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Abstract: The paper considers the Linear Quadratic Gaussian (LQG) optimal
control problem in the discrete time setting and when data loss may occur
between the sensors and the estimation-control unit and between the latter and
the actuation points. For protocols where packets are acknowledged at the receiver
(e.g. TCP type protocols), the separation principle holds. Moreover, the optimal
LQG control is a linear function of the state. Finally, building upon our previous
results on estimation with unreliable communication, the paper shows the existence
of critical arrival probabilities below which the optimal controller fails to stabilize
the system. This is done by providing analytic upper and and lower bounds on the
cost functional, and stochastically characterizing their convergence properties in
the infinite horizon. More interestingly, it turns out that when there is no feedback
on whether a control packet has been delivered or not(e.g. UDP type protocols),
the LQG optimal controller is in general nonlinear. A special case when the optimal
controller is indeed linear is shown.
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1. INTRODUCTION

Today, an increasingly growing number of ap-
plications demand remote control of plants over
unreliable networks. These include wireless sensor
networks used for estimation and control of dy-
namical systems (Sinopoli et al., 2003). In these
systems issues of communication delay, data loss,
and time synchronization between components
play a key role. Communication and control be-
come tightly coupled such that the two issues
cannot be addressed independently.

Consider, for example, the problem of navigating
a fleet of vehicles based on the estimate from a
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sensor web of its current position and velocity.
The measurements underlying this estimate and
control packets sent to the car from a supervisory
controller can be lost or delayed due to the unre-
liability of the wireless links. What is the amount
of data loss that the control loop can tolerate to
reliably perform the navigation task? Can com-
munication protocols be designed to satisfy this
constraint? The goal of this paper is to exam-
ine some control-theoretic implications of using
unreliable networks for control. These require a
generalization of classical control techniques that
explicitly take into account the stochastic nature
of the communication channel.

Communication channels typically use one of two
kinds of protocols: Transmission Control (TCP) or
User Datagram (UDP). In the first case there is



Fig. 1. Overview of the system. The study
the statistical convergence of the expected
state covariance of the discrete time LQG
is performed, where both the observation
and the control signal, travelling over an
unreliable communication channel, can be
lost at each time step with probability 1− λ
and 1− ν respectively.

acknowledgement of received packets, while in the
second case no-feedback is provided on the com-
munication link. This paper studies the effect of
data losses due to the unreliability of the network
links in these two cases. It generalizes the Linear
Quadratic Gaussian (LQG) optimal control prob-
lem —modeling the arrival of an observation as
a random process whose parameters are related
to the characteristics of the communication chan-
nel. Accordingly, two independent Bernoulli pro-
cesses are considered, of parameters γ and ν, that
govern packet loss between the sensors and the
estimation-control unit, and between the latter
and the actuation points, see Figure 1.

It turns out that in the TCP case the classic sepa-
ration principle holds and the optimal controller is
a linear function of the state. However, in the UDP
case, a counter-example shows that the optimal
controller is in general non-linear. It is also shown
that in the special case when the state is fully
observable and the observation noise is zero the
optimal controller is indeed linear. A similar, but
slightly less general special case was previously
analyzed by (Imer et al., 2004), considering not
only the observation noise but also the process
noise to be zero and the input coefficient matrix
to be invertible.

A final set of results that are provided are on con-
vergence in the infinite horizon. In this case, previ-
ous results on estimation with missing observation
packets in (Sinopoli et al., 2004) are extended to
the control case, showing the existence of critical
values for the parameters of the Bernoulli arrival
processes, below which a transition to instability
occurs and the optimal controller fails to stabilize
the system in both the TCP and the UDP set-
tings. In other words, in order to have stability, the

packet loss rate must be below a given threshold
that depends on the dynamics of the system.

Finally, we want to mention some related work.
Study of stability of dynamical systems where
components are connected asynchronously via
communication channels has received considerable
attention in the past few years and our contribu-
tion can be put in the context of the previous
literature.

In (Gupta et al., 2004), the authors proposed
to place an estimator, i.e. a Kalman filter, at
the sensor side of the link without assuming
any statistical model for the data loss process.
Other work includes Nilsson (Nilsson, 1998) that
presents the LQG optimal regulator with bounded
delays between sensors and controller, and be-
tween the controller and the actuator. In this
work bounds for the critical probability values are
not provided. Additionally, there is no analytic
solution for the optimal controller. The case where
dropped measurements are replaced by zeros is
considered by Hadijcostis and Touri (Hadjicostis
and Touri, 2002), in the scalar case. Other ap-
proaches include using the last received sample for
control, or designing a dropout compensator (Ling
and Lemmon, 2003b; Ling and Lemmon, 2003a),
which combines in a single process estimation
and control. This paper considers the alternative
approach where the external compensator feeding
the controller is the optimal time varying Kalman
gain. Moreover, the proposed solution is analyzed
in state space domain rather than in frequency
domain as it was presented in (Ling and Lem-
mon, 2003a), and this paper considers the more
general Multiple Input Multiple Output (MIMO)
case.

The work of (Imer et al., 2004) is the closest to
the present paper, which in addition considers the
more general case when the matrix C is not the
identity and there is noise in the observation and
in the process.

The paper is organized as follows. Section 2 will
provide a mathematical formulation for the prob-
lem. Section 3 provides some preliminary results.
Section 4 illustrates the TCP case, while the UDP
case is studied in section 5. Finally conclusions
and directions for future work are presented in

2. PROBLEM FORMULATION

Consider the following linear stochastic system
with intermittent observations:

xk+1 = Axk + νkBuk + wk (1)

yk = Cxk + vk, (2)

where (x0, wk, vk) are Gaussian, uncorrelated,
white, with mean (x̄0, 0, 0) and covariance (P0, Q,Rk)
respectively, Rk = γkR+(1−γk)σ2I, and (γk, νk)



are i.i.d. Bernoulli random variable with P (γk =
1) = γ̄ and P (νk = 1) = ν̄. Let us define the
following information sets:

Ik =

{
Fk

∆
= {yk, γk, νk−1}, TCP comm. protocol

Gk
∆
= {yk, γk}, UDP comm. protocol

(3)

where yk = (yk, yk−1, . . . , y1), γk = (γk, γk−1, . . . , γ1),
and νk = (νk, νk−1, . . . , ν1).

Consider also the following cost function:

JN (uN−1) = (4)

= E

[
x′NWNxN +

N−1∑
k=0

(x′kWkxk + νku′kUkuk)

∣∣∣∣∣ IN

]
.

Note that we are weighting the input only if it
is successfully received at the plant. In fact, if it
is not received, the plant applies zero input and
therefore there is no energy expenditure.

We now look for a control input sequence u∗N−1

as a function of the admissible information set Ik,
i.e.

uk = gk(Ik) (5)
that minimizes the functional defined in Equation
(4), i.e.

J∗N
∆= min

uN−1
JN (uN−1) = JN (u∗N−1), (6)

where Ik = {Fk,Gk} is one of the sets defined in
Equation 3. The set F corresponds to the informa-
tion provided under TCP communication protocol
in which successful or unsuccessful packet delivery
at the receiver is acknowledged to the sender. The
set G corresponds to the information provided
under UDP communication protocol in which the
sender receives no information about the delivery
of the transmitted packet to the receiver. This
protocol scheme is simpler to implement than
TCP from a communication standpoint, however
the price to pay is a less rich set of information.
The goal of this paper is to design optimal LQG
controllers for each of these protocols for a general
discrete-time linear stochastic system.

3. MATHEMATICAL BACKGROUND

Before proceeding, let us define the following
variables:

x̂k|k
∆= E[xk | Ik],

ek|k
∆= xk − x̂k|k,

Pk|k
∆= E[ek|ke′k|k | Ik].

(7)

Derivations below will make use of the following
facts:

Lemma 1. The following facts are true:

(a) E [(xk − x̂k)x̂′k | Ik] = E
[
ek|kx̂′k | Ik

]
= 0

(b) E [x′kSxk | Ik] = x̂′kSx̂k + trace
(
SPk|k

)
=

x̂′kSx̂k + E [e′kSek | Ik] , ∀S

(c) E [E[ g(xk+1) |Ik+1] | Ik] = E [g(xk+1) | Ik] , ∀g(·).

Use of the following properties will prove to be
useful when deriving the equation for the optimal
LQG controller. Let us compute the following
expectation:

E[x′k+1Sxk+1 | Ik] =

= E[(Axk + νkBuk + wk)′S(Axk + νkBuk + wk) | Ik]

= E[x′kA′SAxk | Ik] + ν̄u′kB′SBuk +

+ 2ν̄u′kB′SA x̂k|k + trace(SQ), (8)

where both the independence of νk, wk, xk, and
the zero-mean property of wk are exploited. The
previous expectation holds true for both the in-
formation sets Ik = {Fk,Gk}. Also

E[e′k|kTek|k | Ik] = trace(TE[ek|ke′k|k | Ik]) =

= trace(TPk|k). (9)

4. TCP

First, equations for the optimal estimator are
derived. They will be needed to solve the LQG
controller design problem, as it will be shown
later.

4.1 Estimator Design, σ → +∞

Equations for optimal estimator are derived using
similar arguments used for the standard Kalman
filtering equations. The innovation step is given
by:

x̂k+1|k
∆
= E[xk+1|νk,Fk] = Ax̂k|k + νkBuk (10)

ek+1|k
∆
= xk+1 − x̂k+1|k = Aek|k + wk (11)

Pk+1|k
∆
= E[ek+1|ke′k+1|k |νk,Fk] = APk|kA′ + Q,(12)

where the independence of wk and Fk is ex-
ploited. Since yk+1, γk+1, wk and Fk are all in-
dependent of each other and following the same
approach described in (Sinopoli et al., 2004), the
correction step is given by:

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k) (13)

ek+1|k+1
∆
= xk+1 − x̂k+1|k+1 (14)

= (I − γk+1Kk+1C)ek+1|k − γk+1Kk+1vk+1

Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k (15)

Kk+1
∆
= Pk+1|kC′(CPk+1|kC′ + R)−1, (16)

after taking the limit σ → +∞. The initial
conditions for the estimator iterative equations
are x̂0|−1 = 0 and P0|−1 = P0.



4.2 Controller design

Derivation of the optimal feedback control law and
the corresponding value for the objective function
will follow the dynamic programming approach
based on the cost-to-go iterative procedure.

Define the optimal value function Vk(xk) as fol-
lows:

VN (xN )
∆
= E[x′NWNxN | FN ]

Vk(xk)
∆
= min

uk

E[x′kWkxk + νku′kUkuk + Vk+1(xk+1) | Fk]

Using dynamic programming theory (Kumar and
Varaiya, 1986) (Bertsekas and Tsitsiklis, 1996),
one can show that J∗N = V0(x0). We claim that
the value function Vk(xk) can be written as:

Vk(xk) = E[ x′kSkxk | Fk] + ck, k = 0, . . . , N (17)

where the matrix Sk and the scalar ck are
to be determined and are independent of the
information set F . The proof follows an induction
argument. The claim is certainly true for k = N
with the choice of parameters SN = WN and cN =
0. Suppose now that the claim is true for k + 1,
i.e. Vk+1(xk+1) = E[ x′k+1Sk+1xk+1 | Fk+1]+ck+1.
The value function at time step k is the following:

Vk(xk) =

= min
uk

E[x′kWkxk + νku′kUkuk + Vk+1(xk+1) | Ik]

= min
uk

E[x′kWkxk + νku′kUkuk +

+E[x′k+1Sk+1xk+1 + ck+1 | Fk+1] |Ik]

= min
uk

E[x′kWkxk + νku′kUkuk + x′k+1Sk+1xk+1 +

+ck+1 |Ik]

= E[x′kWkxk + x′kA′Sk+1Axk | Ik] +

+trace(Sk+1Q) + E[ck+1 | Ik] + (18)

+ν̄ min
uk

(
u′k(Uk + B′Sk+1B)uk + 2u′kB′Sk+1A x̂k|k

)

where we used Lemma 1(c) in the third line,
and Equation (8) in the last two lines. The value
function is a quadratic function of the input,
therefore the minimizer can be simply obtained
by solving ∂Vk

∂uk
= 0, which gives:

uk = −(B′Sk+1B+Uk)−1B′Sk+1A x̂k|k = Lk x̂k|k.
(19)

The optimal feedback is thus a simple linear
feedback of the estimated state. If we substitute
the minimizer back into Equation (18), and we use
the Equation (17) we get:

Vk(xk) =

= E[x′kWkxk + x′kA′Sk+1Axk | Ik] + trace(Sk+1Q) +

+E[ck+1 | Ik]− ν̄x̂′k|kA′Sk+1B(Uk + B′Sk+1B)−1B′Sk+1Ax̂k|k

(20)

E[x′kSkxk | Ik] + ck =

= E[x′kWkxk + x′kA′Sk+1Axk −
+ν̄x′kA′Sk+1B(Uk + B′Sk+1B)−1B′Sk+1Axk | Ik] +

+trace(Sk+1Q) + E[ck+1 | Ik] +

+ν̄ trace(A′Sk+1B(Uk + B′Sk+1B)−1B′Sk+1 Pk|k)(21)

where we used Lemma 1(b). For the previous
equation to hold for all xk, we need to have:

Sk = A′Sk+1A + Wk −
+ ν̄A′Sk+1B(B′Sk+1B + Uk)−1B′Sk+1A (22)

ck = ν̄ trace(A′Sk+1B(Uk + B′Sk+1B)−1B′Sk+1 Pk|k) +

+ trace(Sk+1Q) + E[ck+1 | Ik]

= trace
(
(A′Sk+1A + Wk − Sk)Pk|k

)
+

+ trace(Sk+1Q) + E[ck+1 | Ik] (23)

Therefore, the cost function for the optimal LQG
using TCP is given by:

J∗N = V0(x0) = E[x′0S0x0] +

+
N−1∑

k=0

(trace
(
(A′Sk+1A + Wk − Sk)Eγ [Pk|k]

)
+

+ trace(Sk+1Q))

= x̄′0S0x̄0 + trace(S0P0) +

+
N−1∑

k=0

(trace
(
(A′Sk+1A + Wk − Sk)Eγ [Pk|k]

)
+

+ trace(Sk+1Q)). (24)

The matrices {Pk|k}N
k=0 are stochastic since they

are function of the sequence {γk}. The exact ex-
pected value of these matrices cannot be com-
puted analytically, since they are nonlinear func-
tion of the arrival sequence γk, as shown in
(Sinopoli et al., 2004). However, they can bounded
by computable deterministic quantities. In fact let
us consider the following equations:

P̂k+1|k = AP̂k|k−1A′ + Q−
+ γ̄AP̂k|k−1C′(CP̂k|k−1C′ + R)−1CP̂k|k−1A′ (25)

P̂k|k = P̂k|k−1 − γ̄P̂k|k−1C′(CP̂k|k−1C′ + R)−1CP̂k|k−1(26)

P̃k+1|k = (1− γ̄)AP̃k|k−1A′ + Q (27)

P̃k|k = (1− γ̄)P̃k|k−1 (28)

initialized to P̂0|−1 = P̃0|−1 = P0. Using similar
arguments as those in (Sinopoli et al., 2004),
it is possible to show that the matrices Pk|k’s
are concave and monotonic functions of Pk|k−1.
Therefore, the following bounds are true:

P̃k|k ≤ Eγ [Pk|k] ≤ P̂k|k, (29)

and we have:



Jmin
N ≤ J∗N ≤ Jmax

N (30)

Jmax
N = x̄′0S0x̄0 + trace(S0P0) +

+

N−1∑
k=0

(trace
(
(A′Sk+1A + Wk − Sk)P̂k|k

)
+

+ trace(Sk+1Q)) (31)

Jmin
N = x̄′0S0x̄0 + trace(S0P0) +

+

N−1∑
k=0

(trace
(
(A′Sk+1A + Wk − Sk)P̃k|k

)

+ trace(Sk+1Q)) (32)

4.3 Finite and Infinite Horizon LQG control

The previous equations were derived for the finite
horizon LQG. The infinite horizon LQG can be
obtained by taking the limit for N → +∞ of the
previous equations. However, the matrices {Pk|k}
depend on the specific realization of the obser-
vation sequence {γk}, therefore the minimal cost
JN is a stochastic function and does not have a
limit. Differently from standard LQG controller
design where the controller always stabilizes the
original system, in the case of control packet loss,
the stability can be lost if the arrival probability
ν̄, γ̄ is below a certain threshold. In particular
the equation for the cost matrix Sk is the so-
lution of a Modified Riccati Algebraic Equation
(MARE) which was already introduced and stud-
ied in (Sinopoli et al., 2004). In particular, Equa-
tion (22) is the dual of the estimator equation
presented in (Sinopoli et al., 2004). Therefore, the
same conclusions can be drawn and the previous
result can be summarized in the following theo-
rem:

Theorem 2. (Finite Horizon LQG under TCP). Con-
Consider the system (1)-(2) and consider the
problem of minimizing the cost function (4) with
policy uk = f(Fk), where Fk is the informa-
tion available under TCP communication, given
in Equation (3). Then, the optimal control is
a linear function of the estimated system state
given by Equation (19), where the matrix Sk

can be computed iteratively using Equation (22).
The separation principle still holds under TCP
communication, since the optimal estimator is in-
dependent of the control input uk. The optimal
state estimator is given by Equations (10)-(13)
and (12)-(16), and the minimal achievable cost is
given by Equation (24).

Theorem 3. (Infinite Horizon LQG under TCP).
Consider the same systems as defined in the pre-
vious theorem with the following additional hy-
pothesis: WN = Wk = W and Uk = U . Moreover,
let (A,B) and (A,Q

1
2 ) be stabilizable, and let

(A,C) and (A,W
1
2 ) be detectable. Let us consider

the limiting case N → +∞. There exist critical

arrival probabilities νmin and γmin which satisfy
the following property:

min
(

1, 1− 1
|λmax(A)|2

)
≤ νmin ≤ 1, (33)

min
(

1, 1− 1
|λmax(A)|2

)
≤ γmin ≤ 1, (34)

where |λmax(A)| is the eigenvalue of matrix A
with largest absolute value, such that for all ν̄ >
νmin and γ̄ > γmin we have:

Lk = L∞ = −(B′S∞B + U)−1B′S∞A (35)
1
N

Jmin
N ≤ 1

N
J∗N ≤ 1

N
Jmax

N (36)

where the mean cost bounds Jmin
N , Jmax

N are given
by:

Jmax
∞ = lim

N→+∞
1

N
Jmax

N

= trace((A′S∞A + Wk − S∞)(P̂∞ −
+ γ̄P̂∞C′(CP̂∞C′ + R)−1CP̂∞)) + trace(S∞Q)

Jmin
∞ = lim

N→+∞
1

N
Jmin

N

= (1− γ̄)trace
(
(A′S∞A + Wk − S∞)P̃∞

)
+

+ trace(S∞Q)

and the matrices S∞, P∞, P∞ are:

S∞ = A′S∞A + W − ν̄ A′S∞B(B′S∞B + U)−1B′S∞A

P∞ = AP∞A′ + Q− γ̄ AP∞C′(CP∞C′ + R)−1CP∞A′

P∞ = (1− γ̄)AP∞A′ + Q

Moreover, the assumptions above are necessary
and sufficient conditions for boundedness of the
cost function under LQG feedback. The critical
probabilities νmin and γmin can be computed via
the solution of the following LMIs optimization
problems:

γmin = argminγ̄Ψγ(Y, Z) > 0, 0 ≤ Y ≤ I.

Ψγ(Y, Z) =

=




Y
√

γ(Y A + ZC)
√

1− γY A√
γ(A′Y + C′Z′) Y 0√

1− γA′Y 0 Y




νmin = argminν̄Ψν(Y, Z) > 0, 0 ≤ Y ≤ I.

Ψν(Y, Z) =

=

[
Y

√
ν(Y A′ + ZB′)

√
1− νY A′√

ν(AY + BZ′) Y 0√
1− νAY 0 Y

]



5. UDP

In this section equations for the optimal estima-
tor and controller design for case of UDP com-
munication protocol are derived. The UDP case
corresponds to the information set Gk, as defined
in Equation (3). Some of the derivations are anal-
ogous to the previous section and are therefore
skipped.

5.1 Estimator Design, σ → +∞

We derive the equations for optimal estimator
using similar arguments to the standard Kalman
filtering equations. The innovation step is given
by:

x̂k+1|k
∆=E[xk+1|Gk] = E[Axk + νkBuk + wk|Gk]

= AE[xk|Gk] + E[νk]Buk

= Ax̂k|k + ν̄Buk (37)

ek+1|k
∆= xk+1 − x̂k+1|k (38)

Pk+1|k
∆=E[ek+1|ke′k+1|k |Gk]

= APk|kA′ + Q + ν̄(1− ν̄)Buku′kB′ (39)

where we used the independence and zero-mean of
wk, (νk − ν̄), and Gk. Note how under UDP com-
munication protocol, differently from TCP com-
munication, the error covariance Pk+1|k depends
explicitly on the control input uk. This is the main
difference with TCP.

The correction step is the same as for the TCP
case, given by:

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k)

Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k, (40)

Kk+1
∆= Pk+1|kC ′(CPk+1|kC ′ + R)−1, (41)

where again we took the limit σ → +∞.

The initial conditions for the estimator iterative
equations are:

x̂0|−1 = 0 (42)

P0|−1 = P0 (43)

5.2 Controller design: General case

In this section, we show that the optimal LQG
controller is, in general, not a linear function of the
state estimate, since estimator and controller de-
sign cannot be separated anymore. To show this,
we consider a simple scalar system and we pro-
ceed using the dynamic programming approach.
Let us consider an unstable scalar system where
A = 1, B = 1, C = 1,WN = Wk = 1, Uk =
0, R = 1, Q = 0. Similarly to the TCP case,

the value function, Vk(xk) for k = N is given by
VN (xN ) = E[x′NWNxN | GN ] = E[x2

N | GN ]. Let
us consider the value function for k = N − 1:

VN−1(xN−1) =

= min
uN−1

E[x2
N−1 + VN (xN ) | GN−1]

= min
uN−1

E[x2
N−1 + x2

N | GN−1]

= min
uN−1

(
E[x2

N−1 + x2
N−1 | GN−1]+

+ν̄u2
N−1 + 2ν̄uN−1x̂N−1|N−1

)
(44)

= 2E[x2
N−1 | GN−1]− ν̄x̂2

N−1|N−1 (45)

= (2− ν̄)E[x2
N−1 | GN−1] + ν̄PN−1|N−1 (46)

where we used Equation (8) in line (44), we
substituted the minimizer u∗N−1, given by:

u∗N−1 = −x̂N−1|N−1

, in line (45), and we used Lemma 1(b) in line (46).
Let us continue considering the value function for
k = N − 2:

VN−2(xN−2) =

= min
uN−2

E[x2
N−2 + VN−1(xN−1) | GN−2]

= E[(3− ν̄)x2
N−2 | GN−2] + γ̄ + ν̄PN−2|N−2 +

+ν̄(1− γ̄)PN−2|N−2 +

+ min
uN−2

(
ν̄(2− ν̄)u2

N−2 + 2ν̄(2− ν̄)uN−2x̂N−2|N−2

+ν̄2(1− ν̄)(1− γ̄)u2
N−2 +

+ ν̄γ̄
1

PN−2|N−2 + ν̄(1− ν̄)u2
N−2 + 1

)
(47)

The first three terms inside the round parenthesis
are convex quadratic functions of the control input
uN−2, however the last term is not. Therefore, the
minimizer u∗N−2 is, in general, a non-linear func-
tion of the information set Gk. We can summarize
this result in the following theorem:

Theorem 4. Let us consider the stochastic system
defined in Equations (1) with horizon N ≥ 2.
Then, the optimal control feedback uk = g∗k(Gk)
that minimizes the functional (4) under UDP is,
in general, a nonlinear function of information
set Gk.

PROOF. The proof can be given by showing the
previous counter-example, where even a simple
scalar system does not have a linear solution.

The nonlinearity of the input feedback arises
from the fact that the correction error covariance
matrix Pk+1|k+1 is a non-linear function of the
innovation error covariance Pk+1|k. The only case
when Pk+1|k+1 is linear occurs when R = 0 and
C is invertible, i.e. when it is possible to measure
the state xk without noise. This special case is
considered in the next section.



5.3 Controller design: R=0 and C invertible

Without loss of generality we can assume C = I,
otherwise the linear transformation y = Cx would
give an equivalent state space representation of
the system for which C = I. Let us now consider
the case when there is no measurement noise and
we can measure the state xk when an observation
packet is delivered.

In this case the estimator equations simplify as
follows:

Kk+1 = I

Pk+1|k+1 = (1− γk+1)Pk+1|k =

= (1− γk+1)(A′Pk|kA + Q + ν̄(1− ν̄)Buku′kB′)

E[Pk+1|k+1 | Gk] =

= (1− γ̄)(A′Pk|kA + Q + ν̄(1− ν̄)Buku′kB′)

where we used independence of γk+1 and Pk|k with
respect to Gk in the last line. Similarly to the TCP
case, we claim that the value function Vk(xk) can
be written as follows:

Vk(xk) = E[x′kSkxk | G] + trace(TkPk|k) + trace(DkQ)
(48)

for k = 0, . . . , N . This is clearly true for k = N ,
since VN (xN ) = E[x′NWNxN | GN ]. Therefore:

SN = WN , TN = 0, DN = 0. (49)

Let us suppose that the claim (48) is true for k+1
and let us show by induction it holds true for k.

Vk(xk) = min
uk

E[x′kWkxk + νku′kUkuk + Vk+1(xk+1) | Gk]

= min
uk

(
E[x′kWkxk | Gk] + ν̄u′kUkuk + E[x′k+1Sk+1xk+1+

+trace(Tk+1Pk+1|k+1) + trace(Dk+1Q) | Gk]
)

= E[x′k(Wk + A′Sk+1A)xk | Gk] +

+(1− γ̄)trace(Tk+1(A
′Pk|kA + Q)) + trace(Dk+1Q)

+min
uk

(
ν̄u′kUkuk + ν̄u′kB′Sk+1Buk + 2ν̄u′kB′Sk+1Ax̂k|k+

+ν̄(1− ν̄)(1− γ̄)trace(Tk+1Buku′kB′)
)

= E[x′k(Wk + A′Sk+1A)xk | Gk] +

+(1− γ̄)trace(ATk+1A′Pk|k) + trace((Dk+1 + (1− γ̄)Tk+1)Q)

+ν̄ min
uk

(
u′k(Uk + B′(Sk+1 + (1− ν̄)(1− γ̄)Tk+1)B)uk+

+2u′kB′Sk+1Ax̂k|k
)

. (50)

The minimizer can be easily computed, since
the quantity inside the parenthesis is a convex
quadratic function:

u∗k =− (Uk + B′ (Sk+1 + (1− ν̄)(1− γ̄)Tk+1) B)−1

·B′Sk+1A x̂k|k = Lk x̂k|k, (51)

which is linear function of the estimated state
x̂k|k. Substituting back into the value function we
get:

Vk(xk) = E[x′k(Wk + A′Sk+1A)xk | Gk] +

+(1− γ̄)trace(ATk+1A′Pk|k) + trace((Dk+1 + (1− γ̄)Tk+1)Q)

−ν̄x̂k|kA′Sk+1BLkx̂k|k

= E[x′k(Wk + A′Sk+1A− ν̄A′Sk+1BLk | Gk] +

+trace(((1− γ̄)ATk+1A′ + ν̄A′Sk+1BLkPk|k) +

+trace((Dk+1 + (1− γ̄)Tk+1)Q)

Therefore, Vk(xk) = x̂′
k|kSkx̂k|k + trace(TkPk|k) + trace(DkQ).

This implies that:

Sk = A′Sk+1A + Wk − ν̄A′Sk+1B ·
·(Uk + B′(Sk+1 + (1− ν̄)(1− γ̄)Tk+1)B)B′Sk+1A (52)

Tk = (1− γ̄)A′Tk+1A + A′Sk+1A + Wk − Sk (53)

Dk = Dk+1 + (1− γ̄)Tk+1

The optimal minimal cost for the finite horizon,
J∗N = V0(x0) is then given by:

J∗N = x′0S0x0+trace(S0P0)+(1− γ̄)

N∑
k=1

trace(TkQ) (54)

For the infinite horizon optimal controller, nec-
essary and sufficient condition for the average
minimal cost J∞

∆= limN→+∞ 1
N J∗N to be finite

is that the coupled iterative Equations (52) and
(53) should converge to a finite value S∞ and T∞
as N → +∞. In the work of Imer et al. (Imer
et al., 2004) similar equations where derived for
the optimal LQG control under UDP for the same
framework with the additional conditions Q = 0
and B square and invertible. They find necessary
and sufficient conditions for those equations to
converge. Unfortunately, these conditions do not
hold for the general case when B in not square.
This is a very frequent situation in control sys-
tems, where in general we simply have (A,B)
controllable. We are currently trying to derive
necessary and sufficient conditions for the itera-
tive equations to converge for the more general
case when B is not square and the pair (A,B) is
controllable.

6. CONCLUSION AND FUTURE WORK

This paper analyzes the LQG control problem in
the case where both observation and control pack-
ets may be lost when travelling through a com-
munication channel. This is the case of many dis-
tributed systems, where sensors, controllers and
actuators physically reside in different locations
and they have to rely on network communication
to exchange information. In this context the paper
presents analysis of the LQG control problem for
two types of protocols,i.e. TCP and UDP. In the
first case packet acknowledgement of arrival of
control packets is available to the controller, while
it is not available in general in the second case.



For TCP-like protocols a solution for a general
LTI stochastic system is provided for both the
finite and infinite horizon case, showing that the
optimal control is still a linear function of the
state. Moreover, the infinite horizon cost function
J∞ is bounded if arrival probabilities γ̄, ν̄ are
higher than a specified threshold. UDP-like pro-
tocols present a much more complex scenario, as
the lack of acknowledgement of the control packet
at the controller makes the separation principle
not valid anymore. Estimation and control are
now coupled. The paper shows that in general
the optimal control is non linear. The control
law cannot be determined in closed form, making
this solution impractical. The only case where the
optimal controller is linear is the one where C is
invertible and there is no output noise, i.e. R = 0.
The optimal solution is presented for this case.

Future work will involve the study of convergence
for this special case, where, given the particular
structure of the problem, boundedness of the
cost function implies convergence in the infinite
horizon case. From a practical standpoint, it is
useful to compute the optimal static linear control
for the UDP case. Even though this constitutes a
suboptimal solution for the original problem, ease
of computation and implementation will make it
a valuable resource for the designer.
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