is not exactly a monotonically decreasing function, the ocelli can still estimate robustly the orientation of the body frame relative to the light source, as shown in Fig. 11 where the light intensity function $I(\alpha, \beta)$ was collected using the ocelli prototype shown in Fig. 10b.

B. Magnetic Compass

Although the ocelli system provides a means for a flying insect to reorient its body towards a specific orientation, its heading remains arbitrary. Since maintaining the heading is fundamental for forward flight and maneuvering, it has been proposed to use a magnetic compass for the MFI [47]. This magnetic sensor can estimate the heading based on
the terrestrial geomagnetic field. The magnetic compass has three “U-shaped” suspended structures as shown in Fig. 12b, similarly to the design proposed in [49] for a MEMS magnetic sensor. Electric current flows through these loops, interacting with the terrestrial geomagnetic field, and induces the Lorentz force given by \(\mathbf{F}_L = 3L \mathbf{i} \times \mathbf{B} \), where \(\mathbf{F}_L \) is the total force at the base of the cantilever, \(3L \) is the length of one loop of the cantilever, \(\mathbf{i} \) is the total current, and \(\mathbf{B} \) is the terrestrial geomagnetic field. The deflection of the cantilever, which is proportional to the force perpendicular to the cantilever, is sensed at the base by strain gauges. Thus, the outputs from the strain gauges can be used to estimate the heading of the MFI and it is given by:

\[
y^e = a F_e = a L(\mathbf{i} \times \mathbf{B}) \cdot \mathbf{n} = k_c \sin \gamma = k_c f(R) \tag{22}
\]

where \(a \) is a constant that depends on the size of the cantilever and the strain gauge, \(\gamma \) is the angle between the insect heading and the direction of the Earth magnetic field, and \(f(R) \) is a linear function of the body rotation matrix \(R \). The function \(f(R) \) can be computed easily once the orientation of the current vector \(\mathbf{I}^b \) and the gauge sensing direction \(\mathbf{n}^b \), with respect to body frame, and the orientation of the Earth magnetic field \(\mathbf{B}^f \), relative to the fixed frame, are known.

C. Halteres

Biomechanical studies on insect flight revealed that in order to maintain stable flight, insects use structures, called halteres, to measure body rotations via gyroscopic forces [51]. The halteres of a fly resemble small balls at the end of thin sticks as shown in Fig. 13a. During flight the two halteres beat up and down in non-coplanar planes through an angle of nearly 180° anti-phase to the wings at the wingbeat frequency. This non-coplanarity of the two halteres is essential for a fly to detect rotations about all three turning axes because a fly with only one haltere is unable to detect rotations about an axis perpendicular to the stroke plane of that haltere [10], [52].

As a result of insect motion and haltere kinematics, a complex set of forces acts on the halteres during flight: gravitational, inertial, angular acceleration, centrifugal, and Coriolis forces.

\[
\mathbf{F} = m \mathbf{g} - m \dot{\mathbf{a}} - m \dot{\mathbf{\omega}} \times \mathbf{r} - m \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r}) - 2m \mathbf{\omega} \times \mathbf{v} \tag{23}
\]

where \(m \) is the mass of the haltere, \(\mathbf{r}, \mathbf{v}, \) and \(\mathbf{a} \) are the position, velocity, and acceleration of the haltere relative to the insect body, \(\mathbf{\omega} \) and \(\dot{\mathbf{\omega}} \) are the angular velocity and angular acceleration of the insect, and \(\mathbf{g} \) is the gravitational constant (see Fig. 14). However, by taking the advantage of the unique characteristics (frequency, modulation, and phase) of the Coriolis signals on the left and right halteres, a demodulation scheme has been proposed to decipher roll, pitch, and yaw angular velocities from the complex haltere forces [50]. Fig. 15 shows the decoupled angular velocities of a fly estimated by processing the haltere force measurements during a steering flight mode, obtained using simulations of insect flight according to the body dynamics described in the previous section. It is shown in [46] that the haltere outputs are almost equivalent to the following smoothed version of the insect angular velocities:

\[
\begin{align*}
\dot{y}_x^l(t) &= \frac{k_{h1}}{T} \int_{t-T}^{t} \omega_x(\tau) d\tau = \bar{\omega}_x(t) \\
\dot{y}_y^l(t) &= \frac{k_{h2}}{T} \int_{t-T}^{t} \omega_y(\tau) d\tau = \bar{\omega}_y(t) \\
\dot{y}_z^l(t) &= \frac{k_{h3}}{T} \int_{t-T}^{t} \omega_z(\tau) d\tau = \bar{\omega}_z(t)
\end{align*}
\tag{24}
\]

where \(T \) is the period of oscillation of the halteres, \(k_{h1}, k_{h2}, \) and \(k_{h3} \) are positive constants, and \(\bar{\omega}_i \) are the mean angular velocities of the insect during one period of oscillation of the halteres. Fig. 13b shows the prototype of the haltere sensor.

D. Optic Flow Sensors

Research on insects’ motion-dependent behavior contributed to the characterizations of certain motion-sensing mechanisms in flying insects. The correlation model of motion detection represents the signal transduction pathway in a fly’s visual system [53], [54]. The basic element of the Reichardt correction-based motion sensor is an elementary motion detector (EMD), as shown in Fig. 16. When a moving stimulus is detected by an EMD, the perceived signal in one photoreceptor is compared to the delayed signal in a neighboring photoreceptor. If the signal in the left photoreceptor correlates more strongly with the delayed signal in the right photoreceptor, the stimulus is moving from right to left and vice versa. In the EMD implementation, as in [55], the photoreceptor can be modeled...
Fig. 15. Simulation of angular velocity detection filtered by halteres under a steering flight mode. Oscillatory behavior of pitch rate is due to the quasi-periodic nature of pitch aerodynamic forces during flapping flight.

Fig. 16. Elementary motion detector (EMD) architecture.

as a bandpass filter whose transfer function is given by

\[P(s) = \frac{K \cdot \tau_H \cdot s}{(\tau_H \cdot s + 1)(\tau_{\text{photo}} \cdot s + 1)} \] \hspace{1cm} (25)

where \(\tau_H \) is the time constant of the DC-blocking high-pass filter, \(\tau_{\text{photo}} \) is the time constant defining the bandwidth of the photoreceptor, and \(K \) is the constant of proportionality. The delay operation of the EMD can be realized by a low-pass filter with time constant \(\tau \):

\[D(s) = \frac{1}{\tau \cdot s + 1} \] \hspace{1cm} (26)

The correlation is achieved by multiplying the delayed signal in one leg of the EMD with the signal in the adjacent leg and the signals in the two legs are subtracted, and the detector output is thus the remainder. Finally, the outputs of the individual units in the array are added together to obtain an overall sensor output:

\[y^f(t) = \sum_{\kappa} o(\kappa, t) \] \hspace{1cm} (27)

where \(\kappa \) is the number of EMDs in the array. This spatial summation has the effect of reducing oscillations in the output of a single EMD [56].

Image motions seen by an insect’s eyes are encoded by the perceived optic flow. Higher image motions result in greater optic flow. Therefore, when an insect flies toward an object, the quick expansion of that object in the insect’s visual field would induce large optic flow across its eyes. This kind of flow signal can be exploited to perform tasks such as obstacle avoidance and terrain following [57], [58]. In the simulation of a fly following a simple topography of the ground (see top panel of Fig. 17), optic flow measurements are estimated by simulating an array of EMDs based on the configuration in Fig. 16, and calculating the signals using Equations (25), (26), and (27) according to the fly’s elevation. The flow sensor is assumed to face downward by \(60^\circ \) on the head of the fly. The bottom panel shows the accumulated optic flow perceived by the sensor during the flight. When the fly is closer to the ground, the patterns on the ground cause the optic flow to increase quickly. An upper threshold for the perceived optic flow is set such that when this value is reached, the fly would elevate in order to maintain a safe distance to the ground. On the other hand, when the fly is at a higher position, the patterns on the ground do not induce significant optic flow and hence the flow signals decrease due to leakage over time. Accordingly, the fly would descend when a preset lower threshold is reached. By selecting appropriate upper and lower threshold values, the fly can follow the topography of the ground properly.

VIII. CONCLUSION

In this paper a mathematical model for flapping flight inch-size micromechanical flying vehicles is presented. The aerodynamics, the electromechanical architecture, and the sensory system for these vehicles differ considerably from larger rotary and fixed-winged aircrafts, and require specific modeling. Based on latest research developed in the biological community, and the understanding of physical limitations of the
actual device, is has been built a realistic simulation testbed, called Virtual Insect Flight Simulator, which captures the most important features for this kind of flapping wing micro aerial vehicles. Mathematical modeling and simulations have been presented for the aerodynamics, the insect body dynamics, the electromechanical wing-thorax dynamics, and the biomimetic sensory system including the ocelli, the halteres, the magnetic compass, and the optical flow sensors. Comparison between simulations and experimental results have been given, when possible, to validate the modeling. This simulator has been used extensively to test flight control architectures and algorithms, which are presented in a companion paper [39]. The modularity of the implementation is intended to ease the modification of the simulator as better modeling becomes available or additional elements are included in the future, such as a modeling for the wake capture in the aerodynamics module, integration of experimental results from real MFI robotic data, the compound-eye visual processing for object fixation, and recognition in the sensory system.

IX. ACKNOWLEDGMENTS

The authors wish to thank R.S. Fearing for his helpful comments, and S. Avadhanula for providing the model for the wing-thorax system. We also want to thank R.J Wood for designing, building, and testing the halteres prototype, and R. Sahai, S. Bergbreiter and B. Leibowitz for designing and fabricating the ocelli prototype.

REFERENCES

