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Flapping Flight for Biomimetic Robotic Insects:
Part II—Flight Control Design

Xinyan Deng, Luca Schenato, and Shankar Sastry

Abstract— In this paper we present the design of the flight
control algorithms for flapping wing micromechanical flying
insects (MFIs). Inspired by the sensory feedback and neuromotor
structure of insects, we propose a similar top-down hierarchical
architecture to achieve high performance despite the MFIs’
limited on-board computational resources. The flight stabilization
problem is formulated as high frequency periodic control of an
underactuated system. In particular, we provide a methodology
to approximate the time-varying dynamics caused by the aerody-
namic forces with a time-invariant model using averaging theory
and a biomimetic parametrization of the wing trajectories. This
approximation leads to a simpler dynamical model that can be
identified using experimental data from the on-board sensors and
the voltage inputs to the wing actuators. The overall control law is
a periodic proportional output feedback. Simulations, including
sensor and actuator models, demonstrate stable flight in hovering
mode.

Index Terms— flapping flight, micro aerial vehicles, bio-
mimetic, periodic control, averaging.

I. I NTRODUCTION

The recent interest in micro aerial vehicles (MAVs) [1],
largely motivated by the need for aerial reconnaissance ro-
bots inside buildings and confined spaces, has galvanized
the development of inch-size flapping wing MAVs that could
mimic insect flight. This is a challenging endeavor for several
reasons. First, aerodynamics for inch-size flapping robots
differ substantially from manmade fixed or rotary-winged
vehicles [2]. Second, size constraints forbid the use of rotary
electric motors and commercial inertial navigation systems
(INS), global positioning systems (GPS) and current cameras.
Finally, a flapping frequency beyond100Hz requires sensors
and processing algorithms with bandwidth and sensitivity at
least one order of magnitude higher than those usually foundin
today’s aircrafts. Nonetheless, recent technological advances,
together with better understanding of insect aerodynamicsand
mechanisms have promoted projects aimed at the design of
Micromechanical Flying Insects (MFIs) [3].

The goal of this paper is to develop a general framework
to design a control unit for MFIs which would enable them
to accomplish complex autonomous tasks such as search-
ing, surveillance and monitoring. This paper builds upon a
companion paper [4] where comprehensive modeling of MFI
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aerodynamics, body dynamics, sensors, and electromechanical
actuation is presented together with a list of references to
relevant research. In this paper we focus on the control aspects
of flapping flight. In particular, we propose a hierarchical
architecture for the control unit that mimics the sensory
feedback and neuromotor structure of insects to achieve high
performance while satisfying MFIs physical and computa-
tional limitations. One of the main contributions of this paper
is to approximate the time-varying (TV) dynamics of insect
flight caused by the flapping wings with a time-invariant (TI)
system based on which feedback controllers can be designed.
This approximation relies on two ideas that can be formalized
within the framework of high-frequency control theory. The
first idea is that the frequency of the aerodynamic forces
acting on the insect is much higher than the bandwidth of the
body dynamics, therefore only the mean aerodynamic forces
and torques over one wingbeat affect the insect dynamics.
The second idea is to parameterize the wing trajectory using
biologically inspired wing kinematic parameters which affect
the distribution of aerodynamic forces within one wingbeat,
thus modulating the total forces and torques acting on the
insect. These parameters appear as virtual inputs in the TI
approximation of flight dynamics. Finally, we show how the
parameters of the TI approximation can be identified directly
from sensors measurements and actuators input voltages ob-
tained from experiments from the original TV system. This
approach is particularly suitable for flapping flight since it
does not require the knowledge of exact aerodynamics models,
which are particularly complex. Also, it provides a model
for uncertainty caused by sensor and actuator nonlinearities
and external disturbances that can be used to design robust
controllers.

The paper is organized as follows. In Section II, we briefly
review biological literature about insect flight control mecha-
nisms, focusing on the interaction between the sensory system
and the neuromotor architecture. In Section III the hierarchical
architecture of flight control observed in insects and the
helicopter attitude-based navigation are used as a model for the
design of an equivalent control system for MFIs. In Section
IV we highlight analogies and differences between flapping
flight and helicopter flight. In Section V we propose a formal
approach to approximate the time-varying insect dynamics
with a time invariant dynamics based on averaging theory
and wing trajectory parametrization. Section VI presents the
design of the input voltage to the actuators that is required
to track a desired wing trajectory. In Section VII we model
insect dynamics as a discrete-time dynamical system where the
inputs are the kinematic parameters defined in the previous
section. Closed-loop identification is then implemented to
estimate the discrete-time system. The identified model is then
used to design LQR-based feedback laws for hovering. Finally,
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in Section VIII, conclusions and future research directions are
presented.

II. I NSECTFLIGHT SENSORS ANDCONTROL

MECHANISMS

Flies have inhabited our planet for over 300 million years,
and today they account for more than 125,000 different
species, so that, by now, roughly every tenth known species
is a fly [5]. This evolutionary success might spring from
their insuperable maneuverability and agility to survive,which
enable them, for example, to chase mates at turning velocities
of more than3000os−1 with delay times of less than 30 ms.

The extraordinary maneuverability exhibited by flying in-
sects is the result of a sophisticated neuromotor control sys-
tem combined with highly specialized sensors. These sensors
comprise of the pressure sensilla, the halteres, the ocelli, and
the compound eyes.

Pressure force sensillaare present along the wing surface,
the wing base, the halteres, and other parts of the body.
Although their functionality in flight control is not clear,they
might play an important role in estimating the instantaneous
air flow around the wing and in controlling the wing trajectory
[6].

The halteres, two oscillating club-shaped appendices, are
the biological equivalence of a gyroscope, and they are used
to estimate the body angular velocities [7].

The ocelli, a sensor system composed of three wide-angle
photoreceptors oriented in a tetrahedron configuration, can
estimate insect orientation relative to the horizon by comparing
the light intensity from different regions of the sky [8].

The compound eyesserve the purpose of estimating large-
field optical flow, small-field object fixation, and object recog-
nition [9] [10] [11]. The large-field optical flow estimated
from the compound eyes can provide information about the
orientation, the angular velocity, and the linear velocity. The
compound eyes combined with ocelli and halteres, play the
role of the inertial navigation system (INS) in insect flight,
and can guarantee good performance [12] [13]. Furthermore,
compound eyes can also perform specialized visual processing
for object fixation and landmark recognition, which is used to
navigate the environment and estimate proximity of obstacles
and targets.

A more detailed description for these sensors from a flight
control perspective can be found in [13] [4] and in the
references therein.

At present, still little is known about the flight control
mechanisms and neuromotor physiology in insects [14] [15]
[5] [16]. Experimental evidence suggests the existence of
at least two levels of control, as shown in Fig. 1. At the
lower level the halteres and the ocelli control the wing
muscles directly in order to keep stable flight orientation.
This level of control seems to be reactive, since it mediates
corrective reflexes to compensate for external disturbances
and to maintain a stable flight posture. At the higher level,
the brain, stimulated by visual and physiological stimuli,
plays the role of a navigation planner, which plans the flight
trajectory based on its ultimate goal, such as foraging or
chasing a mate. Different from the haltere-ocelli system, the
visual system is not directly connected to the wing muscles,
instead it provides excitatory input to the haltere muscles

Fig. 1. Neuromotor control physiology in flying insect.

[14]. Therefore, this level of control indirectly affects the
flight behavior by biasing the motion of the halteres, thus
creating an external disturbance that the lower level of control
would try to compensate. This hierarchical architecture in
insects might reflect the evolution of the halteres from the
hindwings; neurons from the visual system were connected
to the muscles of both the forewings and hindwings, and
continued to do so when the later evolved into halteres;
neurons interconnected the forewing and hindwing pairs so
as to permit their synchronization, and continued to do so
when the hindwings were reduced to halteres. Therefore, a
hierarchical architecture appears to be an efficient solution to
resolve the conflict between flight stability reflexes and goal-
orientated maneuvers. In fact, a similar structure is also present
between the vestibular-ocular reflexes and active head rotation
in vertebrates [17]. This typical biological neuromotor control
architecture is shown in the left side of Fig. 2. Without some
appropriate inhibiting mechanism, the haltere-mediated equi-
librium reflexes would always counter goal-oriented motions.
To resolve this potential conflict, the nervous system must
contain the means of attenuating equilibrium reflexes during
the generation of controlled maneuvers.

Another sublevel, as part of the reactive control system,
might be present and associated with the pressure sensors
which innervate the wings and the haltere. This bottom level
reactive control can adjust wing motion within a single wing-
beat to improve aerodynamic efficiency and compensate for
local turbulence [18].

The hierarchical structure of neuromotor control in true
insects has been adopted as a guiding model for the design
of the control unit for MFIs, as described in the next section.

III. H IERARCHICAL CONTROL ARCHITECTURE

The hierarchical architecture, partially inspired by insects
and autonomous aerial robots research [19], decomposes the
original flight control problem into a set of hierarchical
modules, each responsible for a specific task. This way, the
controllers in each module can be designed independently of
those on higher levels, thus allowing the possibility to incre-
mentally build more and more articulated control structures.
Fig. 2 shows the architecture proposed for the MFI control
unit. It is possible to identify three main levels: thenavigation
planner, the flight mode stabilizerand thewing trajectory
controller. The top level is a voluntary one since planning
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is determined by MFI’s goal, and the two lower levels are
more reactive since the purpose of the flight mode stabilizers
and the wing kinematic generator is to maintain the desired
flight posture and the desired wing trajectory in the presence of
external disturbances, respectively. Each of these three levels
in the control unit receives specific sensory information from
different sensors.
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Fig. 2. Design architecture for the control unit of the MFI compared
to the neuromotor control architecture present in most animals.

At the top level of the control unit there is thenavigation
planner. Besides sensory input from the visual system, this
unit can receive commands from a communication link and
information from application-specific sensors such as chemical
or temperature sensors. The purpose of this module is to
choose a sequence of appropriate flight modes for the flight
mode stabilizer level, which enables the MFI to safely navigate
the environment and achieve the desired task such as territory
exploration, target localization and tracking.

The middle level is theflight mode stabilizerwhich is
responsible for stabilizing different flight modes available to
the MFI, such as take off, hovering, cruising, steer left, steer
right, climb, dive, and land. Each flight mode is achieved by
a dedicated controller that uses as inputs the signals from the
halteres, the ocelli, the large-field optical flow estimates, and
a magnetic compass. Based on this information, the controller
chooses the appropriate values for the desired torques and
forces that must be applied to MFI body to compensate
possible disturbances and to maintain the desired flight mode.
The desired torques and forces are then mapped directly into
the corresponding wing trajectory for the next wingbeat, as
shown in Section V-C.

The bottom level is thewing trajectory controllerwhich
is responsible for generating the electrical signals for the
actuators in order to track the desired wing motion generated
by the flight mode stabilizer module. The set of possible wing
trajectories is parameterized according to some biokinematic
parameters, as described in Section V-C. These parameters are
chosen based on biomimetic principles, i.e. by changing them
it is possible to replicate most of the wing trajectories observed
in insects. The most important biokinematic parameters arethe
stroke angle amplitude and offset, timing of rotation, mean

angle of attack, and upstroke-to-downstroke wing speed ratio.
The active change of these parameters by insects have been
observed to be directly correlated to specific maneuvers and
flight modes [20]. Then every wing trajectory is mapped to the
corresponding actuator voltages via another map, as described
in Section VI. The wing trajectory controller receives input
information from force sensors placed at the wing’s base.
This sensory information can be directly used to estimate
the instantaneous position and velocity of the wing, thus
improving wing motion control through feedback.

IV. I NSECT VERSUSHELICOPTERFLIGHT

Similar to aerial vehicles that are based on rotary wings such
as helicopters, flying insects control their flight by controlling
their attitude and the magnitude of the vertical thrust [20].
Position and velocity control is achieved via attitude control,
in fact forces acting on a plane parallel to the ground can
be generated by tilting and banking the body. For example,
pitching down would result in a forward thrust, while rolling
sideward would result in a lateral acceleration. Altitude control
is achieved via mean lift modulation, for example, by increas-
ing the vertical force it would result in an upward acceleration
and vice versa.

However, there are some particular differences that prevent
one from directly applying successful flight control techniques
developed for helicopters to insect flight [21]. The first differ-
ence is the lateral asymmetry of helicopter flight. For example,
the spinning of the rotor blade induces a reaction yaw torque
on the helicopter body that would make the body to rotate in
the opposite direction if not compensated by the tail rotor.
On the other hand, the tail rotor generates a lateral thrust
that needs to be compensated by tilting the helicopter body
sideways. This problem is not present in insect flight since the
wings oscillate almost symmetrically on the opposite side of
the insect body, therefore lateral inertial forces cancel out over
the course of a wingbeat. Moreover, when the helicopter moves
forward, the blade is advancing on one side and retreating on
the opposite side; the blade on the advancing side experiences
a larger flow, while the one on the retreating side experiences
a smaller or even reverse flow, thus causing lateral imbalance
and instability, called dynamic stall, which needs to be actively
compensated [22]. In insect flight, however, the motion of two
wings is very symmetric and coupling between lateral and
longitudinal dynamics is probably less pronounced.

Another difference is the highly time-varying nature of the
aerodynamic forces in insect flight. As shown in Fig. 5 the
aerodynamic forces and torques generated by the wings can
change substantially during a wingbeat. However, the wing
motions cannot change dramatically from one wingbeat to the
next, since the wings need to oscillate to maintain sufficient
lift to sustain the insect weight. Moreover, in insect flightthe
two wings can be actively controlled to follow asymmetric
trajectories. This allows the insects to generate large angular
accelerations by modulating the distribution of the aerody-
namic forces within a wingbeat without substantially affecting
the mean lift generation. The dependence of torque generation
on wing motion in insects has also recently been considered
in [23] [24].

Finally, it is not clear whether the insect forward flight
and hovering flight dynamics are intrinsically stable. Recent
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theoretical [25] and experimental [26] research by Tayloret al.
on forward flight in desert locusts and numerical analysis by
Sunet al. [27] on hovering flight in bumblebees, suggest that
the insect longitudinal flight dynamics possess some unstable
modes. However, these modes have a timescale much slower
than the wingbeat frequency, therefore it is reasonable to
propose that they can be actively compensated for by the flight
control system.

These similarities and differences lead us to consider the
following strategy when designing a robust stabilizing hover-
ing controller. First, we will model the insect dynamics as a
Discrete Time Linear Time Invariant (DTLTI) system based on
the average forces and torques over a wingbeat. This approach
is based on high frequency control theory that guarantees good
approximation error between the original time-varying system
and averaged system, assuming that the wingbeat frequency is
sufficiently high [28]. Moreover, the design for the controller
is based on a MFI dynamics model obtained through an
identification procedure that includes the approximation errors
due to the time-varying nature of the dynamics.

Second, we parameterize the wing kinematics with four
parameters such that they can be mapped uniquely into the
three mean torques (roll, pitch, yaw) and mean lift. This
approach allows direct control of the torques and lift gen-
eration, thus simplifying the control design for the attitude
and altitude of the MFI. The dynamics of the insect is then
linearized about the hovering condition and the original MIMO
system were decoupled into four SISO subsystems. Finally,
the controller is based on robust output feedback using linear-
quadratic regulator (LQR) design.

V. H IGH FREQUENCY INSECT FLIGHT CONTROL

A. Insect dynamics

As shown in [4], the insect dynamics can be written as:

Θ̈ = (IW )−1[τ ba(t) −W Θ̇ × IW Θ̇ − IẆ Θ̇]

p̈ = −
b

m
ṗ − g +

1

m
Rf ba(t) (1)

whereτ ba ∈ R
3 andf ba ∈ R

3 are the torque and force vectors
generated by wing aerodynamics applied to the insect center
of mass. The vectorΘ = [η θ ψ]T represents theZY X
Euler angles (roll,pitch,yaw) relative to the inertia coordinates,
W = W (Θ) is the transformation matrix from body angular
velocity,ωb, to Euler angular velocity in inertia frame,Θ̇, i.e.
Θ̇ = Wωb. I is the insect moment of inertia relative to the
body frame,p is the positions of the center of mass relative
to the inertia frame,g = [0 0 − g]T is the gravity vector,b
is the linear damping coefficient, andR = eẑψeŷθex̂η is the
rotation matrix. This notation is commonly found in spacecraft
and helicopter dynamics literature [29] [21].

The wrench, i.e. the forces and torques applied to the center
of mass, is based on a quasi-steady state model for the insect
aerodynamics. It is a nonlinear function of the instantaneous
position and velocity of the wing stroke(flapping) angleφ and
the angle of attackα of both wings, but it does not depend
explicitly on time. The aerodynamic forces and torques can
be written as:

f ba(t) = f ba(φr, φl, ϕr, ϕl, φ̇r, φ̇l, ϕ̇r, ϕ̇l) = f ba(u, u̇)

τ ba(t) = τ ba(φr, φl, ϕr, ϕl, φ̇r, φ̇l, ϕ̇r, ϕ̇l) = τ ba(u, u̇) (2)
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Fig. 3. Definition of wing kinematic parameters: (left) 3D view of
insect body and left wing, (right) top view of insect stroke plane.

where u = (φr, φl, ϕr, ϕl), and the lower scriptsr, l stand
for right and left wing, respectively. The stroke angleφ is the
angle between the wing radial axis and they-axis of the stroke
plane. The rotation angleϕ is defined as the angle between the
vertical plane and the wing profile, which corresponds to the
complement of the angle of attackα, i.e. α = 90o − |ϕ| (see
Fig. 3). The explicit expression of aerodynamics forces and
torques as a function of wing kinematics can be found in [4].
The aerodynamic forces and torque are the only time-varying
element in Equation (1), otherwise the insect dynamics would
be very similar to the time-invariant nonlinear dynamics ofa
helicopter. On the other hand, the wingbeat period is much
smaller than the responsiveness of the insect body, therefore,
intuitively speaking, only mean forces and torques are relevant.
In fact, this approximation has been formalized by averaging
theory [28] and has been widely used in different applica-
tions including helicopter aerodynamics [30] [22]. Recently,
averaging theory and high-frequency periodic control has been
successfully paired with tools from geometric control theory
[31] [32] for trajectory tracking and approximate stabilization
of fish and snake-like vehicles [33] [34] [35] [36] [37] [38]
[39]. In particular, these tools model the system dynamics
as an affine system of the forṁx = f0(x) +

∑m
i=1

fi(x)ui,
where ui are the control inputs. Moreover, these systems
are underactuated, i.e., the number of available inputsui is
smaller than the degrees of freedom. A classical example
of an underactuated system is a car-like vehicle; in fact
even if only steering and forward velocity can be controlled,
the car can be steered to any desired configuration, i.e. x-y
position and orientation. One of the goals of geometric control
theory is to design suitable stabilizing time-varying inputs
ui = gi(x, t) directly from the structure of the flow of the
dynamics, i.e. from the vectorsfi(x). For driftless systems, i.e.
for f0(x) = 0, such conditions have been found and a number
of stabilizing algorithms exists [40] [41] [31]. However, the
dynamics of most biological locomotion such as fish and
eel swimming include a drift term. The drift term greatly
complicates the controllability analysis and controller design.
Only a few tools are available to systematically synthesize
the control laws for such systems and they are mainly limited
to mechanical systems with specific geometric properties [42]
[43]. This is a very active research area, but it is beyond the
scope of this paper to review it. We address the interested
reader to the textbooks [31] and [32] for a general discussion
on geometric control theory and to the review paper [44] for



5

its application to fish swimming.
Although insect flight belongs to the class of underactuated

control systems, we do not directly apply these tools because
of the complexity of the aerodynamic forces and torques,
and thus the complexity of the vector flow described as a
function of the wing angles and velocitiesu. In principle,
the geometrical properties of insect flight could be analyzed
numerically and then control algorithms could be designed
by applying the aforementioned tools. However, this is not a
straightforward method since insect aerodynamics are highly
nonlinear. Moreover, this purely mathematical approach gives
rise to a very complex description of controllers which is
hard to relate to the flight control mechanisms adopted by
insect. Therefore, this direction is not pursued further here.
Instead, we propose to parameterize the wing motion based
on biomimetic principles to design our periodic inputs, i.e.
we proposeu = g(v, t). Then, by applying averaging theory
to approximate the complex time-varying dynamics with the
average time-invariant dynamics, we show that there is a direct
map between the proposed kinematic parameters and the mean
forces and torques. The kinematic parameters appear as virtual
inputs in the averaged dynamics. The averaged dynamics is
then suitable to standard controller design, similarly to those
found in helicopter control.

B. Averaging

Averaging theory and high frequency control encompass
several results and they have been applied in different scientific
areas. Recently, these results have been applied specifically to
insect flight [45]. Here we report only some of the results that
we will use for the flight controller design.

Theorem 1 ([45]). Let us consider the following systems:










ẋ = f(x, u, u̇)
u = g(v, t)
v = h(x)
g(v, t) = g(v, t+ T )

(3)







˙̄x = f̄(x̄, v̄)

f̄(x, v) = 1

T

∫ T

0
f(x, g(v, t), ġ(v, t))dt

v̄ = h(x̄)

(4)

wherex, x̄ ∈ R
n, u ∈ R

m, v ∈ R
p, and all functions and their

partial derivatives are continuous up to second order.
If x̄ = 0 is an exponentially stable equilibrium point for

the averaged system (4), then there existsk > 0 such that
||x(t)− x̄(t)|| < kT for all t ∈ [0,∞). Moreover the original
system (3) has a unique, exponentially stable, T-periodic orbit
xT (t) with the property||xT (t)|| < kT .

In our setting,T is the wingbeat period, and the system
f(x, u) is given by Equations (1) and (2), where the vector
u = (φr, φl, ϕr, ϕl) represents the right and left wing angles.
The theorem is an application of singular perturbation theory
[46] [28], which studies the behavior of the dynamical system
ẋ = ǫf(x, t, ǫ), where the vector flowf is T -periodic in
t and ǫ is a small parameter. In fact, after the change of
timescale τ = t/T the Equations (3) can be written as
dx
dτ

= Tf(x, g(h(x), T τ), ġ(h(x), T τ)) = T f̃(x, τ), where f̃
is 1-periodic in its second argument. Therefore, the period
T plays the role of the perturbation parameterǫ, and should
not be confused with the periodT .

As will be shown in the next section, the wing trajectories
are chosen to beT -periodic functions and are parameterized
by a parameter vectorv, i.e. u = g(v, t). The parameter
vector v can be interpreted as a vector of virtual inputs.
Therefore, as suggested by the theorem, we will focus on the
averaged dynamics given by Equations (1) where the time-
varying wrench(f ba(t), τ

b
a(t)) is substituted with its average:

f̄ ba(v)
∆
=

1

T

∫ T

0

f ba(g(v, t), ġ(v, t))dt

τ̄ ba(v)
∆
=

1

T

∫ T

0

τ ba(g(v, t), ġ(v, t))dt (5)

The averaged wrench is time-independent and depends only
on the virtual input vectorv. The use of periodic control
inputs parameterized by a set of virtual input is not new,
and it has been used extensively in geometric control theory
and averaging [47] [34] [37] [43] [42]. We will then look
for exponentially stabilizing control feedback lawv = h(x)
for the averaged systems. If such a function exists, then the
original time-varying system will have a bounded error from
the desired equilibrium point if the wingbeat periodT is
sufficiently small. Although this approach does not guarantee
asymptotic stability for the original system, we will show that
the error boundkT is very small for insect flight as observed
in true insects, and therefore irrelevant from a practical point
of view.

C. Wing Kinematic Parametrization

Although it is currently unclear how true insects accomplish
the control of their flight and maneuvering capabilities, recent
experimental work on true and robotic models has found that
by modulating a few kinematic parameters on each wing, such
as wing rotation timing at the stroke reversals and the wing
blade angle of attack, the insect can readily apply torques on
the body and, therefore, control its attitude and position [48]
[2] [20] [24]. Similar considerations has also been observed
also in fish-like swimming [49], where the modulation of few
fin kinematic parameters can generate large torques and forces.
Based on these observations, it was suggested that a small set
of wing kinematics might be sufficient to generate all possible
flight modes, and the key point for designing any of these
modes is the capability to control the MFI’s attitude [50].

In particular, the research done by Dickinson and his group
[2] [24] has suggested that the following kinematic parameters
may suffice to generate any flight maneuver:timing of rotation,
mean angle of attack, stroke angle amplitude, stroke angle
offset, downstroke deviation. There is a strong evidence that
if these parameters can be controlled independently, then it
is possible to control the torque and force generation during
flapping. For example, a large (small) stroke angle amplitude
would generate a large (small) lift. An advanced (delayed)
timing of rotation at the end of the downstroke results in a
nose-up (nose-down) pitch torque. A larger (smaller) angleof
attack during the downstroke relative to the upstroke produces
a backward (forward) thrust. Most true insects flap their wings
along a symmetric trajectory with a stroke angle amplitude
around120o and mean angle of attack of45o on both down-
stroke and upstroke [51] [5]. However, during saccades and
other maneuvers, they modify the wing trajectory by changing
the kinematic parameters described above [52].
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Based on these biologically inspired arguments, the problem
to solve then is how to parameterize the wing trajectory to be
able to mimic the real insects byindependentlycontrolling
some of the biokinematic parameters described above. We
will then show how the parameters map directly to the mean
torques and forces, thus simplifying the design of a flight
stabilizer. More specifically, the wing trajectory during a
wingbeat is described using the stroke angle,φ and the rotation
angleϕ. In particular, we parameterize the wing motion of
each wing within a wingbeat period as follows:

φ(υ, t) = gφ(t) + v1 g1(t) (6)

ϕ(υ, t) = gϕ(t) + v2 g2(t) (7)

where the functionsgi(t) areT -periodic function, i.e.gi(t +
T ) = gi(t), (v1, v2) are the kinematic parameters, andT
is the wingbeat period. These functions are chosen based
on the considerations above. In particular,gϕ(t) and gφ(t)
generate a symmetric motion with maximum lift production,
g1(t) modifies only the stroke angle amplitude,g2(t) modifies
the timing of rotation of the angle of attack at the end of the
downstroke. Based on observations of true insect flight we
choose the following functions:

gφ(t) =
π

3
cos(

2π

T
t)

gϕ(t) =
π

4
sin(

2π

T
t)

g1(t) =
π

15
sin3(

π

T
t)

g2(t) = g1(t) (8)

shown in Fig. 4, which are defined on the intervalt ∈ [0, T )
and extended by periodicity so thatgi(t + T ) = gi(t).
The rationale behind the choice of functionsg1, g2 was the
necessity of finding smooth curves that could modify wing
trajectory amplitude and timing of rotation as described above.
Fig. 5 shows a pictorial representation of wing motion and
corresponding aerodynamic forces for different choices ofthe
kinematic parameterv1 and v2. Note how these parameters
affect the distribution of forces along the whole wingbeat
period.

The wing parametrization given by Equations (8) is not
unique and might not be optimal either, however it gives
rise to wing trajectories that mimic some of the trajectories
observed in true insects. In fact, a positive (negative) value for
v1 results in a large (small) stroke angle amplitude; a positive
(negative) value forβ results in a delayed (advanced) timing
of rotation at the end of the downstroke. If this parametrization
above is replicated for both wings, the wings kinematics
u = (φr, φl, ϕr, ϕl) can be written in terms of the parameters
v = (vr1, v

l
1, v

r
2, v

l
2) as follows:

u(v, t) = g(t) +G(t)v (9)

g =







gφ
gφ
gϕ
gϕ






, G =







g1 0 0 0
0 g1 0 0
0 0 g2 0
0 0 0 g2







where g(t) and G(t) are a T -periodic vector and matrix,
respectively, whose entries are defined in Equations (8).

It is now possible to study the effect of the chosen parame-
trization on the mean wrench. In fact, if we substitute Equation
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Fig. 4. Wing kinematic parameterizing functions given in Equa-
tions (8).

(9) into Equations (5), we obtain a static mapΠ : R
4 → R

6

from the wings parametersv ∈ R
4 to the mean wrench

(f̄ ba, τ̄
b
a) ∈ R

6:
[

f̄ ba
τ̄ ba

]

= Π(v) (10)

This is a nonlinear map and cannot be computed analytically
since the aerodynamic force and torque are complex functions
of wing position and velocity (see Section IV in [4]). However,
one could look for an affine approximation around the origin
of the wings parameters:

[

f̄ ba
τ̄ ba

]

= π0 + Πlv + δ(v) (11)

whereπ0 ∈ R
6, Πl ∈ R

6×4, and δ(v) is the approximation
error. Although, it is not possible to linearize analytically
Equation (11) to obtainπ0 and Πl directly, it is possible to
randomly select different values for the parameter vectorv,
substitute it into the parametrization given by Equation (9), and
finally compute the true mean wrench(f̄ ba, τ̄

b
a) via simulations

using the exact wing aerodynamics. The approximatingπ0

and Πl can then be found by rewriting Equation (11) as a
least square (LS) problem where(π0,Πl) are the unknowns.
Simulations are performed based on the aerodynamic model
described in [4], and on the morphological body parameter
of a typical blowfly, which is the MFI target model. The
approximating affine map is found to be as follows:

π0 =

26664 0
0

mg
0
0
0

37775 , Πl = 0.1mg

266664 0 0 −1.0 −1.0
0 0 0.3 −0.3

0.9 0.9 0 0
0.4L −0.4L −0.1L 0.1L

−0.2L −0.2L −0.4L −0.4L
0 0 −0.5L 0.5L

377775
(12)

wherem is the mass of the insect,L is the length of the wing,
and the zero entries correspond to estimated values negligible
relative to the largest entries in the matrix. This approximation
is quite accurate for kinematic parameters smaller than unity,
||v||∞ ≤ 1. Fig. 6 shows that the estimated mean wrench,
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(degs) φ 

Fig. 5. Pictorial sequence of the side view of wing motions and the correspondingaerodynamic forces for different choice of kinematic
parameters. Symmetric motion:v1 = 0, v2 = 0. Advanced rotation:v1 = 0, v2 = 1. Delayed rotation:v1 = 0, v2 = −1. Large stroke
amplitude:v1 = 1, v2 = 0. Small stroke amplitude:v1 = −1, v2 = 0. Symmetric motion is defined as a wing trajectory for which downstroke
and upstroke of a single wing are identical, i.e. the wing motion is symmetricalwith respect to time instant0.5T . The vectorfa represents
the aerodynamic force acting on the center of pressure of the wing.

w = π0 +Πlv, predicts quite accurately the true mean wrench
obtained from simulations, thus validating our approach.

The particular structure of this map is a consequence of
the parametrization based on the biological insights described
at the beginning of this section. In fact, as we expect, any
component of the wrench depends additively or differen-
tially on two parameters, depending if the wings are moving
symmetrically or anti-symmetrically. Note that along the z-
component, the symmetrical wing motions generate a vertical
lift sufficient to balance insect body weight. The magnitudeof
the coefficients in the map are considerable. In fact, besides the
force necessary to balance its weight, the insect can generate
forward or vertical thrust in excess of in the order off̄ ba ≈
0.1−0.2mg, and angular torques of orderτ̄ ba = 0.1−0.2mLg.
In other words, considering that the moment of inertia of a
true insect along one of its principal axis is on the order of
I ≈ 0.1mL2 [51] and that our target wing size isL = 10mm,
this is equivalent to saying that the insect can generate linear
accelerations of aboutalin = f̄ ba/m = 0.2g ≈ 2m/s2

and angular accelerations of aboutaang = τ̄a/I = g/L ≈
105deg/s2, which are comparable with those observed in true
insects.

By inspecting the structure of this parameters-to-wrench
map, it is apparent that the three mean torques and the vertical

thrust can be controlled almost independently by appropriately
choosing the values for the four wing parametersv. However,
there are small but non-negligible couplings between some of
the wrench components. For example, a positive (negative)
pitch torque is always associated with a positive (negative)
forward thrust. Similarly, a positive (negative) yaw torque
is associate with a small positive (negative) roll torque and
a small negative (positive) lateral force. Although this is
undesirable, it does not undermine the stabilizability of flight
modes, as we will show in the next section.

This section can be summarized by saying that, although it
is not possible to instantaneously control the insect wrench,
there exist wing motions that can independently control the
meanforces along thez-axis and the torques about all three
axes. We also showed that the affine parametrization of wing
motions given by Equations (9), based on biomimetic prin-
ciples, gives rise to a simple affine map between the mean
wrench and the kinematic parameters. The inspection of the
map shows that the three mean torque components and the
vertical thrust can be controlled independently. The inputvec-
tor u and virtual inputv as defined in Theorem 1, correspond
in our setting to the wing anglesu = (φr, φl, ϕr, ϕl) and
kinematic parametersv = (vr1, v

l
1, v

r
2, v

l
2). In the next section,

we will show how to design stabilizing controllers for the
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random values of the wings parameter vectorv in the unit box,
i.e. ||v||∞ ≤ 1. The spreading around diagonal lines quantifies the
modeling errors.

linearized averaged dynamics. By Theorem 1, these controllers
are also guaranteed to stabilize the original nonlinear time-
varying dynamics. It is also important to remark that insect
flight control is being studied from a fully dynamic point of
view, although the control inputs, which are parameterized
relative to the wing kinematics, might induce the thought that
the control is based only on a kinematic model.

VI. W ING TRAJECTORYTRACKING AND ACTUATOR

CONTROL

The previous section described how to design wing trajec-
tories that can generate the desired mean forces and torques
during a wingbeat period. However, the wing trajectory cannot
be controlled directly, and appropriate input voltages to the
thorax actuators must be devised to track the desired wing
trajectory. As described in [4], the dynamics of the thorax-
wing structure can be approximated as a stable two degree-of-
freedom second-order system. Given a desired wing trajectory
(φd(t), ϕd(t)), we can calculate the corresponding steady-state
input voltages by substitution:�

V1,d(t)
V2,d(t)

�
=T

−1

0

�
M0

�
φ̈d(t)
ϕ̈d(t)

�
+B0

�
φ̇d(t)
ϕ̇d(t)

�
+K0

�
φd(t)
ϕd(t)

��
(13)

where T0,M0, B0,K0 ∈ R
2×2 are constant matrices, and

V1, V2 are the input voltages to the wing actuators. LetV =
(V l1 , V

r
1 , V

l
2 , V

r
2 ) be the input voltages for the two wings, and

u = (φr, φl, ϕr, ϕl), then the wing-thorax dynamics for both
wings can be rewritten as follows:

Mü+Bu̇+Ku = V (14)

whereM,B,K are matrices that depend onT0,M0, B0,K0,
and the dynamics is stable. As we will show in the next
Section, the flight mode stabilizer is assumed to be able
to select a new wing trajectory at the beginning of every
wingbeat, from among those defined by the parametrization in
Equations (7) and (8). This is equivalent to saying that given
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Fig. 7. Actuator voltage profile as defined in Equation (18) for 10
random values of parameter vectorv with ||v||∞ ≤ 1. The solid line
corresponds tov = 0, i.e. Vd(t) = h(t). Note that||Vd(t)||∞ ≤
10µN for all ||v||∞ ≤ 1.

any sequence{vn}∞n=0, wherev = (vr1, v
l
1, v

r
2, v

l
2) is the wing

kinematics parameter vector as defined in the previous section,
the wing trajectory controller must track the trajectory:

ud(t) = g(t) +G(t)v(t), (15)

v(t) = vn, t ∈ [nT, (n+ 1)T ) (16)

whereg(t) andG(t) are defined in Equation (9). Note that the
matrix G(t) defined in Equations (8) was specifically chosen
to have the additional property

G(0) = Ġ(0) = G̈(0) = G(T ) = Ġ(T ) = G̈(T ) = 0 (17)

and, therefore, the trajectoryud(t) ∈ C2 is continuous up to
its second derivative for any sequence{vn}. If we substitute
Equation (15) into Equation (14) we formally obtain:

Vd(t) = h(t) +H(t)v(t) (18)

v(t) = vn, t ∈ [nT, (n+ 1)T ) (19)

h(t) = Mg̈(t) +Bġ(t) +Kg(t)

H(t) = MG̈(t) +BĠ(t) +KG(t)

where h(t) and H(t) are a T -periodic vector and matrix,
respectively. SinceH(t) is simply a linear combination of
G(t) and its first and second derivatives, then it follows from
Equation (17) thatH(0) = H(T ) = 0. This implies that the
input voltage vectorVd(t) ∈ C0 is continuous for any sequence
{vn}.

Let us consider a desired wing trajectory vectorud(t)
defined by Equations (9) and the corresponding feasible input
voltage vectorVd(t) defined by Equations (18). We define the
wing trajectory tracking error to beeu = u − ud, and apply
input voltageVd(t), then we have:

Mëu = −Bėu −Keu

ėu(0) = u̇(0) − u̇d(0), eu(0) = u(0) − ud(0)

where we used Equation (14) and the factüd(t) = −Bu̇d(t)−
Kud(t) + Vd(t) for all t ∈ [0,∞). Since the system above
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Fig. 8. Simulation of actuator control given in Equations (18) showing
asymptotically tracking of desired trajectory for a random sequence of
kinematic parameters{vn}, wherev = (v1, v2), and random initial
condition of actuator state vector, for one wing. From bottom to top:
actuator voltagesV1, V2 as given by Equation (18) (bottom). Rotation
angle, ϕ, (center), and stroke angle,φ, (top), given by Equation
(14). The error between desired and true wing trajectory decays after
approximately 3 wingbeat periods.

is stable, we have thatlimt→∞ eu(t) = 0, or equivalently
limt→∞ u(t) = ud(t) for any initial condition. The rate
of decay,1/τdecay, is set by the poles of the wing-thorax
mechanical system. The time constantτdecay is approximately
1 to 2 wingbeat periods for the target MFI design. This
property guarantees that even if we cannot directly control
the wing trajectory, any initial perturbation would disappear
within a few wingbeats and the wing trajectory would converge
exponentially to the steady-state solution, as shown in Fig. 8.

The wing trajectory tracking approach developed in this sec-
tion is equivalent to a feed-forward control of wing trajectory
during a single wingbeat. In fact, it allows trajectory changes
only at the beginning of every wingbeat, in such a way that
this transition is smooth and there is no error between desired
wing trajectory and actual wing trajectory. This is equivalent
to saying that there is no error between the desired and actual
mean wrench during the following wingbeat. This approach
has two main advantages. The first advantage is that we can
assume to have direct control of the wing trajectory, and we
can neglect the wing-thorax dynamics since any perturbation
would die off within a few wingbeats. The second advantage
is that it naturally leads to a discrete time (DT) system, since
the wing kinematic parametersv are updated everyT seconds,
i.e. at the beginning of every wingbeat. We will exploit these
two properties in the next Section by modelling the insect
dynamics as a discrete time system where the inputs are the
wing kinematic parametersv and the state is the mean value
of the body linear and angular position and velocity within the
previous wingbeat.

VII. F LIGHT CONTROL IN HOVER

Following the guidelines described in the previous section,
we can now look for a stabilizing controller for hovering by
designing a feedback lawv = h(x) such that the origin of the
averaged system is exponentially stable.

A. Identification

The analysis in the previous section provides a torque
decoupling scheme together with a set of virtual control
inputs, i.e. the wing kinematic parametersv, which enters
into the averaged system in a affine fashion. Since we are
interested in the insect dynamics close to the hovering regime
where angular deviations and angular velocities are small,
we linearize the averaged system dynamics near hover. We
approximate the continuous-time nonlinear system, with a
DTLTI model in the following form:

x(n+ 1) = Ax(n) +Bv(n) + δ(n)
y(n) = x(n) + η(n)

(20)

where x = [η̄x θ̄y ψ̄z ω̄x ω̄y ω̄z p̄x p̄y p̄z v̄x v̄y v̄z]
T

is the vector of average roll, pitch, and yaw angles, angular
velocities, positions and linear velocities over one wingbeat,
respectively; δ(n) represents the unmodeled dynamics as
well as external disturbances which appear as an external
noise to the linear model. This term includes both process
noise as well as unmodeled non-linearities. The input vector
v = [vr1 v

l
1 v

r
2 v

l
2]
T are the wing kinematic parameters, which

appear as virtual control inputs. The measurement vector
y = [ȳo2 ȳ

o
1 ȳ

c ȳh1 ȳ
h
2 ȳ

h
3 ; ȳe1 ȳ

e
2 ȳ

e
3 ȳ

e
4 ȳ

e
5 ȳ

e
6]
T is the vector of

measured outputs from the ocelli, halteres, magnetic compass,
and compound eyes, with additional measurement noiseη(n).
As described in [4], these measurements correspond to an
estimate of the insect true state, i.e.y = x̂.

The matrices[A,B] can be obtained analytically from MFI
morphological parameters such as mass, moment of inertia,
center of mass, etc. However, these parameters are difficult
to obtain in practice. Moreover, this approach cannot model
the effect of the time varying part of the aerodynamic forces.
Another approach would be to substitute the parameter-to-
wrench map into the original nonlinear dynamics and linearize
it. Here we adopted the system identification approach,i.e., run
a large number of experiments and record the pair[y(n), v(n)]
of sensor measurements and kinematic parameters, and then
find the matrices[A,B] that best fit the data. Moreover,
further investigation into the particular structure of theinsect
dynamics given in Equation (20) results in the following
approximate linear system to be identified:

A =







I3×3 TI3×3 03×3 03×3

03×3 A22 03×3 03×3

03×3 03×3 I3×3 TI3×3

A41 03×3 03×3 A44






, B =







03×3

B21

03×3

B41







whereT is the wingbeat period, the matricesA22 andA44

account for angular and linear damping, and the matrixA41

accounts for the linear accelerations due to tilted body orien-
tation. This structure is typically used in helicopter dynamics
identification [53] [54].

We first estimate a model in open loop where only data
for the first several wingbeats are recorded. Since the sensor
measurements provide an estimate for all the entries of the
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Fig. 9. Comparison of the exact mean angles and angular velocities
(thick solid line) with those predicted with the PEM-based DTLTI
model (dashed line), the LS-based DTLTI model (thin solid line) and
those simulated using exact model over50 consecutive wingbeats.

state vector, the model identification problem can be recast
into a least square solution to an over-determined set of
linear equations asEz = d, where z = [ai,j , ..., bk,h]

T is
the vector of system parameters to be estimated, andai,j
and bk,h are the nonzero entries of the matricesA and B
respectively. The matrixE = E (y(·), u(·)) and d = d (y(·))
are matrices whose entries depend on the experimental data.
The least-squared solution which minimizes the norm of the
error ||e||2 = ||d − Ez||2 is given byz = E(ETE)−1ET d.
The experiments were performed on the Virtual Insect Flight
Simulator (VIFS), developed by the authors to provide a
software testbed for insect flight [4]. The experimental data
was generated with random inputs and initial conditions near
the hovering equilibrium.

Based on this least-squared-based model[A,B], a stabi-
lizing state feedback control based on pole placement was
designed and tuned, first on the nominal LTI model, and
then verified on the fully nonlinear continuous time dynamics
provided by VIFS. Although least-squared identification is
simple and straightforward, it does not exploit the structure of
the dynamics present in Equation (20), nor does it provide a
systematic way to estimate process and output noise. However,
it does provide a stabilizing controller which can be used suc-
cessively to perform closed loop system identification through
prediction error method (PEM) [55]. The prediction error
method cannot be applied directly to the system (20), since the
system is unstable, which is why least-square identification is
performed first. The PEM-based identified model performed
better than the least-squared-based one in predicting insect
dynamics as shown in Fig. 9. Moreover, the estimated process
and measurement noise variances and biases can be used to
design better robust controllers.

B. Controller design

In order to address the trade off between regulation perfor-
mance and control effort to avoid control input saturation,and

also to take into account process disturbances and measure-
ment noise in Equation (20), we employed a Linear Quadratic
Gaussian (LQG) optimal controller design.

As a first step, a state feedback LQR regulatorv = −Kx
was designed to minimize the following quadratic cost func-
tion

J = lim
N→∞

E(

N
∑

n=1

x(n)TQx(n) + v(n)TRv(n)) (21)

whereQ ≥ 0 andR > 0 are the weighting matrices that define
the trade-off between regulation performance and control
effort. The controller was designed with standard discrete-
time LQG software, and the diagonal entries in the weighting
matrices are iteratively tuned to ensure a good transient
response without saturating the control inputs. The above LQR
optimal state feedbackv = −Kx is then substituted with a
more realistic output feedback:

v(n) = −Ky(n), (22)

where the outputy is given by the sensors measurements. As
described earlier, the simplified DTLTI system (20) provides
a feedback scheme to select the wing kinematic parameter
for the next wingbeat period. The true feedback control
from sensor measurements to actuator voltages is obtained by
combining Equation (22) with Equation (18) to give:

Vd(t) = h(t) +H(t)v(t) = h(t) +H(t)Ky(t)

= h(t) + K̃(t)y(t) (23)

y(t) = y(nT ), t ∈ [nT, (n+ 1)T ) (24)

where the sensors measurements are sampled at the beginning
of each wingbeat, andK̃(t) is simply a proportionalT -
periodic matrix gain. It is remarkable that a simple propor-
tional T -periodic feedback scheme is sufficient to stabilize
the complex time-varying nonlinear insect dynamics includ-
ing nonlinear sensor measurements, actuator dynamics, and
process and output noise. More importantly, this gain can be
computed off-line and easily stored on the computation unit
of the MFI.

The LQR controller was finally tested on the fully non-
linear time-varying model which includes the MFI dynam-
ics of Equation (1), the wing-thorax dynamics of Equations
(13), and the sensor models described in [4]. The simu-
lations are based on a target MFI of100mg and 10mm-
wingspan with wingbeat frequencyf = 150Hz. Fig. 10
shows a simulation for hovering stabilization from the initial
condition x = (ηx, θ, ψ, ωx, ωy, ωz, px, py, pz, vx, vy, vz) =
(25o,−25o, 20o, 0, 0, 0, 35mm,−25mm, 25mm, 0, 0, 0), and
wing state(u, u̇) = (φr, φl, ϕr, ϕl, φ̇r, φ̇l, ϕ̇r, ϕ̇l) = 0. Our
proposed controller design successfully achieved stabilization
despite sensor and process noise. The initial condition corre-
sponds to an offset from the desired position of about 3 body-
lengths. The steady state error during hovering is< 1/10 of
the body-length for the position and< 5o for the orientation.
The MFI requires about 50 wingbeat periods to reach the final
configuration, which corresponds to about2/3rds of a second
for a wingbeat frequency of150Hz.

C. Single channel identification and control design

Based on the particular structure of the mean wrench map
given in Equation (12), where it appears that the mean torque
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Fig. 10. Simulation of hovering control with sensor feedback and actuators dynamics. From top to bottom: insect true state and sensors
measurements (row 1-3); kinematics parameters given by Equation (22) (row 4); actuators voltage given by Equation (23)(row 5) during the
first 25 wingbeats.

and the vertical thrust can be controlled almost independently
by combining, symmetrically or anti-symmetrically, the kine-
matic parametersv = (vr1, v

l
1, v

r
2, v

l
2), we can reformulate the

flight control problem of the 6 DOF system similar to that
of helicopter control, where we have decoupled the system
dynamics into longitudinal, lateral, heave, and yaw dynamics
[21] [54]. In fact, if we redefine the kinematic parameters as
follows:

ṽ = (ṽ1, ṽ2, ṽ3, ṽ4) = (vr
1−v

l
1, v

r
2+v

l
2, v

r
2−v

l
2, v

r
1+v

l
1) = Fv (25)

and we use these parameters as inputs for the system (20) and
repeat the identification process, then we obtain the following
matrices:

A41 =

[

0 a4 0
−a4 0 0

0 0 0

]

,
A22 = diag{a1, a2, a3},

A44 = 03×3,

B21 =

[

b1 0 ∗ 0
0 b2 0 ∗
0 0 b3 0

]

, B41 =

[

0 ∗ 0 0
0 0 ∗ 0
0 0 0 b4

]

(26)

where the zeros entries are entries that were much smaller
than the other entries in the same row, and the asterisks,∗’s,

indicate non-negligible entries. If the∗’s are neglected, it is
clear that each virtual parameterṽi controls independently one
of the three angular accelerations and the vertical acceleration,
thus justifying the single channel controller design scheme as
typically done for a helicopter. The advantage of this approach
is that the feedback matrix gain is given by:

Kṽ = diag{Klong,Klat,Kheav,Kyaw} (27)

where the matricesKlong,Klat,Kheav,Kyaw are the smaller
size proportional gain matrices obtained from the decoupled
insect flight dynamics, thus reducing the computational burden
when computing the feedback̃v = Kṽy. Fig. 11 shows a
comparison between the full channel controller design and the
single channel design. The performance using single channel
design degrades somewhat, but it is less computationally
demanding than the full channel design, which is a clear
advantage for the limited computational unit available to MFIs.

VIII. C ONCLUSION

In this paper we presented a framework for flapping flight
control and navigation in biomimetic robotic insects. We
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Fig. 11. Comparison of single channel design vs full channel design.

started by reviewing the neuromotor architecture present in
true flying insects, and highlighting analogies and differences
between insect flapping flight and helicopter flight. Inspired by
true insect neuromotor organization of flight control mecha-
nisms, we proposed a three-layered hierarchical control struc-
ture that simplified flight control design while preserving
the high maneuverability and the agile navigation capability
exhibited by true insects. The first major contribution of
this paper was to propose a suitable parametrization of wing
motion during the course of a full wingbeat and to combine
it with averaging theory arguments, thus showing that the
insect time-varying dynamics can be well approximated by
a discrete-time linear time-invariant (DTLTI) system where
the wing kinematic parameters appear as virtual inputs. The
second major contribution was to propose an identification-
based LQR controller design which does not require the
knowledge of an accurate model for the insect morphological
parameters, such as moment of inertia and mechanical part’s
sizes, nor an accurate model of the aerodynamics. As a result,
hovering flight mode can be stabilized with a simple affine
T -periodic proportional feedback from sensor measurements
to actuator voltages. This is very important considering the
limited computational resources available to MFIs. Although
in this paper we focused on hovering, it has been shown that
other flight modes like cruising and steering can be stabilized
using a affineT -periodic proportional feedback [56].

Several research directions can be explored. The most
important one is probably in regard to the wing parametriza-
tion, which in this paper was based on the observations of
true insect wing motions. However, different wing kinematic
parameters could be chosen. Therefore, a more systematic
methodology to optimize the wing trajectory parametrization
with respect to some metrics, such as aerodynamic power or
maximum torque production, is sought.

Another important direction emerges from wing trajectory
tracking. One of the major assumptions in our approach
was the linearity of the actuator dynamics, so that wing
trajectory tracking could be easily solved using a pseudo-
inverse method to compute the control input to the actuators.
This assumption is true only to the first order, as shown in
[57], and nonlinearities become particularly important asrapid

wing rotations at the end of the half-strokes are necessary for
aggressive flight maneuvers.

Finally, the methodologies proposed here need to be vali-
dated against experimental data from from MFI prototypes.

REFERENCES

[1] B. Motazed, D. Vos, and M. Drela, “Aerodynamics and flight control
design for hovering MAVs,” inProceedings of American Control
Conference, Philadelphia, PA, June 1998, pp. 681–683.

[2] M.H. Dickinson, F.-O Lehmann, and S.S. Sane, “Wing rotation and the
aerodynamic basis of insect flight,”Science, vol. 284, no. 5422, pp.
1954–1960, 1999.

[3] R.S. Fearing, K.H. Chiang, M.H. Dickinson, D.L. Pick, M.Sitti, and
J. Yan, “Wing transmission for a micromechanical flying insect,” in
Proceeding of IEEE International Conference on Robotics and Automa-
tion, 2000, pp. 1509–1516.

[4] X. Deng, L. Schenato, W.C. Wu, and S.S. Sastry, “Flappingflight for
biomimetic robotic insects. Part I: System modeling,”Submitted to IEEE
Transactions on Robotics.

[5] R. Dudley, The Biomechanics of Insect Flight: Form, Function, Evolu-
tion, Princeton: University Press, 2000.

[6] M.H. Dickinson, “Directional sensitivity and mechanical coupling
dynamics of campaniform sensilla during chordwise deformations of the
fly wing,” The Journal of Experimental Biology, vol. 169, pp. 221–233,
1992.

[7] G. Nalbach, “The halteres of the blowflyCalliphora: I. kinematics and
dynamics,” Journal of Comparative Physiology A, vol. 173, pp. 293–
300, 1993.

[8] C.P. Taylor, “Contribution of compound eyes and ocelli tosteering of
locusts in flight: I-II.,” The Journal of Experimental Biology, vol. 93,
pp. 1–31, 1981.

[9] A. Borst and M. Egelhaaf, “Principles of visual motion detection,”
Trends in Neuroscience, vol. 12, pp. 297–306, 1989.

[10] W. Reichardt and M. Egelhaaf, “Properties of individual movement
detectors as derived from behavioural experiments on the visual system
of the fly,” Biological Cybernetics, vol. 58, no. 5, pp. 287–294, 1988.

[11] M.V. Srinivasan, M. Poteserb, and K. Kralb, “Motion detection in insect
orientation and navigation,”Vision Research, vol. 39, no. 16, pp. 2749–
2766, 1999.

[12] A. Sherman and M.H. Dickinson, “A comparison of visual andhaltere-
mediated equilibrium reflexes in the fruit flyDrosophila melanogaster,”
The Journal of Experimental Biology, vol. 206, pp. 295–302, 2003.

[13] L. Schenato, W.C. Wu, and S.S. Sastry, “Attitude control for a microme-
chanical flying insect via sensor output feedback,”IEEE Transactions
on Robotics and Automation, vol. 20, pp. 93–106, April 2004.

[14] W.P. Chan, F. Prete, and M.H. Dickinson, “Visual input to the efferent
control system of a fly’s “gyroscope”,”Science, vol. 280, no. 5361, pp.
289–292, 1998.

[15] A. Fayyazuddin and M.H. Dickinson, “Haltere afferentsprovide direct,
electrotonic input to a steering motor neuron of the blowfly,”Journal
of Neuroscience, vol. 16, no. 16, pp. 5225–5232, 1996.

[16] A. Sherman and M.H. Dickinson, “Summation of visual and
mechanosensory feedback inDrosophila flight control,” The Journal
of Experimental Biology, vol. 207, pp. 133–142, 2004.

[17] G. Sandini, F. Panerai, and F.A. Miles, “The role of inertial and visual
mechanisms in the stabilization of gaze in natural and artificial systems,”
Motion Vision - Computational, Neural, and Ecological Constraints, pp.
189–218, 2001.

[18] R. Hengstenberg, “Mechanosensory control of compensatory head roll
during flight in the blowfly Calliphora erythrocephala,” Journal of
Comparative Physiology A-Sensory Neural & Behavioral Physiology,
vol. 163, pp. 151–165, 1988.

[19] H.J. Kim, D.H. Shim, and S.Sastry, “A flight control systemfor aerial
robots: Algorithms and experiments,”Control Engineering Practice, vol.
11, no. 12, pp. 1389–1400, 2003.

[20] G.K. Taylor, “Mechanics and aerodynamics of insect flight control,”
Biological Review, vol. 76, no. 4, pp. 449–471, 2001.

[21] R.W. Prouty, Helicopter Performance, Stability, and Control, Krieger
Publishing Company, 1995.

[22] J.G. Leishman, Principles of Helicopter Aerodynamics, Cambridge
Aerospace Series, 2003.

[23] S.P. Sane and M.H. Dickinson, “The control of flight force by a flapping
wing: Lift and drag production,”The Journal of Experimental Biology,
vol. 204, no. 15, pp. 2607–2626, 2001.

[24] C.N. Balint and M.H. Dickinson, “Neuromuscolar controlof aerody-
namic forces and moments in the blowfly,Callifora vicina,” The Journal
of Experimental Biology, vol. 207, pp. 3813–3838, 2004.



13

[25] G.K. Taylor and A.L.R. Thomas, “Animal flight dynamics II. Longitu-
dinal stability in flapping flight,”The Journal of Experimental Biology,
vol. 214, pp. 2803–2829, 2002.

[26] G.K. Taylor and A.L.R. Thomas, “Dynamic flight stability in the desert
locustSchistocerca gregaria,” Journal of Theoretical Biology, vol. 206,
pp. 351–370, 2003.

[27] M. Sun and Y. Xiong, “Dynamic flight stability of a hovering bum-
blebee,” The Journal of Experimental Biology, vol. 208, pp. 447–459,
2005.

[28] J.A. Sanders and F. Verhulst,Averaging methods in Nonlinear Dynam-
ical Systems, Springer-Verlag, New York, N.Y., 1985.

[29] B. Wie, Space vehicle dynamics and control, AIAA Educational Series,
Reston, VA, 1998.

[30] “K. hohenemser,” Tech. Rep., NACA Technical Memorandum 907,
1939.

[31] A.M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary
Applied Mathematics. Springer-Verlag, 2003.

[32] F. Bullo and A.D. Lewis, Geometric Control of Mechanical Systems,
Number 49 in Texts in Applied Mathematics. Springer-Verlag, 2004.

[33] N.E. Leonard, “Periodic forcing, dynamics and control of underactuated
spacecraft and underwater vehicles,” inProceedings of 34th IEEE
Conference on Decision and Control, New York, USA, 1995, pp. 3980–
3985.

[34] N.E. Leonard, “Control synthesis and adaptation for anunderactuated
underwater vehicle,” vol. 20, no. 3, pp. 211–220, 1995.

[35] J. Ostrowski and J.W. Burdick, “The geometric mechanics of undulatory
robotic locomotion,” International Journal of Robotics Research, vol.
17, no. 7, pp. 683–701, 1998.

[36] K.A. Morgansen, V. Duindam, R.J. Mason, J.W. Burdick, and R.M.
Murray, “Nonlinear control methods for planar carangiform robot fish
locomotion,” in Proceedings of the IEEE International Conference on
Robotics and Automation, Seoul, South Korea, May 2001, pp. 427–434.

[37] K. Morgansen, P. Vela, and J.W. Burdick, “Trajectory stabilization for
a planar carangiform robot fish,” inProc of the IEEE International
Conference on Robotics and Automation, Washington DC, U.S.A, May
2002, pp. 756–762.

[38] P.A. Vela, K.M. Burdick, and J.W. Burdick, “Underwaterlocomotion
from oscillatory shape deformations,” inProceedings of the IEEE
International Conference on Decision and Control, Las Vegas, Nevada,
2002, pp. 2074–2080.

[39] K.A. McIsaac and J.P. Ostrowski, “Motion planning for anguilliform
locomotion,” IEEE Transactions on Robotics and Automation, vol. 19,
no. 4, pp. 637–652, 2003.

[40] H.J. Sussmann and W Liu, “Limits of highly oscillatory controls
and the approximation of general paths by admissible trajectories,” in
Proceedings of the 30th IEEE Conference on Decision and Control, New
York, USA, 2001, vol. 1, pp. 437–425.

[41] P.A. Vela and W.J. Burdick, “Averaging methods for control part I:
Driftless systems,”Submitted for publication, 2004.

[42] P.A. Vela, Averaging and Control of Nonlinear systems (with applica-
tion to Biomimetic Locomotion), Ph.D. thesis, California Institute of
Technology, 2003.

[43] S. Mart́ınez, J. Cort́es, and F. Bullo, “On analysis and design of
oscillatory control systems,”IEEE Transactions on Automatic Control,
vol. 48, no. 7, pp. 1164–1177, 2003.

[44] J.E. Colgate and K.M. Lynch, “Mechanics and control of swimming:
A review,” IEEE Journal of Oceaninc Engineering, vol. 29, no. 3, pp.
660–673, 2004.

[45] L. Schenato,Analysis and Control of Flapping Flight: from Biological
to Robotic Insects, Ph.D. thesis, University of California at Berkeley,
December 2003.

[46] H.K. Khalil, Nonlinear Systems, Prentice Hall, Upper Saddle River,
N.J., third edition, 2002.

[47] H.J. Sussmann, “New differential geometric methods in nonholonomic
path finding,”Systems, Models, and Feedback: Theory and Applications,
pp. 365–384, 1992.

[48] M.H. Dickinson and F. O. Lehmann, “The active control of wing rotation
by Drosophila,” The Journal of Experimental Biology, vol. 182, pp.
173–189, 1993.

[49] D.A. Read, F.S. Hover, and M.S. Triantafyllou, “Forceson oscillating
foils for propulsion and maneuvering,”Journal of Fluids and Structures,
vol. 17, pp. 163183, 2003.

[50] L. Schenato, X. Deng, and S.S. Sastry, “Flight control system for a
micromechanical flying insect: Architecture and implementation,” in
Proceeding of IEEE International Conference on Robotics and Automa-
tion, 2001, pp. 1641–1646.

[51] C.P. Ellington, “The aerodynamics of hovering insect flight. I-VI,”
Philosophical Transactions of the Royal Society of London BBiological
Sciences, vol. 305, pp. 1–181, 1984.

[52] S.N. Fry, R. Sayaman, and M. H. Dickinson, “The aerodynamics of
free-flight maneuvers inDrosophila,” Science, vol. 300, no. 5618, pp.
495–498, April 2003.

[53] J.C. Morris, M. Nieuwstadt, and P. Bendotti, “Identification and control
of a model helicopter in hover,” inProceedings of the American Control
Conference, Baltimore, Maryland, 1994, vol. 2, pp. 1238–1242.

[54] D. H. Shim, H. J. Kim, and S. Sastry, “System identificationand control
synthesis for rotorcraft-based unmanned aerial vehicles,”in Proc. of
the IEEE International Conference on Control Applications, Anchorage,
September 2000, pp. 808–813.

[55] L.J. Ljung and E.J. Ljung,System Identification: Theory for the User,
Prentice Hall, 1998.

[56] X. Deng, L. Schenato, and S. Sastry, “Attitude control for a microme-
chanical flying insect including thorax and sensor models,” in Proc. of
the IEEE International Conference on Robotics and Automation, Taipei,
Taiwan, May 2003, pp. 1152–1157.

[57] S. Avadhanula, R.J. Wood, D. Campolo, and R.S. Fearing, “Dynamically
tuned design of the MFI thorax,” inProc. of the IEEE International
Conference on Robotics and Automation, Washington, DC, May 2002,
pp. 52–59.


