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Abstract

In this paper we study optimal estimation design for sampledlinear systems where the sensors measurements
are transmitted to the estimator site via a generic digital communication networks. Sensor measurements are subject
to random delay or might even be completely lost. We show thatthe minimum error covariance estimator is time-
varying, stochastic, and it does not converge to a steady state. Moreover, this estimator is independent of the
communication protocol and can be implemented using a finitememory buffer if and only if the delivered packets
have a finite maximum delay. We also present two alternative time-invariant estimator architectures and, surprisingly,
we show that stability does not depend on packet delay but only on the packet loss probability. Finally, algorithms
to compute critical packet loss probability and estimatorsperformance in terms of error covariance are given and
applied to some numerical examples.

I. I NTRODUCTION

Recent technological advances in MEMS, DSP capabilities, computing, and communication technology
are revolutionizing our ability to build massively distributed networked control systems (NCS) [1]. These
networks can offer access to an unprecedented quality and quantity of information which can revolutionize
our ability in controlling of the environment, such as fine grane building environmental control [2],
vehicular networks and traffic control [3], surveillance and coordinated robotics [4]. However, they also
pose challenging problems arising from the fact that sensors, actuators and controllers are not physically co-
located and need to exchange information via a digital communication network. In particular, measurement
and control packets are subject to random delay and loss. These problems are particularly evident in
wireless communication networks which are rapidly replacing wired communication infrastructures in
many engineering areas [5]. This is happening because wireless systems are easier and cheaper to
deploy and avoid cumbersome cabling and device positioning. Besides, new technologies like wireless
sensor networks (WSNs), which are large networks of spatially distributed electronic devices – called
nodes – capable of sensing, computation and wireless communication, will enable the development of
applications previously unfeasible [6] [7]. For example, WSN has been used for animal habitat monitoring
in inhospitable regions [8] and microclimate monitoring inforests [9]. These are typical example of large
scale fine grain sensor data-collection applications whereinformation is collected and then analyzed off-
line.

However, WSN are going to be employed also for real-time applications. For example consider a WSN
deployed in a forest whose nodes are equipped with temperature and humidity sensors, as graphically
shown in the left panel of Fig. 1. The same network could be employed for monitoring climate vari-
ations (data-collection application) or for wild-fire detection and tracking (real-time application) [10].
Despite the fact that these two applications adopt the same infrastructure, they obviously have different
packet delay and packet loss requirements, as shown in rightpanel of Fig. 1. In fact, in data-collection
applications it is only necessary to extract all data regardless of packet delay, while in real-time control
applications both delay and packet loss are relevant. Unfortunately, the design of communication protocols
for communication networks has to deal with unavoidable tradeoffs between packet loss and packet
delay. In fact, communication protocols that aim at reducing packet loss require retransmission of lost
packets and packet delivery acknowledgment, which increase traffic and consequently delay. Viceversa,
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Fig. 1. Pictorial representation of Wireless Sensor Network for forestmonitoring or wildfire detection(left). The small dots indicate the
location of the sensing nodes, the shaded circles indicate the sensing regions and the segments the communication links. Tradeoff curve
typical of many network communication protocols and constraint regionsfor real-time and data-collection applications(right).

reducing time delay requires dropping of packets to mitigate traffic and packet collisions (see solid line
in right panel of Fig. 1). Therefore, it is not trivial to design communication protocols for control systems
since both delay and packet loss negatively impact estimation and closed loop performance of controlled
systems. Currently, communications protocols and networked control systems are designed separately. In
particular, protocols are design based on conservative heuristics which specify what the maximum time
delay and maximum packet loss should be, but with no clear understanding of their impact on the overall
application performance. On the application side, controlsystems are not specifically designed to exploit
information about packet loss and delay statistics of the communication protocols they will run on. From
these observations few questions arise. For example, how should we design estimators for networked
systems that take into account simultaneous random delay and packet loss? How can we estimate their
performance? When is the closed loop system stable? How can wechoose between a communication
protocol with a large packet delay and a small packet loss anda protocol with a small packet delay and a
large packet loss, in terms of best performance of a specific real-time application? These are the questions
that motivate this work.

This paper is organized as follows. In the next section we give an overview on relevant previous work
and we state our contribution. Section III formalizes the minimum variance estimation problem and the
packet arrival process modeling. In Section IV the minimum variance estimation problem is solved in full
generality and conditions on memory requirements are given. In Section V we derive stability conditions
and quantify performance in terms of expected estimation error covariance of minimum variance estimators
with constant gains under i.i.d. packet arrival with known statistics. These suboptimal estimators provide
an upper bound for the performance of the time-varying optimal filter proposed in Section IV. Section
VI shows how estimation performance can be improved when sensors with computational resources are
physically co-located. This architecture also provides a lower bound for performance of the time-varying
optimal filter of Section IV. Section VII gives some numerical examples to illustrate the use of the tools
derived in the previous sections. Finally, in Section VIII we state our conclusions and give directions for
future work.

II. PREVIOUS WORK AND CONTRIBUTION

Classical control has mainly focused on systems with constant delay [11] or with small delay per-
turbation known as jitter [12]. Recently several groups havelooked at networked control systems with
large random delay measurement and control or packet loss. The survey paper [13] nicely reviews several
results in this area. These results can be divided into two main groups: the first group focuses on variable
delay but no packet drop, while the second group focuses on packet loss but no delay.
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Within the first group, some authors derived stability conditions in terms of LMIs for closed loop
continuous time linear systems with stochastic sampling time [14][15], and Nesic at al. [16] obtained
Lyapunov-like stability conditions for continuous time nonlinear systems with unknown but bounded
sampling time. These works simply determine stability for agiven closed loop system, and there is no
controller synthesis specifically designed to take into account delay. With this respect, Yue et al. [17]
proposed an LMI approach for the design of stabilizing controllers for bounded delay, while Nilsson at al.
[18] extended LQG optimal control design to sampled linear systems subject to stochastic measurement
and control packet delay, and showed how the optimal controller gains are time-delay dependent. The
previous results rely on the major assumption that there is no packet loss or there are at mostm consecutive
packet drops.

In the second group of results, there has been a considerablyeffort to apply optimal control and
estimation to discrete time systems where measurements andcontrol packets can be dropped with some
probability, but have otherwise no delay. This framework isequivalent of saying that all packets have either
no delay or infinite delay. For example, in [19][20][21] the authors proposed compensation techniques
for i.i.d Bernoulli packet-drop communication networks andderived stability conditions for closed loop
discrete time system. Elia et al. [22][23] proposed a stochastic perturbation approach for general MIMO
LTI discrete time systems and showed that the optimal controller design is equivalent to solving a convex
LMI optimization problem. Sinopoli at al. [24] looked specifically at minimum variance estimation design
for packet-drop networks and showed that the optimal estimator is necessarily time-varying, and these
results have been extended to LQG controller design in [25] and [26]. Finally, a number of researches has
explored specific mechanisms to improve estimation performance such as exploiting local computation at
the sensor location [27][28], controlled communication [29][28], and network topology [30].

The previous two groups of results suffer from some limitations. In fact, even with retransmission
mechanisms present in all current digital communication networks, and in particular in the wireless ones,
it is impossible to guarantee that all packets are correctlydelivered to the destination. On the hand, in
wireless sensor networks which implement multi-hop communication, delay is not negligible and is subject
to large variations. Therefore, none of the modelings considered so far, i.e. random delay but no packet
loss and packet loss but no delay, fully represent control systems interconnected by digital communication
networks. Very little work has been done considering simultaneous packet drop and packet delay leading
to somewhat conservative results as they are based on worst-case scenarios [31] [32].

In this paper we propose a probabilistic framework to analyze estimation where observation packets are
subject to arbitrary random delay and packet loss. This allows packets to arrive in burst or even out of
order at the receiver side, as long as the measurements are time-stamped at the sensor side. We derive the
optimal estimator in mean square sense and we show that the minimum error covariance estimator is time-
varying, stochastic and does not converge to a steady state.Moreover, this estimator design is independent
of the specific communication protocol adopted and can be implemented using a finite memory buffer if
and only if the delivered packets have a finite maximum delay.In particular, the memory length is equal
to the maximum packet delay. We also present two alternativeestimator architectures which constrain the
estimator gains to be constant rather than stochastic as forthe true optimal estimator. In particular we
show how to compute the optimal constant gains if the packet arrival statistic is stationary and known.
We derive necessary and sufficient condition for stability of the estimator. Surprisingly we show that
stability does not depend on packet delay but only on a critical packet loss probability which depends
on the unstable eigenvalues of the system to be estimated. Wealso provide quantitative measures for
the expected error covariance of such estimators which turnout to be the solution of some modified
algebraic Riccati equations and Lyapunov equations. These measures can be used to compare different
communication protocols for real-time control applications. Very importantly, these results do not depend
on the specific implementation of the digital communicationnetwork (fieldbuses, Bluetooth, ZigBee, Wi-
Fi, etc .. ) as long as the packet arrival statistics are known, i.i.d and stationary.
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III. PROBLEM FORMULATION

Consider the following discrete time linear stochastic plant:

xt+1 = Axt + wt (1)

yt = Cxt + vt, (2)

wheret ∈ N = {0, 1, 2, . . .}, x,w ∈ R
n, y ∈ R

m, A ∈ R
n×n, y ∈ R

m, C ∈ R
m×n, (x0, wt, vt) are Gaussian,

uncorrelated, white, with mean(x̄0, 0, 0) and covariance(P0, Q,R) respectively. We also assume that the
pair (A,C) is observable,(A,Q1/2) is controllable, andR > 0.

PLANT ESTIMATOR
Digital

Communication

Network

Digital

Communication

Network
Buffer

Fig. 2. Networked systems modeling. Sampled observations at the plant site are transmitted to the estimator site via a digital communication
network. Due to retransmission and packet loss, observation packets arrive at the estimator site with possibly random delay.

Measurements are time-stamped, encapsulated into packets, and then transmitted through a digital
communication network (DCN), whose goal is to deliver packets from a source to a destination (see
Fig. 2). Time-stamping of measurements are necessary to reorder packets at the receiver side as they can
arrive out of order. Modern DSNs are in general very complex and can greatly differ in their architecture
and implementation depending on the medium used (wired, wireless, hybrid), and on the applications they
are meant to serve (real-time monitoring, data extraction,media-related, etc ..). In our work we model
a DSN as a module between the plant and the estimator which delivers observation measurements to
the estimator with possibly random delays. This model allows also for packets with infinite delay which
corresponds to observation loss. We assume that all observation packets correctly delivered to the estimator
site are stored in an infinite buffer, as shown in Fig. 2. The arrival process is modeled by defining the
random variableγt

k as follows:

γt
k =

{
1 if yk has arrived at the estimator before or at timet, t ≥ k
0 otherwise

(3)

From this definition it follows that(γt
k = 1) ⇒ (γt+h

k = 1,∀h ∈ N), which simply states that if packetyk

is present in the receiver buffer at timet, then it will be present for all future times. We also define the
packet delayτk ∈ {N,∞} for observationyk as follows:

τk =

{ ∞ if γt
k = 0,∀t ≥ k

tk − k otherwise, wheretk
∆
= min{t | γt

k = 1} (4)

wheretk is the arrival time of observationyk at the estimator site . Since the packet delay can be random,
observation measurements can arrive out of order at the estimator site (see Fig. 3,t = 5). Also it is
possible that between two consecutive sampling periods no packet (see Fig. 3,t = 4) or multiple packets
(see Fig. 3,t = 6) are delivered. In our work we do not consider quantization distortion due to data
encoding/decoding since we assume that observation noise is much larger then quantization noise, as it
is the case for most DSNs where packets allocate hundreds of bits for measurement data1. Also we do

1For example, ATM communication protocols adopts packets with 384-bit data field, Ethernet IEEE 802.3 packets allows for at least 368
bits for data payload, Bluetooth for 499 bits [13] and IEEE 802.15.4 forup to 1000 bits. This assumption might not hold for multimedia
signal like audio and video signals, which however are not in the scope ofthis work.
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not consider channel noise since we assume that if any bit error incurred during packet transmission is
detected at the receiver, then the packet is dropped.

Fig. 3. Packet arrival sequence and buffering at the estimator location. Shaded squares correspond to observation packets that have been
successfully received by the estimator. Cursor indicates current time.

If observationyk is not yet arrived at the estimator at timet, we assume that a zero is stored in the
k-slot of the buffer, as shown in Fig. 32. More formally, the value stored in thek-slot of the estimator
buffer at timet can be written as follows:

ỹt
k = γt

kyk = γt
kCxk + γt

kvk (5)

Our goal to compute the optimal mean square estimatorx̂t|t which is given by:

x̂t|t
∆
= E[xt | ỹt,γt, x̄0, P0] (6)

where ỹt = (ỹt
1, ỹ

t
2, . . . , ỹ

t
t) and γt = (γt

1, γ
t
2, . . . , γ

t
t). It is important to remark that the estimator above

has the information weather a packet has been delivered or not, and it is not equivalent to computing
x̂t|t 6= x̌t|t

∆
= E[xt | ỹt, x̄0, P0]. The latter estimator would in fact consider the zero entries of the buffer

as true measurements and not as dummy variables, thus providing a lower performance. It is also useful
to design the estimator error and error covariance as follows:

et|t
∆
= xt − x̂t|t (7)

Pt|t
∆
= E[ et|te

T
t|t | ỹt,γt, x̄0, P0] (8)

2In practice, any arbitrary value can be stored in the buffer slots corresponding to the packets which have not arrived, since as it will be
shown later, the optimal estimator does not use those values as they do notconvey any information about the statext. Our choice of storing
a zero simply reduces some mathematical burden.
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The estimatêxt|t is optimal in the sense that it minimizes the error covariance, i.e. given any estimator
x̃t|t = f(ỹt,γt), wheref is a measurable function, we always have

E[(xt − x̃t|t)(xt − x̃t|t)
T | ỹt,γt, x̄0, P0] ≥ Pt|t.

Another property of the mean square optimal estimator is that x̂t|t and its erroret|t
∆
= xt − x̂t|t are

uncorrelated, i.e.E[et|t x̂
T
t|t] = 0. This is a fundamental property since it gives rise to the separation

principle for the LQG optimal control, which is of the most widely used tool in control system design
[33] [26].

IV. M INIMUM ERRORCOVARIANCE ESTIMATOR DESIGN

In this section we want to compute the optimal estimator given by Equation (6). First, it is convenient
to define the following variables:

x̂t
k|h

∆
= E[xk | γt

h, . . . , γ
t
1, ỹ

t
h, . . . , ỹ

t
1, x̄0, P0]

P t
k|h

∆
= E[(xk − x̂t

k|h)(xt − x̂t
k|h)

T | γt
h, . . . , γ

t
1, ỹ

t
h, . . . , ỹ

t
1, x̄0, P0]

from which it follows that, with a little abuse of notation,x̂t|t = x̂t
t|t andPt|t = P t

t|t.
It is also useful to note that at timet the information available at the estimator site, given by Equation (5),

can be written as the output of the following system:

xk+1 = Axk + wk (9)

ỹt
k+1 = Ct

k+1xk+1 + ṽt
k+1, k = 0, . . . , t − 1 (10)

where Ct
k = γt

kC, and the random variables̃vt
k = γt

kvk are uncorrelated, zero mean white noise with
covarianceRt

k = E[ṽt
k(ṽ

t
k)

T ] = γt
kR. For any fixedt this system can be seen as a linear time-varying

system with respect to timek, where the only time-varying elements are the observation matrix Ct
k and

measurement noise covarianceRt
k.

We can now state the main theorem of this section:
Theorem 1:Let us consider the stochastic linear system given in Equations (1)-(2), whereR > 0. Also

consider the arrival process defined by Equation (3), and themean square estimator defined in Equation (6).
Then we have:

(a) The optimal mean square estimator is given byx̂t|t = x̂t
t|t where:

x̂t
0|0 = x̄0, P t

1|0 = P0 (11)

x̂t
k|k = Ax̂t

k−1|k−1 + γt
kK

t
k(ỹ

t
k − CAx̂t

k−1|k−1), k = 1, . . . , t (12)

Kt
k = P t

k|k−1C
T (CP t

k|k−1C
T + R)−1 (13)

P t
k+1|k = AP t

k|k−1A
T + Q − γt

kAP t
k|k−1C

T (CP t
k|k−1C

T + R)−1CP t
k|k−1A

T (14)

(b) The optimal estimator̂xt|t can be computed iteratively using a buffer of finite lengthN if and
only if γt

k = γt−1
k ,∀k ≥ 1,∀t ≥ k + N . If this property is satisfied, then̂xt|t = x̂t

t|t where x̂t
t|t is

given by Equations (11)-(14) fort = 1, . . . , N and as follows fort > N :

x̂t
t−N |t−N = x̂t−1

t−N |t−N , (15)

P t
t−N+1|t−N = P t−1

t−N+1|t−N (16)

Equations (12),(13),(14) k = t − N + 1, . . . , t (17)
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Proof: (a) Since the information available at the estimator site attime t is given by the time-varying
linear stochastic system of Equations (9)-(10) , then the optimal estimator is given by its corresponding
time-varying Kalman filter:

x̂t
k|k = Ax̂t

k−1|k−1 + Kt
k(ỹ

t
k − Ct

kAx̂t
k−1|k−1)

Kt
k = P t

k|k−1C
tT

k (Ct
kP

t
k|k−1C

tT

k + Rt
k)

−1

P t
k+1|k = AP t

k|k−1A
T + Q − AP t

k|k−1C
tT

k (Ct
kP

t
k|k−1C

tT

k + Rt
k)

−1Ct
kP

t
k|k−1A

T

x̂t
0|0 = x̄0, P t

1|0 = P0

whose derivation can be found in any standard textbook on stochastic control [33] [34]. By substituting
Ct

k+1 = γt
k+1C andRt

k = γt
kR into the previous equations and after performing some simplifications3 we

obtain optimal estimator Equations (11)-(14).
(b)(=⇒) Let us considert > N . If γt

k = γt−1
k ,∀k ≥ 1,∀t ≥ k + N , then alsoP t

k+1|k = P t−1
k+1|k and

x̂t
k|k = x̂t−1

k|k hold under the same conditions on the indices. In particularit holds for k = t − N which
implies P t

t−N+1|t−N = P t−1
t−N+1|t−N and x̂t

t−N |t−N = x̂t−1
t−N |t−N . Therefore, it not necessary to compute

P t
t+1|t and x̂t

t|t at any time stept starting fromk = 1, but it is sufficient to use the valueŝxt−1
t−N |t−N and

P t−1
t−N+1|t−N precomputed at the previous time stept − 1, as in Equations (15) and (16), and then iterate

Equations Equations (12)-(14) for the latestN observations.
(⇐=) Using a contradiction argument suppose that there existsN for which estimator defined by

Equations (15)-(17) is optimal. Now consider an arrival sequence for whichγt
1 = 0 for t = 1, . . . , N and

γN+1
1 = 1, and alsoP0 > 0. ThenPN+1

2|1 < PN
2|1 which does not satisfy Equation (16) fort = N + 1. As

a consequence, the estimator with finite memory buffer cannot be optimal, thus contradicting the initial
hypothesis.

If there is no packet loss and no packet delay, i.e.γt
k = 1,∀(k, t), then Equations (11)-(14) reduce

to the standard Kalman filter equations for a time-invariantsystem. However, there are some differences
between the standard Kalman filter and the optimal filter whenrandom packet delay is allowed.

The first difference is that the optimal estimator under our framework jumps between an open loop
estimate whenγt

k = 0 and closed loop estimate whenγt
k = 1. In fact, whenγt

k = 0 the value stored in the
buffer is not used and the error covariance increases, whilewhenγt

k = 1 the observation measurement is
used according to the usual Kalman equations and the error covariance decreases. Therefore, the optimal
estimator and its error covariance are strongly time-varying and stochastic. Differently, in standard Kalman
filtering the error covariancePt|t and the optimal gainKt, under standard observability and controllability
hypotheses, converge to finite steady-state values,P∞ andK∞ respectively, as time progresses. Moreover,
it is possible to achieve the same steady-state errorP∞ by simply using a constant filter with the steady-
state gainKt = K∞, which is very valuable from a implementation point of view since it does not require
any on-line matrix inversion.

The second difference is that the standard Kalman filter doesnot need to store all past observations and to
computex̂t|t starting fromk = 1, but the optimal estimate can be computed incrementally by storing only
the current observationyt, the past state estimatêxt−1|t−1 and the past error covariancePt|t−1. Differently,
the optimal estimator subject to random packet delay requires the storing of all past packets and the
inversion of up tot matrices at any time stept to calculate the optimal estimate, as shown in Theorem 1(b).
The optimal estimator can be implemented incrementally according to Equations (15)-(17) using a buffer
of finite lengthN only if all successfully received observations have a delaysmaller thanN time step,
i.e. γt

k = γt−1
k ,∀k ≥ 1,∀t− k ≥ N (see Fig. 4). This does not mean thatall packets arrive at the receiver

within N time steps, but only that if a packet arrives then it does within N time steps. In other words,
this is equivalent of stating that the packet delay belongs to the finite setτk ∈ {0, . . . , N−1,∞},∀k ≥ 1.

3In particular, we employed the fact that the Kalman filter equations can be generalized to the caseR ≥ 0 by using pseudoinverse rather
than the inverse in the computation of the posterior error covariance.
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ESTIMATOR
N

(B)

Fig. 4. Optimal estimator for general packet arrival processes (left). Optimal estimator with finite memory buffer for packet arrival processes
with bounded delay(right).

The previous condition is rather common in DSNs since they can hardly guarantee correct delivery of all
transmitted packets, while they often implement mechanisms to drop packets that are too old.

Up to this point we made no assumptions on the packet arrival process which can be deterministic,
stochastic or time-varying. However, from an engineering perspective it is important to determine the
performance of the estimator, which is evaluated based on the error covariancePt+1|t. If the packet arrival
process is stochastic, then also the error covariance is stochastic. In this scenario a common performance
metric is the expected error covariance, i.e.Eγ[Pt+1|t], where the expectation is performed with respect
to the arrival processγt

k. However, other metrics can be considered, such as the probability that the error
covariance exceeds a certain threshold, i.e.P[Pt+1|t > Pmax] [35]. In this work we will consider only the
expected error covarianceEγ[Pt+1|t]. It has been shown in [24] that computingEγ[Pt+1|t] analytically it is
not possible even for a simple Bernoulli arrival process, andonly upper and lower bounds can be obtained.
Rather than extending those results by trying to bound performance of the time-varying optimal estimator,
we will focus on filters with constant gains and with a finite buffer dimension, i.e. we will consider
Kt

t−h = Kh for all t ∈ N, h = 0, . . . , N−1. The gainsKh will then be optimized to achieve the smallest
error covariance at steady-state. The advantage of using constant gains is that it is not necessary to invert
up to N matrices at any time stept, thus making it attractive for on-line applications. Moreover, filters
with constant gains are necessarily suboptimal, thereforetheir error covariance provides an upper bound
for the error covariance of the true optimal minimum error covariance filter given by Equations (11)-(14).

V. OPTIMAL ESTIMATION WITH CONSTANT GAINS

In this section we will study minimum error covariance filters with constant gains under stationary i.i.d
arrival processes.
Assumption:The packet arrival process at the estimator site is stationary and i.i.d. with the following
probability function:

P[τt ≤ h] = λh (18)

wheret ≥ 0, and0 ≤ λh ≤ 1 is a non-decreasing inh = 0, 1, 2, . . ., andτt was defined in Equation (4).
Equation (18) corresponds to the probability that a packet sampledh time steps ago has arrived at the

estimator. Obviously,λh must be non-increasing sinceλh = P[τt ≤ h−1]+P[τt = h] = λh−1 +P[τt = h].
Also, we define the packet loss probability as follows:

λloss
∆
= 1 − sup{λh| h ≥ 0} (19)

The arrival process defined by Equation (18) can be also be defined with respect to the probability density
of packet delay. In fact, by definition we haveP[τk = 0] = λ0, P[τk = h] = λh − λh−1 for h ≥ 1, and
P [τk = ∞] = λloss.

Finally, we define the maximum delay of arrived packets as follows:

τmax
∆
=

{
min{H|λH = λH+1} if ∃H such thatλh = λH ,∀h ≥ H
∞ otherwise

(20)
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Fig. 5 shows some typical scenarios that can be modeled underthe previous hypotheses. Scenario (A)
corresponds to a deterministic process where all packets are successfully delivered to the estimator with
a constant delay. This scenario is typical of wired systems.Scenario (B) models a DCN that guarantees
delivery of all packets within a finite time windowτmax, but the delay is not deterministic. This is a
common scenario in drive-by-wire systems. Scenario (C) represents a DCN which drops packets that
are older thanτmax and consequently a fractionλloss > 0 of observations is lost. This scenario is often
encountered in wireless sensor networks. Scenario (D) corresponds to a DCN with no packet loss but with
unbounded random packet delay. One example of such a scenario is a DCN that continues to retransmit
a packet till it is not delivered.

(A) (B)

(C) (D)

Fig. 5. Probability function of arrival processλh = P[τk ≤ h] for different scenarios: deterministic packet arrival with fixed delay(A);
bounded random packet delay with no packet loss (B); bounded random packet delay with packet loss (C); unbounded random packet delay
with no packet loss (D).

In the rest of the paper we will use the following definition ofstability for an estimator.
Definition: Let x̃t|t = f(ỹt,γt) be a generic estimator, wheref is a measurable function, andẽt|t = xt−x̃t|t

and P̃t|t = E[ẽt|tẽ
T
t|t|ỹt,γt] its error and error covariance, respectively. We say that the estimator is mean-

square stable stable if and only iflimt→∞ E[ẽt|t] = 0 and E[P̃t|t] ≤ M for someM > 0 and for all
t ≥ 1.

The previous definition can be rephrased in terms of the moments of the estimator error. In fact the
conditions above are equivalent tolimt→∞ E[||ẽt|t||] = 0 andE[ ||ẽt|t||2] ≤ trace(M).

Let us consider the following constant-gain estimatorx̃t|t = x̃t
t|t with finite-buffer of dimensionN ,

wherex̃t
t|t is computed as follows:

x̃t
t−k|t−k = Ax̃t

t−k−1|t−k−1 + γt
t−kKk(ỹ

t
t−k − CAx̃t

t−k−1|t−k−1), k = N−1, . . . , 0 (21)

x̃t
t−N |t−N = x̃t−1

t−N |t−N (22)

x̃t
−k|−k = x̄0, γt

−k = 0, ỹt
−k = 0 (23)

where the last line include some dummy variables necessary to initialize the estimator fort = 1, . . . , N .
Note that constant-gain estimator structure is very similar to the optimal estimator structure given by
Equation (12) as the estimate is corrected only if the observation has arrived, i.e.γt

t−k = 1, otherwise the
open loop estimate is considered. However, differently from Equation (12), the gainsKk, k = 0, . . . , N−1
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are constant and independent oft, and the computation of the estimatex̃t|t does not require any on-line
matrix inversion differently from̂xt|t as indicated by Equations (12)-(14).

We also define the following variables that will be useful to analyze the performance of the estimator:

x̃t
k+1|k = Ax̃t

k|k (24)

ẽt
k+1|k = xk+1 − x̃t

k+1|k (25)

P̃ t
k+1|k = E[ẽt

k+1|kẽ
tT

k+1|k | ỹt,γt] (26)

P
t

k+1|k = E[ẽt
k+1|kẽ

tT

k+1|k] = E[P̃ t
k+1|k] (27)

wheret ≥ k ≥ 1. From these definitions we get:

ẽt
k+1|k = Axk + wk − A

(
x̃k|k−1 + γt

kKt−k(γ
t
kCxk + vk − Cx̃k|k−1)

)

= A(I − γt
kKt−kC)ẽt

k|k−1 + wk − γt
kAKt−kvk (28)

P̃ t
k+1|k = A(I − γt

kKt−kC)P̃ t
k|k−1(I − γt

kKt−kC)T AT + Q + γt
kAKt−kRKT

t−kA
T (29)

P
t

k+1|k = λt−kA(I−Kt−kC)P
t

k|k−1(I−Kt−kC)TAT+(1−λt−k)AP
t

k|k−1A
T+Q+λt−kA

TKt−kRKT
t−kA

T(30)

whereI ∈ R
n×n is the identity matrix. To obtained the previous equations we employed independence of

γt
k, vk, wk, and ẽt

k|k−1, and the fact thatvk andwk are zero mean. For ease of notation let us define the
following operator:

Lλ(K,P ) = λA(I−KC)P (I−KC)T AT +(1−λ)APAT +Q+λAKRKTAT (31)

If we substitutek = t − N into Equation (30), and noting that from Equation (22) follows that
P̃ t

t−N+1|t−N = P̃ t−1
t−N+1|t−N andP

t

t−N+1|t−N = P
t−1

t−N+1|t−N , we obtain:

P
t

t−N+2|t−N+1 = LλN−1
(KN−1, P

t−1

t−N+1|t−N) (32)

P
t

t−k+1|t−k = Lλk
(Kk, P

t

t−k|t−k−1), k = N−2, . . . , 0 (33)

Observe that Equation (32) and (33) define a set of linear deterministic equations for fixedλk and Kk.
In particular, if we defineSt = P t−1

t−N+1|t−N , then Equations (32) can be written as

St+1 = LλN−1
(KN−1, St) (34)

Since all matricesP
t

t−k+1|t−k, k = 0, . . . , N − 1 can be obtained fromSt it follows that stability of
estimator can be inferred from the properties of the operator Lλ(K,P ). The following theorem provides
these properties:

Theorem 2:Consider the operatorLλ(K,P ) as defined in Equation (31). Assume also thatP ≥ 0,
(A,C) is observable,(A,Q1/2) is controllable,R > 0, and 0 ≤ λ ≤ 1. Also consider the following
operator:

Φλ(P ) = APAT + Q − λ APCT (CPCT + R)−1CPAT (35)

and the gainKP = PCT (CPCT + R)−1.
Then the following statements are true:
(a) Lλ(K,P ) = Φλ(P ) + λA(K − KP )(CPCT + R)(K − KP )T AT .
(b) Lλ(K,P ) ≥ Φλ(P ) = Lλ(KP , P ), ∀K
(c) (P1 ≥ P2) =⇒

(
Φλ(P1) ≥ Φλ(P2)

)
.

(d) (λ1 ≥ λ2) =⇒
(
Φλ1

(P ) ≤ Φλ2
(P )

)
, ∀P .

(e) If there existsP ∗ such thatP ∗ = Lλ(K,P ∗), thenP ∗ > 0 and it is unique. Consequently this is
true also forK = KP ∗, whereP ∗ = Φλ(P

∗).
(f) If (λ1 ≥ λ2) and there existP ∗

1 , P ∗
2 such thatP ∗

1 = Φλ1
(P ∗

1 ) andP ∗
2 = Φλ2

(P ∗
2 ), thenP ∗

1 ≤ P ∗
2 .
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(g) Let St+1 = Lλ(K,St) and S0 ≥ 0. If S∗ = Lλ(K,S∗) has a solution, thenlimt→∞ St = S∗,
otherwise the sequenceSt is unbounded.

(h) If there existsS∗, K such thatS∗ = Lλ(K,S∗), then alsoP ∗ = Φλ(P
∗) exists andP ∗ ≤ S∗.

(i) If A is strictly stable, thenP ∗ = Φλ(P
∗) has always a solution. Otherwise, there existλc such that

P ∗ = Φλ(P
∗) has a solution if and only ifλ > λc. Also λmin ≤ λc ≤ λmax, whereλmin = 1− 1Q

i
|σu

i
|2

,
λmax = 1 − 1

maxi |σu

i
|2

, and |σu
i | ≥ 1 are the unstable eigenvalues ofA. In particularλc = λmin if

rank(C) = 1, andλc = λmax if C is square and invertible.
(j) The critical probabilityλc and the fixed pointP ∗ = Φλ(P

∗) for λ > λc can be obtained as the
solutions of the following semi-definite programming (SDP)problems:λc = inf{λ |Ψλ(Y, Z) >
0, 0 ≤ Y ≤ I, for someZ, Y ∈ R

n×n}, andP ∗ = argmax{trace(P ) |Θλ(P ) ≥ 0, P ≥ 0} where:

Ψλ(Y, Z) =




Y
√

λ(Y A + ZC)
√

1 − λY A√
λ(A′Y + C ′Z ′) Y 0√

1 − λA′Y 0 Y


 (36)

Θλ(P ) =

[
APA′ − P

√
λAPC ′

√
λCPA′ CPC ′ + R

]
(37)

(k) If there existP ∗ > 0 and K such thatP ∗ = Lλ(K,P ∗), then the matrixAc = A(I − λKC) is
strictly stable.
Proof: Some of these statements can be found in [24] or can be derivedalong similar lines, therefore

only a brief sketch is reported here for those ones.
(a) This fact can be verified by direct substitution
(b) This statement follows from previous fact andλA(K − KP )(CPCT + R)(K − KP )T AT ≥ 0.
(c) From previous factΦλ(P1) = Lλ(KP1

, P1) ≥ Lλ(KP1
, P2) ≥ Lλ(KP2

, P2) = Φλ(P2).
(d) From Equation (35) we haveΦλ1

(P ) − Φλ2
(P ) = −(λ1 − λ2)APCT (CPCT + R)−1CPAT ≤ 0.

(e) Uniqueness and strictly positive definiteness ofP ∗ follows from the assumption that(A,Q1/2) is
controllable [24].

(f) ConsiderPt+1 = Φλ1
(Pt) andSt+1 = Φλ2

(St) whereP0 = S0 = 0. From fact (c) and (e) it follows
that Pt ≤ St. Also Pt ≤ P ∗

1 and St ≤ P ∗
2 , thereforelimt→∞ Pt = P̄ , limt→∞ St = S̄, and P̄ ≤ S̄. From

fact (e) it follows thatP̄ = P ∗
1 and S̄ = P ∗

2 , and thusP ∗
1 ≤ P ∗

2

(g-h) Let considerPt+1 = Φλ(Pt) and St+1 = Lλ(K,St) where P0 = S0 = 0. From fact (c) and
monotonicity of operatorLλ(K,P ) with respect toP we havePt+1 ≥ Pt, St+1 ≥ St, and Pt ≤ St ≤
S∗ for all t. Since both sequences are monotonically increasing and bounded, thenlimt→∞ Pt = P̄ ,
limt→∞ St = S̄, P̄ = Φλ(P̄ ), S̄ = Lλ(K, S̄), and P̄ ≤ S̄. From fact (e) it follows thatP̄ = P ∗ and
S̄ = S∗. A complete proof for convergence from any initial condition can be obtained along the lines of
Theorem 1 in [24], thus it is not reported here.

(i) The proof for existence of a critical probabilityλc was given in [24] and it is based on observability
of (A,C) and monotonicity ofΦλ(P ) with respect toλ. The proof forλc = λmin when rank(C) = 1 can
be found in [37][23] although it was not explicitly derived for the operatorΦλ. The proof forλc = λmax

whenC is square and invertible was first proved in [38].
(j) The proof can be found in [24].
(k) Let us consider the linear operatorF(P ) = λA(I−KC)P (I−KC)T AT +(1−λ)APAT . Clearly

Lλ(K,P ) = F(P ) + D, whereD = Q+λAKRKT AT ≥ 0. Consider the sequencesSt+1 = Lλ(KP ∗ , St),
Tt+1 = Lλ(KP ∗ , Tt) with initial condition S0 = 0, then T0 ≥ 0. Note thatSt =

∑t−1
k=0 Fk(D) and

Tt = F t(T0)+
∑t−1

k=0 Fk(D) for t ≥ 1, where we defineF0(D) = D andFk+1(D) = F◦Fk(D). Therefore
F t(T0) = Tt − St. From fact (g) it followslimt→∞ St = limt→∞ Tt = P ∗, thereforelimt→∞F t(T0) = 0,
for all T0 ≥ 0, i.e. the linear operatorF() is strictly stable. Now consider the systemAc = A(I −
λKC). The system is strictly stable if and only iflimt→∞ At

cx0 = 0, for all x0. This is equivalent to
limt→∞ At

cx0x
T
0 (AT

c )t = Gt(X0) = 0, where X0 = x0x
T
0 ≥ 0 and Gt(X0) = At

cX0(A
T
c )t. Note that

G(X0) = AX0A
T − 2λAX0(AKC)T + λ2AKCX0(AKC)T = F(X0) + λ(λ − 1)AKCX0(AKC)T ≤
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F(X0) sinceλ(λ−1)AKCX0(AKC)T ≤ 0. Since we just proved thatlimt→∞F t(X0) = 0 for all X0 ≥ 0,
then alsolimt→∞ Gt(X0) ≤ F t(X0) = 0 for X0 = x0x

T
0 , i.e. the systemAc is strictly stable.

The previous theorem provides all tools necessary to analyze and design the optimal estimator with
constant gains. In particular, fact (g) indicates that the constant gainK∗ that minimizes the steady state
error covarianceP ∗ can be derived from the unique fixed point of the nonlinear operator Φλ, where
K∗ = KP ∗. If the optimal gainK∗ is used, then the expected error covariance converges toP ∗ regardless
of the initial conditions(P0, x̄0), as follows from fact (f). Fact (i) shows that if the systemA is unstable
the arrival probabilityλ needs to be sufficiently large to ensure stability, and that the critical valueλc is
a function of the unstable eigenvalues ofA. Finally, althoughλc and the the fixed pointP ∗ = Φλ(P

∗)
cannot be computed analytically, from fact (j) follows thatthey can be computed efficiently using numerical
optimization tools. Finally fact (k) will be used to show that if the error covariance is bounded then the
estimator is asymptotically strictly stable, therefore estimator stability reduces to finiteness of steady state
error covariance.

The following theorem shows how compute the optimal estimator with constant gains.
Theorem 3:Let us consider the stochastic linear system given in Equations (1)-(2), where(A,C) is

observable,(A,Q1/2) is controllable, andR > 0. Also consider the arrival process defined by Equa-
tions (18)-(20), and the set of estimators with constant gains {Kk}N

k=0 defined in Equations (21)-(23).
If A is not strictly stable andλloss ≥ 1 − λc, whereλc is defined in Theorem 2(j), then there exist no
stable estimator with constant gains. Otherwise, letN such thatλN > λc and consider the optimal gains
{KN

k }N
k=0 defined as follows:

KN
k = V N

k CT (CV N
k CT + R)−1, k = 0, . . . , N (38)

V N
N−1 = ΦλN−1

(V N
N−1) (39)

V N
k = Φλk

(V N
k+1), k = N − 1, . . . , 0 (40)

Also considerP
t

k+1|k as defined in Equation (27), thenlimt→∞ P
t

t−k+1|t−k = V N
k , independently of initial

conditions(P0, x̄0). For any other choice of gains{Kk}N
k=0 for which the following equations exist:

TN
N = LλN

(KN , TN
N ) (41)

TN
k = Lλk

(Kk, T
N
k+1), k = N − 1, . . . , 0 (42)

thenlimt→∞ P
t

t−k+1|t−k = TN
k , andV N

k ≤ TN
k for k = 0, . . . , N . Also V N+1

0 ≤ V N
0 . Finally, if τmax < ∞,

thenV N
0 = V τmax

0 for all N ≥ τmax.
Proof: First we prove by contradiction that there is no stable estimator with constant gains ifA is not

strictly stable andλloss ≥ 1− λc. Suppose such an estimator exists, i.e. there existN and{Kk}N−1
k=0 such

that P
t

t|t is bounded for allt. SinceP
t

t+1|t = AP
t

t|tA
T + Q alsoP

t

t+1|t must be bounded for allt. From

Equations (32) and (33) it follows thatP
t

t+1|t is bounded if and only ifP
t

t−k+1|t−k for k = 0, . . . , N−1 are

bounded for allt. Therefore, since the bounded sequenceSt = P
t

t−N+1|t−N needs to satisfy Equation (34),
from Theorem 2(g) follows thatS∗ = LλN−1

(KN−1, S
∗) has a solution. From Theorem 2(h) follows that

alsoP ∗ = ΦλN−1
(P ∗) has a solution. However, by hypothesisλN−1 ≤ sup{λh |h ≥ 0} = 1 − λloss ≤ λc.

Consequently, according to Theorem 2(i),P ∗ = ΦλN−1
(P ∗) cannot have a solution, which contradicts the

hypothesis that a stable estimator exists.
Consider now the case whenN is such thatλN > λc. From Theorem 2(h) it follows that Equations (38)-

(40) are well defined and have a solution. From Theorem 2(g) itfollows that limt→∞ P
t

t−k+1|t−k = V N
k

for the optimal gains{KN
k }N−1

k=0 , andlimt→∞ P
t

t−k+1|t−k = TN
k when using generic gains{Kk}N−1

k=0 . From
Theorem 2(h) it follows thatV N

N−1 ≤ TN
N−1. From Theorem 2(c) we haveV N

N−2 = ΦλN−2
(V N

N−1) ≤
LλN−2

(KN−2, V
N
N−1) ≤ LλN−2

(KN−2, T
N
N−1) = TN

N−2. Inductively, it is easy to show thatV N
k ≤ TN

k for
all k = 0, . . . , N − 1.
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Now we want to show thatV N+1
0 ≤ V N

0 . From Theorem 2(f) and the propertyλN+1 ≥ λN follow also
that V N+1

N+1 = ΦλN+1
(V N+1

N+1 ) ≤ V N
N = ΦλN

(V N
N ). ThereforeV N+1

N = ΦλN
(V N+1

N+1 ) ≤ ΦλN
(V N

N ) = V N
N and

inductively V N+1
k ≤ V N

k for all k = N, . . . , 0 which proves the statement.
Finally, if τmax is finite, thenλk = λτmax

for all k ≥ τmax. AssumeN > τmax, thenV N
N = ΦλN

(V N
N ) =

ΦλN−1
(V N

N ) = V N
N−1 = ΦλN−1

(V N
N−1) = ΦλN−2

(V N
N−1) = V N

N−2 = . . . = V N
τmax

= Φλτmax
(V N

τmax
). Since

V τmax

τmax
= Φλτmax

(V τmax

τmax
), then by Theorem 2(e) we have thatV τmax

τmax
= V N

τmax
. According to Equation (40)

we also haveV τmax

k = V N
k for k = τmax, . . . , 0, which concludes the theorem.

The previous theorems shows that the optimal gains can be obtained by finding the fixed point of a
modified algebraic Ricatti Equation (39) and then iteratingN time an operator with the same structure
but with differentλk. The theorem also demonstrates that a stable estimator withconstant gains exists
if and only if the optimal estimator with constant gains exists, therefore the optimal estimator design
implicitly solves the problem of existence of stable estimators. If the system to be estimated is unstable,
then the estimator is stable if and only if the packet loss probability λloss is sufficiently small. This is a
remarkable result since it implies that stability of estimators does not depend on the packet delayτmax as
long as most most of the packets eventually arrive. Another important result is that the performance of
the estimator, i.e. its steady state error covariancelimt→∞ Pt+1|t = limt→∞ E[et+1|te

T
t+1|t] = V N

0 , improves
as the buffer lengthN is increased. However, if the maximum packet delay is finiteτmax < ∞, then the
performance of the estimator does not improve forN > τmax. This is consistent with Theorem 1(b) since
if a measurement packet has not arrived withinτmax time steps after it was sampled, then it will never
arrive and it is useless to wait longer.

From a practical perspective, the designer can evaluate thetradeoff between the estimator performance
V N

0 and buffer lengthN which is directly related to computational requirements. To this respect, the
following theorem provides some useful bounds on the ultimeperformance achievable with an estimator
with constant gains:

Theorem 4:Let A strictly stable orλloss < 1 − λc otherwise. Let the sequenceV N
0 with respect toN

be defined as in Theorem 3, whereN ≥ Nmin
∆
= min{N |λN > λc} if A is unstable, orN ≥ 0 otherwise.

Also consider the sequenceSN
k defined similarly toV N

k but for the following modified arrival statistic
λN

k = λk, k = 0, . . . , N−1 andλN
k = sup{λh |h ≥ 0}, k ≥ N . ThenV N

0 is a monotonically decreasing
sequence andSN

0 is a monotonically increasing sequence. Also there existsP ∗ such that

SN
0 ≤ P ∗ ≤ V N

0 , ∀N ≥ Nmin (43)

P ∗ = lim
N→∞

SN
0 = lim

N→∞
V N

0 (44)

Finally, if τmax < ∞, thenP ∗ = V τmax

0 = Sτmax

0 .
Proof: From assumptionλloss < 1 − λc it follows that Nmin is well defined and exists. From

Theorem 3 it also follows thatV N
k andSN

k are well defined and exist. SinceV N
0 is monotonically decreasing

and bounded from belowV N
0 ≥ 0 then limN→∞ V N

0 = V ∗. SinceλN
N ≥ λN , from Theorem 2(f) we have

that SN
N ≤ V N

N , and sinceλN
k = λk, k = N − 1, . . . , 0 we inductively haveSN

0 ≤ V 0
N . Moreover since

by definitionλN
N = λN+1

N+1 = 1 − λloss, thenSN
N = SN+1

N+1 . Also by definitionλN+1
N = λN ≤ λN

N , therefore
SN+1

N = ΦλN+1

N

(SN+1
N+1) = ΦλN+1

N

(SN
N ) ≥ ΦλN

N

(SN
N ) = SN

N where we used Theorem 2(d). Once again, since

λN
k = λN+1

k , k = N − 1, . . . , 0 inductively it follows thatSN+1
0 ≥ SN

0 . Therefore the sequence{SN
0 } is

monotonically increasing and bounded from above sinceSN
0 ≤ V Nmin

0 , N ≥ Nmin, from which it follows
that limN→∞ SN

0 = S∗. SinceSN
0 > 0 for all N , then alsoS∗ > 0. Now it is left to prove thatS∗ = V ∗. If

τmax < ∞, this is trivial sinceSN
0 = V N

0 = P ∗, N ≥ τmax. Otherwise ifτmax = ∞ note thatSN
0 andV N

0

are continuous function of the sequences{λN
k }∞k=0 and{λk}∞k=0, respectively. SincelimN→∞{λN

k }∞k=0 =

{λk}∞k=0 with respect to any norm defined on sequences, for example||{λk}∞k=0||
∆
= sup{λk | k ≥ 0}, then

by continuity alsolimN→∞ SN
0 = limN→∞ V N

0 = P ∗ which concludes the theorem.
The positive definite matrixP ∗ defined in the previous theorem correspond to the ultimate limit of
performance of any estimator with constant gains, i.e. it isnot possible to reduce the steady state error
covariance belowP ∗ when using only constant gains. This is useful since the designer can evaluate the loss
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of performance when using an estimator with a short buffer, i.e. N < τmax, which is more advantageous
from computational point of view. The theorem also providesa tool to computeP ∗ to any arbitrary
precision whenτmax = ∞. In fact, we haveV N

0 − P ∗ ≤ V N
0 − SN

0 = ∆PN ≥ 0 for all N , where∆PN

can be easily computed and has the propertylimN→∞ ∆PN = 0.

VI. OPTIMAL ESTIMATION WITH CO-LOCATED SMART SENSORS

In this section we describe an alternative coding at the sensor location which improves the overall
performance of the estimator at the receiver side. This scheme was independently proposed in [39] and
[27] where it was suggested to compute and transmit the stateestimate rather than the raw measurement.
As will be shown shortly, this approach gives an estimator with a better performance, however it is
applicable only if some computational resources are available on the sensor, commonly known as “smart
sensor”, and when all entries of the observation vectoryt are collected from sensors which are co-located.
For example, this scenario is rarely the case in applications running over sensor networks where sensors
are distributed and have very limited computation resources [36]. Nonetheless, this scheme is useful per
se since it provides a computable lower bound for the performance of the optimal time-varying filter
proposed in Section IV.

PLANT+
SENSOR

DECODER

ESTIMATORDigital
Communication

Network

Digital
Communication

Network

ENCODER
ESTIMATOR

Fig. 6. Smart sensor with state estimator at encoder site before transmission.

Rather than sensing the raw measurementsyt over the DCN the sensor compute the optimal state
estimate as follows:

x̂e
t = Ax̂e

t−1 + Ke
t (yt − Ax̂e

t−1) (45)

Ke
t = P e

t CT (CP e
t CT + R)−1 (46)

P e
t+1 = AP e

t AT + Q − AP e
t CT (CP e

t CT + R)−1CP e
t AT = Φ1(Pt) (47)

P e
0 = P0, x̂e

0 = x̄0 (48)

These are the equations for the standard Kalman filter, i.e. the minimum error covariance estimatorx̂e
t =

E[xt | yt, . . . , y1] whose estimation erroree
t = xt+1 −Ax̂e

t has covariancecov(ee
t) = E[ee

te
eT

t | yt, . . . , y1] =
P e

t . The state estimate computed by the sensor encoder is then transmitted over the DCN to the decoder
estimator. Using the same notation of Equation (5) the valuestored at the buffer can be written as follows:

ỹt
k = γt

kx̂
e
k (49)

Let us define the delay of the most recent packet arrived at thedecoder estimator asκt = t − max{k | γt
k = 1}

if ∃γt
k = 1, or κt = t otherwise. The estimate of current state at the decoder estimator x̂d

t is computed as
follows:

x̂d
t = Aκt ỹt

t−κt
= Aκt x̂e

t−κt
(50)

Note that the decoder estimate is equivalent tox̂d
t = E[xt | yt−κt

, . . . , y1] and that the its errored
t = xt+1 − Ax̂d

t

has covariance:

cov(ed
t ) = E[ed

t e
dT

t | yt−κt
, . . . , y1] = Φt−κt

0 (E[ed
t−κt

edT

t−κt
| yt−κt

, . . . , y1]) = Φt−κt

0 (P e
t−κt

) = Φt−κt

0 ◦Φκt

1 (P0),
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where the superscript ofΦn
λ(P ) indicatesΦλ ◦ · · · ◦ Φλ(P ) composedn-times. Therefore, the decoder

estimator error at any time stept is equivalent to the optimal estimator that one would obtainif all
observations up to timet− κt were successfully delivered. This estimation architecture is superior to the
estimation architecture proposed in Section IV, in fact theestimator obtained in Theorem 1 has error
covariancecov(xt+1 − Ax̂t

t|t) = P t
t+1|t, whereP t

t+1|t is given by Equations (13)-(14) and can be written
as:

P t
t+1|t = Φγt

t
◦ . . . ◦ Φγt

1
(P0)

= Φt−κt

0 ◦ Φγt
κt

◦ . . . ◦ Φγt

1
(P0)

≥ Φt−κt

0 ◦ Φγt
κt

◦ . . . ◦ Φ1(P0)

≥ Φt−κt

0 ◦ Φ1 ◦ . . . ◦ Φ1(P0)

= Φt−κt

0 ◦ Φκt

1 (P0)

= cov(ed
t )

where we used the factsγt
k = 0 for k > κt, γt

k ≤ 1 for k ≤ κt, and Theorem 2(d). Therefore, the
error covariance of the estimator proposed in this section is smaller than the error covariance of estimator
proposed in Section IV. We can summarize the previous resultin the following theorem:

Theorem 5:Let us consider the stochastic linear system given in Equations (1)-(2), whereR > 0. Also
consider the packet arrival process defined by Equation (3).Let x̂y

t = x̂t
t|t the optimal estimator given by

Equations (11)-(14) when raw measurementsyt are transmitted over the network. Letx̂d
t the estimator

given by Equation (50) where the state estimatex̂e
t defined by Equations (45)-(48) is pre-computed by

the sensor and then transmitted over the network. Then the estimation error covariance of̂xe
t is always

smaller than the estimation error covariance ofx̂t
t, i.e.

cov(xt − x̂d
t ) ≤ cov(xt − x̂y

t ), ∀t.

Besides having a better performance, the estimator proposedin this section requires very limited
computational requirements at the receiver side, in fact itsuffices to store the most recent packet arrived
at the receiver and then to compute the best state estimate atcurrent time by pre-multiplying the packet
data with a matrix which depend on the packet delay. Moreover, as for the estimator of Section IV, also
the estimator based on co-located smart sensors does not require any statistical a-priori knowledge of the
arrival process.

However, if the packet arrival statistics are stationary and i.i.d, then it is possible to give stability criteria
and to compute the expected error covariance as shown in the following theorem:

Theorem 6:Let us consider the stochastic linear system given in Equations (1)-(2), where(A,C) is
observable,(A,Q1/2) is controllable, andR > 0. Also consider the arrival process defined by Equa-
tions (18)-(20), and the estimator architecture given by Equations (45)-(50). Then the estimator is stable
if and only if A is stable, orλloss < 1

|σu
max(A)|2

, whereσu
max(A) is the largest eigenvalue of the matrixA.

If the estimator is stable then the covariance of the estimation error defined ased
t = xt+1 − Axd

t has the
following property:

lim
t→∞

E[ed
t e

dT

t ] = D∞ = lim
N→∞

DN
0 (51)

where the matrixDN
0 is computed as follows:

DN
N = (1 − λN)ADN

N AT + (1 − λN)Q + λNP e
∞ (52)

DN
k = (1 − λk)ADN

k+1A
T + (1 − λk)Q + λkP

e
∞, k = N − 1, . . . , 0 (53)

andP e
∞ is the unique positive definite solution of the Ricatti Equation P e

∞ = Φ1(P
e
∞). If τmax < ∞, then

D∞ = Dτmax

0 = DN
0 , for all N ≥ τmax.
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Proof: The proof follows along the same lines of Theorems 1 and 3. Letus consider the following
estimator:

x̆t
t−N |t−N = (1 − γt

t−N)Ax̆t−1
t−N−1|t−N−1 + γt

t−N x̂s
t−N

x̆t
t−k|t−k = (1 − γt

t−k)Ax̆t
t−k−1|t−k−1 + γt

t−kx̂
s
t−k, k = N−1, . . . , 0

x̆t
−k|−k = x̄0, γt

−k = 0, x̂s
−k = 0

It should be clear that by construction̂xd
t = x̆t

t|t if and only if N ≥ τmax. If N < τmax, then the estimator
x̂d

t cannot be optimal. Let us consider the estimator error defined as ĕt
k+1|k = xk+1 − Ax̆t

k|k that can be
written as:

ĕt
k+1|k = xk+1 − A

(
(1 − γt

k)Ax̆t
k−1|k−1 + γt

kx̂
s
k

)
= (1 − γt

k)(xk+1 − AAx̆t−1
k−1|k−1) + γt

k(xk+1 − Ax̂s
k)

= (1 − γt
k)(A(xk − Ax̆t−1

k−1|k−1) + wk) + γt
ke

s
k = (1 − γt

k)(Aĕt
k|k−1 + wk) + γt

ke
s
k

and its error covariancĕP t
k+1|k = E[ĕt

k+1|kĕ
tT

k+1|k | γt
k, . . . , γ

t
1] is then given by:

P̆ t
t−N+1|t−N = (1 − γt

t−N)(AP̆ t−1
t−N |t−N−1A

T + Q) + γt
t−NP e

t−N

P̆ t
t−k+1|t−k = (1 − γt

t−k)(AP̆ t
t−k|t−k−1A

T + Q) + γt
t−kP

e
t−k, k = N−1, . . . , 0

P̆ t
−k|−k = P0, γt

−k = 0

The error covariancĕP t
t+1|t is then stochastic and depends on the arrival sequence. However since it is

linear in the arrival sequenceγt
k, it is possible to compute the expected error covarianceE[P̆ t

k+1|k] = P̂ t
k+1|k

as follows:

P̂ t
t−N+1|t−N = (1 − λN)AP̂ t−1

t−N |t−N−1A
T + (1 − λN)Q + λNP s

t−N

P̂ t
t−k+1|t−k = (1 − λk)AP̂ t

t−k|t−k−1A
T + (1 − λk)Q + λkP

s
t−k, k = N−1, . . . , 0

P̂ t
−k|−k = P0, γt

−k = 0

Since limt→∞ P e
t−k = P e

∞ whereP e
∞ = Φ1(P

e
∞), then limt→∞ P̂ t

t−N+1|t−N = DN
N exists and it is finite if

and only if
√

1 − λNA is stable, i.e.
√

1 − λN |σu
max(A)| < 1. This is equivalent toλN > 1 − 1

|σu
max(A)|2

.
SuchλN exists if and only ifλloss < 1

|σu
max(A)|2

. If this condition holds then Equations (52)-(53) follow.
Also it is simple to show that{DN

0 }∞N=0 is a decreasing function ofN and bounded from below, therefore
limN→∞ DN

0 = D∞. Moreover, sinceE[ed
t e

dT

t ] = limN→∞ P̂ t
t+1|t, then it follows limt→∞ E[ed

t e
dT

t ] = D∞.
Following Theorem 3, it is easy to show that ifτmax < ∞, thenD∞ = Dτmax

0 = DN
0 , for all N ≥ τmax,

which concludes the theorem.
The previous theorem shows that performance of the smart optimal estimator under the assumption of

i.i.d. packet arrival process, can be obtained by solving the Lyapunov Equation (52) and then iterating
N = τmax linear equations (53), ifτmax is finite. Otherwise ifτmax = ∞, thenD∞ cannot be computed
exactly, however upper and lower bounds can be obtained similarly to Theorem 4.

VII. N UMERICAL EXAMPLES

In this sections we illustrate the use of the tools developedin the previous sections with the aid of
some numerical examples.

Let us consider the following probability function of packet delay:

λh =

{
0.05 h, h = 0, . . . , 15
0.75, h > 15

(54)

which is depicted in Fig. 7.
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Fig. 7. Probability function of packet delay for different scenarios and critical probabilityλ for dynamical systems (55).

Let us consider the following discrete time system:

A =

[
1.001 0.05
0.05 1.001

]
, C = [ 1 0 ], R = 0.01, Q =

[
0 0
0 0.01

]
(55)

which corresponds to the discretization with sampling period T = 0.05 of the continuous time sys-
tem ẍ − x = 0. This system has one stable pole and one unstable pole, and itis the model for
the discrete time dynamics of an inverted pendulum. The discrete time eigenvalues of the matrixA
are eig(A) = (1.05, 0.95), which give the critical probabilityλc = 1 − 1/1.052 = 0.095, as stated in
Theorem 2(i). According to Theorem 3 and 6 the estimator is stable if and only if N ≥ 2, in fact
λ1 = 0.05 < λc andλ2 = 0.01 > λc.

The trace of the covariance of the estimator error with constant gains,V N
0 , and the estimator error for

smart sensors,DN
0 are shown in Fig. 8. As mentioned in Section IV, the error covariance for time-varying

optimal estimator of Theorem 1 cannot be computed explicitly but it is upperbounded and lowerbounded
by V N

0 and byDN
0 , respectively. It is interesting to compare the performance of these estimators with

the error covarianceP e
∞ = Φ1(P

e
∞), shown in the same figure, corresponding to the ideal case when

there is no packet loss and no delay, since this gives an idea of the degradation due the communication
network. It is also relevant to evaluate the performance of an estimator with constant gains designed
without exploiting the prior knowledge about the packet arrival statistics. A natural choice is to use the
standard Kalman gainKe

∞ = P e
∞CT (CP e

∞CT + R)−1, i.e. Kk = Ke
∞, k = 0, . . . , N rather than the

optimal constant gainsKN
k defined in Theorem 3. The corresponding expected error covarianceTN

0 can
be obtained by Equations (41)-(42) and it is shown in Fig. 8. From this example it is clear that the tools
developed in this paper can help to substantially reduce thedegradation of performance when statistics
of packet arrival are available.

Now, we illustrate how these tools can be also used to comparetwo different communication protocols.
Let us consider a protocol giving rise to arrival statisticsof Equation (54) and a protocol giving rise to
the following arrival statistics:

λh =

{
( h

10
)3, h = 0, . . . , 10

1, h > 10
(56)
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Fig. 8. Trace of the steady state error covariance for the optimal estimator with constant gains (V N

0 ), for the optimal estimator with a smart
sensor (DN

0 ). The horizontal lineP e

∞
corresponds to the trace of the error covariance in the ideal scenario with no delay and no packet

loss, i.e.λh = 1 for all h, while T N

0 is the actual steady state error when using the Kalman gainKe

∞
. The error covariancesV N

0 , DN

0 are
unbounded forN < 2, while the covarianceP e

∞
is unbounded forN < 4, and they are all cosnstant constant forN ≥ τmax = 15.

for which τmax = 10, and it is graphically shown in Fig. 7. These two protocols are substantially different:
the first protocol has larger packet delivery with small delay, but also larger overall packet loss than the first
protocol, therefore it is difficult to evaluate which one is better suited for a real-time control application.
In Fig. 9 it is shown the trace of the error covarianceV N

0 for the two protocols with respect to the system
dynamics of Equation (55). For a buffer with a short memory the first protocol performs better, but for
a buffer of lengthN = 10 the second protocol starts performing better as the larger packet delivery
can compensate for a larger delay of arrived packets. If buffer length is further increased, then the first
protocol returns to perform better. This example clearly shows how optimal estimation design can be used
to evaluate and compare the performance of different communication protocols with respect to a specific
real-time application, which currently it is based only on heuristics and designer experience, and therefore
prone to errors.

VIII. C ONCLUSIONS

In this work we proposed a framework to optimally design and analyze the performance of estimators
in networked control system subject to simultaneous randompacket delay and packet dropped. We showed
that the optimal estimator is time-varying, stochastic, and does not depend on the specific communication
protocols adopted as long as measurements are time-stampedand can be re-ordered at the estimator site.
Also two alternative optimal estimator designs based on finite memory buffers and constant gains were
described and it was shown that if packet arrival is i.i.d., then the estimators are mean square stable if
and only if the packet loss probability is below a critical value. Therefore, implicitly we also provided
necessary and sufficient conditions about existence of stable estimators. Finally, we presented numerical
algorithms for the computation of the expected estimator error covariance of all the proposed estimators.

The tools developed in this paper are useful both from a control system design perspective and from
a communication design perspective. In fact, from a controlperspective they can help to evaluate the
tradeoffs between performance (error covariance), memoryrequirements (buffer length), and the hardware
complexity (“smart” sensor). In particular, the knowledgeof the packet arrival statistics can be used
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Fig. 9. Trace of the steady state error covariance for the optimal estimator with constant gains (V N

0 ) for two different communication
protocols whose packet arrival statistics is given by Equations (54) and (56).

to find the optimal constant gains{KN
k }N

k=0 and thus improving performance. From a communication
perspective, these tools can be used to aid communication protocol design for real-time applications.
In fact, as mentioned in Section I, when designing communication protocols, in particular for wireless
systems, there is tradeoff between packet loss and packet delay. At the moment, the choice between
favoring reduction of overall packet delay or reduction of packet loss is based on heuristics and experience,
and it is not tailored to the specific real-time applications. Therefore, being able to quantitatively measure
performance of different protocols can improve cross-layer design of complex networked control systems.

A possible future avenue of research is the extension of thiswork to the design of optimal LQG-like
controller design. This is not a trivial step as many important assumptions in standard LQG control, like
the separation principle, do not always hold for NCSs [26]. Another research direction is the application
of these tools to real-time control applications in wireless sensor networks. A preliminary attempt has
already been successfully applied to multiple target tracking [4], but extensive experimental work is still
needed.
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