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Abstract

In this paper we study optimal estimation design for samjileshr systems where the sensors measurements
are transmitted to the estimator site via a generic digaimunication networks. Sensor measurements are subject
to random delay or might even be completely lost. We show ttih@tminimum error covariance estimator is time-
varying, stochastic, and it does not converge to a steadg. dtéoreover, this estimator is independent of the
communication protocol and can be implemented using a fingenory buffer if and only if the delivered packets
have a finite maximum delay. We also present two alternaitive-tnvariant estimator architectures and, surprisingly
we show that stability does not depend on packet delay byt@mithe packet loss probability. Finally, algorithms
to compute critical packet loss probability and estimajmsformance in terms of error covariance are given and
applied to some numerical examples.

. INTRODUCTION

Recent technological advances in MEMS, DSP capabilitiespeding, and communication technology
are revolutionizing our ability to build massively distuied networked control systems (NCS) [1]. These
networks can offer access to an unprecedented quality anatiguof information which can revolutionize
our ability in controlling of the environment, such as fineaige building environmental control [2],
vehicular networks and traffic control [3], surveillancedazpordinated robotics [4]. However, they also
pose challenging problems arising from the fact that sensatuators and controllers are not physically co-
located and need to exchange information via a digital comeation network. In particular, measurement
and control packets are subject to random delay and lossseThmblems are particularly evident in
wireless communication networks which are rapidly replgcwired communication infrastructures in
many engineering areas [5]. This is happening because esgetystems are easier and cheaper to
deploy and avoid cumbersome cabling and device positioragides, new technologies like wireless
sensor networks (WSNs), which are large networks of spat@ilitributed electronic devices — called
nodes — capable of sensing, computation and wireless comatiom, will enable the development of
applications previously unfeasible [6] [7]. For example, MIgas been used for animal habitat monitoring
in inhospitable regions [8] and microclimate monitoringfanests [9]. These are typical example of large
scale fine grain sensor data-collection applications whdogmation is collected and then analyzed off-
line.

However, WSN are going to be employed also for real-time appbns. For example consider a WSN
deployed in a forest whose nodes are equipped with temperand humidity sensors, as graphically
shown in the left panel of Fig. 1. The same network could beleysp for monitoring climate vari-
ations (data-collection application) or for wild-fire detien and tracking (real-time application) [10].
Despite the fact that these two applications adopt the safmastructure, they obviously have different
packet delay and packet loss requirements, as shown in payel of Fig. 1. In fact, in data-collection
applications it is only necessary to extract all data religasdof packet delay, while in real-time control
applications both delay and packet loss are relevant. ttinfately, the design of communication protocols
for communication networks has to deal with unavoidableldcdfs between packet loss and packet
delay. In fact, communication protocols that aim at redgqgoacket loss require retransmission of lost
packets and packet delivery acknowledgment, which ineréasdfic and consequently delay. Viceversa,
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Fig. 1. Pictorial representation of Wireless Sensor Network for famemtitoring or wildfire detectior{left). The small dots indicate the
location of the sensing nodes, the shaded circles indicate the sensingsregid the segments the communication links. Tradeoff curve
typical of many network communication protocols and constraint redionseal-time and data-collection applicatiofréght).

reducing time delay requires dropping of packets to miigsaffic and packet collisions (see solid line
in right panel of Fig. 1). Therefore, it is not trivial to dgai communication protocols for control systems
since both delay and packet loss negatively impact estimatnd closed loop performance of controlled
systems. Currently, communications protocols and netvebdamtrol systems are designed separately. In
particular, protocols are design based on conservativedties which specify what the maximum time
delay and maximum packet loss should be, but with no cleaenstahding of their impact on the overall
application performance. On the application side, corgystems are not specifically designed to exploit
information about packet loss and delay statistics of theroanication protocols they will run on. From
these observations few questions arise. For example, howldshwve design estimators for networked
systems that take into account simultaneous random deldypacket loss? How can we estimate their
performance? When is the closed loop system stable? How cacha@se between a communication
protocol with a large packet delay and a small packet lossagpiebtocol with a small packet delay and a
large packet loss, in terms of best performance of a speeifictime application? These are the questions
that motivate this work.

This paper is organized as follows. In the next section we g overview on relevant previous work
and we state our contribution. Section Ill formalizes thenimum variance estimation problem and the
packet arrival process modeling. In Section IV the minimwsmiance estimation problem is solved in full
generality and conditions on memory requirements are giveSection V we derive stability conditions
and quantify performance in terms of expected estimaticor eovariance of minimum variance estimators
with constant gains under i.i.d. packet arrival with knowatistics. These suboptimal estimators provide
an upper bound for the performance of the time-varying ogitifitter proposed in Section IV. Section
VI shows how estimation performance can be improved whes®@srwith computational resources are
physically co-located. This architecture also providesveer bound for performance of the time-varying
optimal filter of Section IV. Section VIl gives some numetiexamples to illustrate the use of the tools
derived in the previous sections. Finally, in Section VI state our conclusions and give directions for
future work.

[I. PREVIOUSWORK AND CONTRIBUTION

Classical control has mainly focused on systems with cohstatay [11] or with small delay per-
turbation known as jitter [12]. Recently several groups himaked at networked control systems with
large random delay measurement and control or packet Ibessiirvey paper [13] nicely reviews several
results in this area. These results can be divided into twio gr@ups: the first group focuses on variable
delay but no packet drop, while the second group focuses okep#oss but no delay.



Within the first group, some authors derived stability ctiodis in terms of LMIs for closed loop
continuous time linear systems with stochastic samplinget{14][15], and Nesic at al. [16] obtained
Lyapunov-like stability conditions for continuous time mimear systems with unknown but bounded
sampling time. These works simply determine stability fogigen closed loop system, and there is no
controller synthesis specifically designed to take intooaot delay. With this respect, Yue et al. [17]
proposed an LMI approach for the design of stabilizing calters for bounded delay, while Nilsson at al.
[18] extended LQG optimal control design to sampled lingetesms subject to stochastic measurement
and control packet delay, and showed how the optimal cdetrglins are time-delay dependent. The
previous results rely on the major assumption that there jgatket loss or there are at mastconsecutive
packet drops.

In the second group of results, there has been a consideedfolt to apply optimal control and
estimation to discrete time systems where measurementsanicbl packets can be dropped with some
probability, but have otherwise no delay. This framewor&dasiivalent of saying that all packets have either
no delay or infinite delay. For example, in [19][20][21] thatlaors proposed compensation techniques
for i.i.d Bernoulli packet-drop communication networks asetived stability conditions for closed loop
discrete time system. Elia et al. [22][23] proposed a ststibgerturbation approach for general MIMO
LTI discrete time systems and showed that the optimal ctetrdesign is equivalent to solving a convex
LMI optimization problem. Sinopoli at al. [24] looked sp&cally at minimum variance estimation design
for packet-drop networks and showed that the optimal estimia necessarily time-varying, and these
results have been extended to LQG controller design in [88][26]. Finally, a number of researches has
explored specific mechanisms to improve estimation perdoga such as exploiting local computation at
the sensor location [27][28], controlled communicatio®][28], and network topology [30].

The previous two groups of results suffer from some limitasi. In fact, even with retransmission
mechanisms present in all current digital communicationvagks, and in particular in the wireless ones,
it is impossible to guarantee that all packets are correglyvered to the destination. On the hand, in
wireless sensor networks which implement multi-hop comigation, delay is not negligible and is subject
to large variations. Therefore, none of the modelings awmrsed so far, i.e. random delay but no packet
loss and packet loss but no delay, fully represent contrstiesys interconnected by digital communication
networks. Very little work has been done considering siandbus packet drop and packet delay leading
to somewhat conservative results as they are based on gawstscenarios [31] [32].

In this paper we propose a probabilistic framework to areblyztimation where observation packets are
subject to arbitrary random delay and packet loss. Thisnallpackets to arrive in burst or even out of
order at the receiver side, as long as the measurementsrerstamped at the sensor side. We derive the
optimal estimator in mean square sense and we show that themam error covariance estimator is time-
varying, stochastic and does not converge to a steady Mateover, this estimator design is independent
of the specific communication protocol adopted and can béeimgnted using a finite memory buffer if
and only if the delivered packets have a finite maximum ddlayarticular, the memory length is equal
to the maximum packet delay. We also present two alternastenator architectures which constrain the
estimator gains to be constant rather than stochastic athéotrue optimal estimator. In particular we
show how to compute the optimal constant gains if the packatah statistic is stationary and known.
We derive necessary and sufficient condition for stabilitytree estimator. Surprisingly we show that
stability does not depend on packet delay but only on a atifi@cket loss probability which depends
on the unstable eigenvalues of the system to be estimatedalSeprovide quantitative measures for
the expected error covariance of such estimators which dutnto be the solution of some modified
algebraic Riccati equations and Lyapunov equations. Thesssunes can be used to compare different
communication protocols for real-time control applicago Very importantly, these results do not depend
on the specific implementation of the digital communicatn@twork (fieldbuses, Bluetooth, ZigBee, Wi-
Fi, etc .. ) as long as the packet arrival statistics are knawd and stationary.



1. PROBLEM FORMULATION
Consider the following discrete time linear stochastic plan
Tir1 = Axt + Wt (1)
yr = Cxp+ vy, (2
wheret e N={0,1,2,...},z,w e R",y € R, A € R"™*", y € R™, C' € R™", (9, wy, v;) are Gaussian,

uncorrelated, white, with meaix,, 0,0) and covariancé Py, @), R) respectively. We also assume that the
pair (4, C) is observable(4, Q'/?) is controllable, andr > 0.
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Fig. 2. Networked systems modeling. Sampled observations at the fiate transmitted to the estimator site via a digital communication
network. Due to retransmission and packet loss, observation packiets & the estimator site with possibly random delay.

Measurements are time-stamped, encapsulated into paeketsthen transmitted through a digital
communication network (DCN), whose goal is to deliver paskigom a source to a destination (see
Fig. 2). Time-stamping of measurements are necessary tdaepackets at the receiver side as they can
arrive out of order. Modern DSNs are in general very compleck @an greatly differ in their architecture
and implementation depending on the medium used (wire&legs, hybrid), and on the applications they
are meant to serve (real-time monitoring, data extractioadia-related, etc ..). In our work we model
a DSN as a module between the plant and the estimator whidgtedelobservation measurements to
the estimator with possibly random delays. This model alalso for packets with infinite delay which
corresponds to observation loss. We assume that all oltseryackets correctly delivered to the estimator
site are stored in an infinite buffer, as shown in Fig. 2. Thévalr process is modeled by defining the
random variabley; as follows:

3)

From this definition it follows that+} = 1) = (y;t" = 1,Vh € N), which simply states that if packe},
is present in the receiver buffer at timethen it will be present for all future times. We also define th
packet delayr;, € {N, oo} for observationy, as follows:

00 if vi=0,vt>k
Tk = . A ¢ (4)
ty — k otherwise wheret, = min{t | v; = 1}
wheret, is the arrival time of observation. at the estimator site . Since the packet delay can be random,
observation measurements can arrive out of order at thenasti site (see Fig. ¥ = 5). Also it is
possible that between two consecutive sampling periodsackegb (see Fig. 3, = 4) or multiple packets
(see Fig. 3,t = 6) are delivered. In our work we do not consider quantizatiestodtion due to data

encoding/decoding since we assume that observation moiseich larger then quantization noise, as it
is the case for most DSNs where packets allocate hundredisofob measurement ddtaAlso we do

¢« ] 1 if y, has arrived at the estimator before or at time > k
k=) 0 otherwise

1For example, ATM communication protocols adopts packets with 384-hit fild, Ethernet IEEE 802.3 packets allows for at least 368
bits for data payload, Bluetooth for 499 bits [13] and IEEE 802.15.4ufoto 1000 bits. This assumption might not hold for multimedia
signal like audio and video signals, which however are not in the scoplasofvork.



not consider channel noise since we assume that if any lait arcurred during packet transmission is
detected at the receiver, then the packet is dropped.
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Fig. 3. Packet arrival sequence and buffering at the estimator loc&imaded squares correspond to observation packets that hawve bee
successfully received by the estimator. Cursor indicates current time.

If observationy,, is not yet arrived at the estimator at tilmewe assume that a zero is stored in the
k-slot of the buffer, as shown in Fig23More formally, the value stored in thie-slot of the estimator
buffer at timet can be written as follows:

. = Mk = WCwk + Vun (5)
Our goal to compute the optimal mean square estimatpwhich is given by:

N A ~ _

Tyt = E[l’t ‘ Yt Vs Lo, Po] (6)
wherey, = (74,95, ...,9)) and~y, = (74,44, ..., ~f). It is important to remark that the estimator above
has the information weather a packet has been delivered tprand it is not equivalent to computing

Ty 7 Tapy 2 E[z; | ¥, %o, Po]. The latter estimator would in fact consider the zero estdéthe buffer
as true measurements and not as dummy variables, thus ipgpadower performance. It is also useful
to design the estimator error and error covariance as fsllow

A N
€t = Tt — Ty (7)

E[et‘teat ’ ytafytafO?PO] (8)

(1>

2In practice, any arbitrary value can be stored in the buffer slots qmmeing to the packets which have not arrived, since as it will be
shown later, the optimal estimator does not use those values as they donmey any information about the state Our choice of storing
a zero simply reduces some mathematical burden.



The estimatet,, is optimal in the sense that it minimizes the error covagane. given any estimator
Ty, = f(¥+,7.), where f is a measurable function, we always have

E[(l’t — ft\t)@?t - 5ft|t)T ‘ Y, Y¢» Lo, PO} > Pt|t-

Another property of the mean square optimal estimator i$ fha and its errore,, 2 Ty — Iy, are
uncorrelated, i.eEle, iﬁt] = 0. This is a fundamental property since it gives rise to theassmn
principle for the LQG optimal control, which is of the mostdely used tool in control system design
[33] [26].

IV. MINIMUM ERRORCOVARIANCE ESTIMATOR DESIGN

In this section we want to compute the optimal estimator g Equation (6). First, it is convenient
to define the following variables:

st A t t ~t ~t
xk|h - E[xk|’7h7'-‘771ayha"'7y17x0aP0]

t
Pk|h

1>

E[("Ek - jll€c|h)(xt - iz‘h)T ’ ’Y;u s 7’}{7 g;w R 7:&37 Zo, PO]

from which it follows that, with a little abuse of notation,, = 2;, and P, = P,.
It is also useful to note that at timehe information available at the estimator site, given by&iapn (5),

can be written as the output of the following system:

Tpp1 = Az 4wy (9)
gjltc—i—l = Oltc—i-lxk’-i-l + ’&li:-i-la k= 0,....,t—1 (10)

where C} = ~LC, and the random variables, = ~iv, are uncorrelated, zero mean white noise with
covarianceR! = E[v(o1)”] = 4L R. For any fixedt this system can be seen as a linear time-varying
system with respect to time, where the only time-varying elements are the observatiatrimiC}, and
measurement noise covariangg.

We can now state the main theorem of this section:

Theorem 1:Let us consider the stochastic linear system given in Eqost{1)-(2), where? > 0. Also
consider the arrival process defined by Equation (3), andgen square estimator defined in Equation (6).
Then we have:

(@) The optimal mean square estimator is givenihy= fiu where:

T = AT _qpoy + 0G0 — CAT ), k=100t (12)
Kj = PJ§|1@—1CT(CP1§|1€—1CT +R)™ (13)
Piop = AP AT+ Q — AP CT(CPy_ C" + R)T'CPy, AT (14)

(b) The optimal estimatog,, can be computed iteratively using a buffer of finite lengthif and
only if vi =~/ ',Vk > 1,Vt > k + N. If this property is satisfied, theq,, = T, whereiﬁ‘t is
given by Equations (11)-(14) far=1,..., N and as follows fort > N:

t st
Li_Njt-N = T Nj—N> (15)

Plns-n = Plvau-n (16)
Equations (12),(13),(14) k=t—N+1,...,t a7



Proof: (a) Since the information available at the estimator sitenag ¢ is given by the time-varying
linear stochastic system of Equations (9)-(10) , then th#n@ estimator is given by its corresponding
time-varying Kalman filter:

ﬁqk = Aiﬁlfcfl\kfl + K (45, — CZASACLWCA)
Kj. = PiuCy (CLPluCf +R)™

Pl = AP AT +Q— API§|k—1CiiT(CIiPI§|k—1CIiT + Ry) T CL P AT
Tho = To, Piy=F

whose derivation can be found in any standard textbook orhastic control [33] [34]. By substituting
Ci., =1t,,C and Rl, = 7{R into the previous equations and after performing some sficgtions’ we
obtain optimal estimator Equations (11)-(14).

(b)(=) Let us considet > N. If v, = ,™",Vk > 1,Vt > k + N, then alsoP},,, = Pli-;hk and

Ty = j:fd‘kl hold under the same conditions on the indices. In partictilaolds for & = ¢t — N which

implies Ptt_NH‘t_N = Iﬂf_‘}VH't_N and ﬁ_NH_N = iﬁj\,‘t_N. Therefore, it not necessary to compute
P{Hl't and ;, at any time steg startir\g fro.mk: =1, but it i.s suﬁicignt to use the valueié:}Vlt_N ahd
Pt'_‘NH“_N precomputed at the previous time step 1, as in Equations (15) and (16), and then iterate
Equations Equations (12)-(14) for the latéétobservations.

(<) Using a contradiction argument suppose that there exist®r which estimator defined by
Equations (15)-(17) is optimal. Now consider an arrivalws®tce for whichyi =0 for¢ =1,..., N and
7t =1, and alsoP, > 0. Then P! < P} which does not satisfy Equation (16) for= N + 1. As
a consequence, the estimator with finite memory buffer cabhacoptimal, thus contradicting the initial
hypothesis. [ |

If there is no packet loss and no packet delay, e~ 1,V(k,t), then Equations (11)-(14) reduce
to the standard Kalman filter equations for a time-invarsygtem. However, there are some differences
between the standard Kalman filter and the optimal filter wteamdom packet delay is allowed.

The first difference is that the optimal estimator under agamework jumps between an open loop
estimate when/ = 0 and closed loop estimate whef = 1. In fact, whem}, = 0 the value stored in the
buffer is not used and the error covariance increases, witfiln~; = 1 the observation measurement is
used according to the usual Kalman equations and the emvariaoce decreases. Therefore, the optimal
estimator and its error covariance are strongly time-vayynd stochastic. Differently, in standard Kalman
filtering the error covariancé&,; and the optimal gaitk’;, under standard observability and controllability
hypotheses, converge to finite steady-state vallgsand K, respectively, as time progresses. Moreover,
it is possible to achieve the same steady-state éfxoby simply using a constant filter with the steady-
state gaink; = K, which is very valuable from a implementation point of vience it does not require
any on-line matrix inversion.

The second difference is that the standard Kalman filter doeseed to store all past observations and to
computei,, starting fromk = 1, but the optimal estimate can be computed incrementallytdnyng only
the current observation, the past state estimate_;;_; and the past error covarianég,_,. Differently,
the optimal estimator subject to random packet delay requihe storing of all past packets and the
inversion of up ta matrices at any time stepo calculate the optimal estimate, as shown in Theorem 1(b).
The optimal estimator can be implemented incrementallp@iog to Equations (15)-(17) using a buffer
of finite length V only if all successfully received observations have a dslagller than/V time step,
e .y = yi‘l,Vk > 1,Vt—k > N (see Fig. 4). This does not mean tladit packets arrive at the receiver
within N time steps, but only that if a packet arrives then it does iwithi time steps. In other words,
this is equivalent of stating that the packet delay belooghe finite set, € {0,..., N—1,00},Vk > 1.

3In particular, we employed the fact that the Kalman filter equations careberglized to the cask > 0 by using pseudoinverse rather
than the inverse in the computation of the posterior error covariance.
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Fig. 4. Optimal estimator for general packet arrival processdd. (Optimal estimator with finite memory buffer for packet arrival preses
with bounded delayright).

The previous condition is rather common in DSNs since theylaadly guarantee correct delivery of all
transmitted packets, while they often implement mechasitmdrop packets that are too old.

Up to this point we made no assumptions on the packet arrm@dgss which can be deterministic,
stochastic or time-varying. However, from an engineerimgspective it is important to determine the
performance of the estimator, which is evaluated based eeittor covariance’,, ;. If the packet arrival
process is stochastic, then also the error covariance ¢hastic. In this scenario a common performance
metric is the expected error covariance, [P, ], where the expectation is performed with respect
to the arrival process;. However, other metrics can be considered, such as the lglityp#hat the error
covariance exceeds a certain threshold,ﬁ{@+1|t > Ppaz) [35]. In this work we will consider only the
expected error covariand®, [P, 1,]. It has been shown in [24] that compultifig| P, ] analytically it is
not possible even for a simple Bernoulli arrival process, amlgt upper and lower bounds can be obtained.
Rather than extending those results by trying to bound pmdaoce of the time-varying optimal estimator,
we will focus on filters with constant gains and with a finiteffeu dimension, i.e. we will consider
K} ,=K,foralteNh=0,...,N—1. The gainsK, will then be optimized to achieve the smallest
error covariance at steady-state. The advantage of usimgfartt gains is that it is not necessary to invert
up to N matrices at any time stefy thus making it attractive for on-line applications. Moveq filters
with constant gains are necessarily suboptimal, therdfoe® error covariance provides an upper bound
for the error covariance of the true optimal minimum errovartance filter given by Equations (11)-(14).

V. OPTIMAL ESTIMATION WITH CONSTANT GAINS

In this section we will study minimum error covariance fitavith constant gains under stationary i.i.d
arrival processes.
Assumption:The packet arrival process at the estimator site is statjoaad i.i.d. with the following
probability function:
Plr < h] =\, (18)

wheret > 0, and0 < )\, < 1 is a non-decreasing ih =0, 1,2, ..., andr, was defined in Equation (4).
Equation (18) corresponds to the probability that a pacastedh time steps ago has arrived at the

estimator. Obviously);, must be non-increasing sinég = P[r, < h— 1]+ P[r, = h] = A\p—1 +P[rz = hl.
Also, we define the packet loss probability as follows:

)\loss é 1- Sup{Ah| h > 0} (19)

The arrival process defined by Equation (18) can be also beadeWith respect to the probability density
of packet delay. In fact, by definition we ha¥r, = 0] = Ao, P[rx = h| = A\, — A1 for A > 1, and
P[Tk = OO} = )\1053.

Finally, we define the maximum delay of arrived packets a®\id:

A { min{H| g = Agi1} if 9H such that\, = Ay, Vh > H

00 otherwise (20)

Tmaac



Fig. 5 shows some typical scenarios that can be modeled uheerevious hypotheses. Scenario (A)
corresponds to a deterministic process where all packetswarcessfully delivered to the estimator with
a constant delay. This scenario is typical of wired systedtenario (B) models a DCN that guarantees
delivery of all packets within a finite time window,,.., but the delay is not deterministic. This is a
common scenario in drive-by-wire systems. Scenario (C)esgprts a DCN which drops packets that
are older than,,,, and consequently a fractioh,,; > 0 of observations is lost. This scenario is often
encountered in wireless sensor networks. Scenario (Dgsponds to a DCN with no packet loss but with
unbounded random packet delay. One example of such a sceésaiDCN that continues to retransmit
a packet till it is not delivered.

A (A) A (B)
1t 1t-----------
Tmaa: )\1--- ; Tma:c
012345... h 012345... I
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N S
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v

012345«

Fig. 5. Probability function of arrival process, = P[r. < h] for different scenarios: deterministic packet arrival with fixed delay,
bounded random packet delay with no packet loss (B); boundedmapacket delay with packet loss (C); unbounded random packet dela
with no packet loss (D).

In the rest of the paper we will use the following definitionstébility for an estimator.
Definition: Let z,, = f(¥:,~,) be a generic estimator, whefds a measurable function, aag, = x;—,
and Pt‘t = E[ét|té£t|yt,fyt] its error and error covariance, respectively. We say thategtimator is mean-
square stable stable if and only lifn, ... E[¢;,] = 0 andE[P,;] < M for some M > 0 and for all
t>1.

The previous definition can be rephrased in terms of the msnanthe estimator error. In fact the
conditions above are equivalent liay, .. E[||é;;]|] = 0 andE[||é;||*] < trace(M).

Let us consider the following constant-gain estimatgy = z;, with finite-buffer of dimensiony,
wherei;, is computed as follows:

ji—ku—k = Aji—k—l\t—k—l + Y Kk (0 — CAﬁ—k—ut—k—Ja k=N-1,...,0 (21)
Tionp-N = Tinpn (22)
3~5t—k|—k = o, ’Yt_k =0, th_k =0 (23)

where the last line include some dummy variables necessainjtialize the estimator for =1,..., N.
Note that constant-gain estimator structure is very sititathe optimal estimator structure given by
Equation (12) as the estimate is corrected only if the oladienv has arrived, i.ey!_, = 1, otherwise the
open loop estimate is considered. However, differentlynfiequation (12), the gain&;, k =0,..., N—1
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are constant and independenttpfand the computation of the estimatg, does not require any on-line
matrix inversion differently fromz,, as indicated by Equations (12)-(14).
We also define the following variables that will be useful talyze the performance of the estimator:

l’iﬂ\k = Afy, (24)
€k+1\k = Tg+1 — ‘%Z+1\k (25)
ﬁlﬁﬂ\k = E[é§€+1|ké§cil\k | Y6, 7] (26)
?Zﬂ\k = ]E[é§f+1|ké§fq:i-1\k] = E[ﬁ1§+1|k] (27)

wheret > k > 1. From these definitions we get:
Crp = Axk+wp — A(Trp-r + K-k (Cr + v — CTpgpr))
= A(l - VIZKt—kC)éZ:m—l +wy — VIiAKt—kUk (28)
Pl§+1|k = A(l - VIZKt—kC)Pii\kA(I - VZKt—kC)TAT +Q+ VZAKt—kRKﬁkAT (29)
Prop = MaA( = Ky O) Py (I — Koy O AT+ (1= M) AP AT+ Q+ Ay ATK RKE, AT(30)

wherel € R™"*" is the identity matrix. To obtained the previous equatiomsemployed independence of
Yoy Uky W, ande,ﬂ,C » and the fact that,, andw,, are zero mean. For ease of notation let us define the
following operator:

Ly(K,P) =) (I-KC)P(I-KC)"AT+(1-\)APAT +Q+ AKRK AT (31)
If we substitutek = t — N |nto Equatlon QSO) and noting that from Equation (22) folfo that
Pt—N+1|t—N Ptt ]{/—Q—l\t v and Pt N41jt—-N = Pt N41t—N+ WE obtain:
—=t —=t—1
Pt—N+2|t—N+1 = Ly, (Kn- 17Pt—N+1\t—N) (32)
—=t
Pt7k+1|tfk = 'C/\k(Kkapt k|t—k— 1) k=N-=2,...,0 (33)

Observe that Equation (32) and (33) define a set of linearmétestic equations for fixed\, and K.

In particular, if we defineS, = Pt 11/+1|t ~» then Equations (32) can be written as

St—‘rl - E)\Nfl(KN—17St) (34)

Since all matrices?i_kﬂlt_k,k: = 0,...,N — 1 can be obtained frony; it follows that stability of
estimator can be inferred from the properties of the operé¢K, P). The following theorem provides
these properties:

Theorem 2:Consider the operatof, (K, P) as defined in Equation (31). Assume also tffat> 0,
(A,C) is observable(A, Q'/?) is controllable,R > 0, and0 < X < 1. Also consider the following
operator:

®y\(P) = APAT + Q — NAPCT(CPCT + R)"'CPA" (35)

and the gainkp = PCT(CPCT + R)™!
Then the following statements are true:
(@) LA(K, P) = ®\(P) + MA(K — Kp)(CPCT + R)(K — Kp)TAT.
(b) L\(K,P) > ®,\(P) = LA(Kp, P), VK
(€) (P > Po) = (Ba(P1) = PA(P2)).
(d) (M > X)) = (D5,(P) < @,,(P)), VP
(e) If there existsP* such thatP* = £, (K, P*), thenP* > 0 and it is unique. Consequently this is
true also forK = Kp«, where P* = &, (P*).
(f) If (A > X2) and there exisPy’, Py such thatP; = &, (Py) and Py = ®,,(Py), then P} < Py.
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(9) Let Siy1 = Li(K,S;) and Sy > 0. If S* = L,(K,S*) has a solution, thetim; ., S; = S*,
otherwise the sequencg is unbounded.

(h) If there existsS*, K such thatS* = £, (K, S*), then alsoP* = &, (P*) exists andP* < S*.

(i) If Ais strictly stable, therP* = &, (P*) has always a solution. Otherwise, there exissuch that
P* = ®,(P*) has a solution if and only ik > A.. AlSO M\nin < Ae < Apaz, Wheren,,;, = 1—W,
Anae = 1 — m and|o¥| > 1 are the unstable eigenvalues 4f In particular\, = Ami; if
rank(C') = 1, and f\c = A\naz If C'Is square and invertible.

() The critical probability \. and the fixed pointP* = &, (P*) for A > A. can be obtained as the
solutions of the following semi-definite programming (SD@tpblems: A\, = inf{\|V,(Y,Z) >
0,0 <Y <[ forsomeZ,Y € R""}, and P* = argmax{trace(P) | ©,(P) > 0, P > 0} where:

Y VAYA+2ZC) VI—AYA
U(Y,Z2) = | VAAY +C'Z") Y 0 (36)
VI DAY 0 Y
APA'— P/ AAPC'
ONP) = [ VACPA  CPC'+ R 57

(k) If there existP* > 0 and K such thatP* = £, (K, P*), then the matrix4. = A(I — AKC) is
strictly stable.
Proof: Some of these statements can be found in [24] or can be dexigad similar lines, therefore
only a brief sketch is reported here for those ones.

(a) This fact can be verified by direct substitution

(b) This statement follows from previous fact ahd (K — Kp)(CPCT + R)(K — Kp)T AT > 0.

(C) From prEViOUS faCﬁ))\(Pl) = EA(Kpl,Pl) > ,C)\(Kpl, PQ) > EA(KPQ,PQ) = (D)\(Pg)

(d) From Equation (35) we haw,, (P) — ®,,(P) = —(\; — M) APCT(CPCT + R)"!'CPAT <.

(e) Uniqueness and strictly positive definitenessPtffollows from the assumption thatd, Q'/?) is
controllable [24].

(f) ConsiderP,; = @,,(F;) and S, = ®,,(S;) where P, = Sy, = 0. From fact (c) and (e) it follows
that P, < S;. Also P, < Py and S, < Py, thereforelim, .., P, = P, lim; .o, S; = S, and P < S. From
fact (e) it follows thatP = P; and S = Py, and thusP; < P;

(g-h) Let considerP,; = ®,(F;) and S;.1 = L\(K,S;) where By = Sy, = 0. From fact (c) and
monotonicity of operatoil, (K, P) with respect toP we haveP,.; > F;, Siy1 > S, and P, < Sp <
S* for all ¢. Since both sequences are monotonically increasing anddealy thenlim,_.., P, = P,
limy_.0o Sy =S, P = ®,(P), S = L,(K,S), and P < S. From fact (e) it follows that” = P* and
S = S*. A complete proof for convergence from any initial conditican be obtained along the lines of
Theorem 1 in [24], thus it is not reported here.

(i) The proof for existence of a critical probability. was given in [24] and it is based on observability
of (A, C) and monotonicity ofP,(P) with respect to\. The proof for\. = \,.;, whenrank(C) =1 can
be found in [37][23] although it was not explicitly derivedrfthe operato,. The proof for\. = A,z
when (' is square and invertible was first proved in [38].

()) The proof can be found in [24].

(k) Let us consider the linear operatéi(P) = MA(I - KC)P(I - KC)T AT +(1—-)\)APAT. Clearly
L\(K,P)=F(P)+ D, whereD = Q+ \AKRKT AT > 0. Consider the sequencés,, = L(Kp-, S;),
Tisn = La(Kp-,T,) with initial condition S, = 0, thenT, > 0. Note thatS, = >.,_, F*(D) and
Ty = FH(Tp)+ >4, F*(D) for t > 1, where we defing®®(D) = D andF*+'(D) = FoF*(D). Therefore
F(Ty) = T, — S,. From fact (g) it followslim, ... S; = lim, ., T; = P*, thereforelim, .., F*(Ty) = 0,
for all T, > 0, i.e. the linear operatof() is strictly stable. Now consider the system = A(] —
AKC). The system is strictly stable if and only lifm; .., Alxy = 0, for all zo. This is equivalent to
lim; o Alzozl (AT)E = GY(X,) = 0, where Xy = zoxl > 0 and G¥(X,) = Al Xo(AT)!. Note that
G(Xy) = AXoAT — 20AX((AKC)T + N AKCXo(AKC)! = F(Xy) + M(A — DAKCX,(AKC)T <
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F(Xp) sinceA(A—1)AKCXy(AKC)T < 0. Since we just proved théitm,; .., F*(X,) = 0 for all X, > 0,
then alsolim; .., G'(Xy) < Ft(X,) = 0 for Xy = xozl, i.e. the system!, is strictly stable. u

The previous theorem provides all tools necessary to aeayrl design the optimal estimator with
constant gains. In particular, fact (g) indicates that tbestant gaink™ that minimizes the steady state
error covarianceP* can be derived from the unique fixed point of the nonlinearraioe ®,, where
K* = Kp-. If the optimal gainK™ is used, then the expected error covariance converges tegardless
of the initial conditions(Fy, ), as follows from fact (f). Fact (i) shows that if the systeins unstable
the arrival probability needs to be sufficiently large to ensure stability, and thatdritical value\. is
a function of the unstable eigenvalues 4f Finally, although)\. and the the fixed poinf* = ®,(P*)
cannot be computed analytically, from fact (j) follows thiay can be computed efficiently using numerical
optimization tools. Finally fact (k) will be used to show thathe error covariance is bounded then the
estimator is asymptotically strictly stable, thereforéreator stability reduces to finiteness of steady state
error covariance.

The following theorem shows how compute the optimal estimatith constant gains.

Theorem 3:Let us consider the stochastic linear system given in Eqost{1)-(2), wherg A, C) is
observable,(A, Q'/?) is controllable, andR > 0. Also consider the arrival process defined by Equa-
tions (18)-(20), and the set of estimators with constanhgjéiK; }4, defined in Equations (21)-(23).
If A is not strictly stable and,,,s > 1 — \., where ). is defined in Theorem 2(j), then there exist no
stable estimator with constant gains. Otherwise Nesuch that\y > A\. and consider the optimal gains
{KN}N_, defined as follows:

Ky = vNc'(evie"+Rr)Y, k=0,...,N (38)
V]\]/Vfl - (I)ANfl(V]\]/VfJ (39)
VY = @, (W), k=N-1,....0 (40)

Also considerﬁzﬂlk as defined in Equation (27), théim, .., Fﬁ,kﬂlt,k = V¥, independently of initial

conditions (P, Z,). For any other choice of gainsk}.}_, for which the following equations exist:

Iy = Lo(Kn,Ty) (41)
Y = L, (Ky,TY,), k=N-1,...,0 (42)

thenlimt_)ooﬁi_kﬂ‘t_k =TN, andV¥ < TN fork=0,...,N. Also V{" ' < V. Finally, if 7,0, < 00,
then VN = Vi for all N > Tp40-
Proof: First we prove by contradiction that there is no stable esttimwith constant gains ifl is not

strictly stable and\,,;; > 1 — \.. Suppose such an estimator exists, i.e. there éxisnd {Kk}szol such
thatﬁilt is bounded for alk. Sinceﬁiﬂlt = Aﬁz‘tAT +Q alsof;nt must be bounded for afl. From
Equations (32) and (33) it follows thaﬁiﬂ‘t is bounded if and only i1'i’_32_,€+1‘t_,c fork=0,...,N—1are

bounded for alk. Therefore, since the bounded sequefice- ?E_NHH_N needs to satisfy Equation (34),
from Theorem 2(g) follows that* = £, ,(Ky-1,5*) has a solution. From Theorem 2(h) follows that
also P* = @, . (P*) has a solution. However, by hypothesig 1 < sup{A\,|h >0} =1 — N\jpss < A
Consequently, according to Theorem 2{); = ®,,_,(P*) cannot have a solution, which contradicts the
hypothesis that a stable estimator exists.

Consider now the case whé¥is such that\y > \.. From Theorem 2(h) it follows that Equations (38)-

(40) are well defined and have a solution. From Theorem 2(fllaws thatlim; ., ?t,kﬂ‘t,k =N

for the optimal gaind K}V }1 ', andlim, ]_DE,HW,,C = T} when using generic gaingk;.} . From

Theorem 2(h) it follows that/Y , < TX ;. From Theorem 2(c) we hav&y , = &,, , (V¥ ;) <
Lony(Kn o, V& ) < Lay_,(Kn_2, TH ) = TY ,. Inductively, it is easy to show that < T for
al k=0,...,N —1.
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Now we want to show thaty" "' < V;V. From Theorem 2(f) and the property;; > Ay follow also
that V'l = @ANH(WE) < VY =@, (V). ThereforeVy ™ = @, (VY1) < @, (V) = V¥ and
inductively Vk,]\”rl <V forall k= N,...,0 which proves the statement.

Finally, if 7,4, is finite, then), = \ for all & > 7,0, ASSUMEN > T,0z, thenVi = &, (V) =

Tmax

Dy, (VR = Vil = $ay, (VL)) = Pay (VL) = Vi = ... = VY =@, (VN ). Since
Vimar — @, (VIme), then by Theorem 2(e) we have th{armw =V . According to Equation (40)
we also havd/”"” = V¥ for k = Touas, - - -, 0, Which concludes the theorem [ |

The previous theorems shows that the optimal gains can lenebt by finding the fixed point of a
modified algebraic Ricatti Equation (39) and then iteratiMgime an operator with the same structure
but with different \,. The theorem also demonstrates that a stable estimatorcertetant gains exists
if and only if the optimal estimator with constant gains &xigherefore the optimal estimator design
implicitly solves the problem of existence of stable estons If the system to be estimated is unstable,
then the estimator is stable if and only if the packet losabdity A\, is sufficiently small. This is a
remarkable result since it implies that stability of estiara does not depend on the packet delgy, as
long as most most of the packets eventually arrive. Anotimgrortant result is that the performance of
the estimator, i.e. its steady state error covaridnee . ., Pt+1|t = lim; E[et+1|tet +1|t] = V¥, improves
as the buffer lengthV is increased. However, if the maximum packet delay is finitg, < oo, then the
performance of the estimator does not improve Aot> 7,,... This is consistent with Theorem 1(b) since
if a measurement packet has not arrived within, time steps after it was sampled, then it will never
arrive and it is useless to wait longer.

From a practical perspective, the designer can evaluatgdteoff between the estimator performance
VY and buffer lengthN which is directly related to computational requirements. tfiis respect, the
following theorem provides some useful bounds on the ulgredormance achievable with an estimator
with constant gains:

Theorem 4:Let A strictly stable or\,., < 1 — ). otherwise. Let the sequendg" with respect toNV
be defined as in Theorem 3, wheke> N,,..., 2 min{ N | \y > A.} if Ais unstable, otV > 0 otherwise.
Also consider the sequenc®’ defined similarly toV}" but for the following modified arrival statistic
AN =N, k=0,...,N—1 and \Y = sup{\,|h > 0},k > N. ThenV;" is a monotonically decreasing
sequence and}’ is a monotonically increasing sequence. Also there extstsuch that

P* = lim SN = lim VN (44)
N—oo N—o00

Finally, if 7,,.. < 0o, then P* = Vjmes = Sjme=,

Proof: From assumption\,,,; < 1 — A. it follows that ,,;, is well defined and exists. From
Theorem 3 it also follows thdt¥ and S} are well defined and exist. Sinég" is monotonically decreasing
and bounded from below; > 0 thenlimy .., V¥ = V*. Since A\ > Ay, from Theorem 2(f) we have
that S§ < V¥, and since\)y = \;,k = N —1,...,0 we inductively haveS) < V3. Moreover since
by deflnltlon AV = AVE =1 = Noss, thenSY = SVT]. Also by definitionA} ! = Ay < A, therefore
SN = @A%H(SNE) @,x+1(SY) = @,y (SY) = Sy where we used Theorem 2(d). Once again, since
AV = Mtk = N —1,...,0 inductively it follows thatSy ™ > S)'. Therefore the sequendes)'} is
monotonlcally mcreasmg and bounded from above snﬁi@fe< VN““" N > N,..n, from which it follows
thatlimy .., S{¥ = S*. SinceS} > 0 for all N, then alsaS* > 0. Now it is left to prove thats* = V*. If
Tmae < 00, this is trivial sinceSN =V = P*,N > 7,0.. Otherwise ifr,,,, = co note thatS} and V"
are continuous function of the sequendeg’ }3°, and {\;}2,, respectively. Sincéimy _..{\) }22, =

{6172, with respect to any norm defined on sequences, for exaff{ple} >, || 2 sup{ x| £ > 0}, then

by continuity alsolimy .., S = limy_.., V¥ = P* which concludes the theorem. ]
The positive definite matrixP* defined in the previous theorem correspond to the ultimamet lof
performance of any estimator with constant gains, i.e. itas possible to reduce the steady state error
covariance belowP* when using only constant gains. This is useful since thegdesican evaluate the loss
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of performance when using an estimator with a short buffer,N¥ < 7,,.., which is more advantageous
from computational point of view. The theorem also providesool to computeP* to any arbitrary
precision wherr, ., = co. In fact, we havel;¥ — P* < VN — S}V = APY > 0 for all N, where AP~
can be easily computed and has the propgriy_... APY =

VI. OPTIMAL ESTIMATION WITH CO-LOCATED SMART SENSORS

In this section we describe an alternative coding at the ®elogation which improves the overall
performance of the estimator at the receiver side. Thismsehwas independently proposed in [39] and
[27] where it was suggested to compute and transmit the sstiimate rather than the raw measurement.
As will be shown shortly, this approach gives an estimatathva better performance, however it is
applicable only if some computational resources are availan the sensor, commonly known as “smart
sensor”, and when all entries of the observation vegt@re collected from sensors which are co-located.
For example, this scenario is rarely the case in applicatronning over sensor networks where sensors
are distributed and have very limited computation resaif86]. Nonetheless, this scheme is useful per
se since it provides a computable lower bound for the peioca of the optimal time-varying filter
proposed in Section IV.

w PLANT+ ENCODER | ¢ Dol . E%ET?'\?ADTEC?R

Wt,] SENSOR yt: ESTIMATOR _t> Communieation ig
Vg [#e41 = Az +wr Tip1 = AZf + Ke Network 7d — Ahze —
" y=Cx¢+ vy et =yt — CZy t t-h

Fig. 6. Smart sensor with state estimator at encoder site before traimmiss

Rather than sensing the raw measuremeptsver the DCN the sensor compute the optimal state
estimate as follows:

Ty = Ari_, + K{(y — Atj_,) (45)
K¢ = PCT(CPCT +R)H (46)
Pfy = APFAT +Q — APSCT(CPICT + R)T'CPFA" = 9,(P) (47)
Py = PR, I5=71o (48)

These are the equations for the standard Kalman filter,nieentinimum error covariance estimatg =
E[z |y, - .., y1] whose estimation errare = z,.; — Ai¢ has covarianceov(et) = EleSes’ |y, ..., p1] =
Pr. The state estimate computed by the sensor encoder is #iesntitted over the DCN to the decoder
estimator. Using the same notation of Equation (5) the valaeed at the buffer can be written as follows:

Uk = kit (49)
Let us define the delay of the most recent packet arrived ate¢beder estimator as = ¢t — max{k |~} = 1}
if 3¢ =1, or x; = t otherwise. The estimate of current state at the decodenasti ¢ is computed as

follows:
= A"gy_,. = AMag (50)

Note that the decoder estimate is equivalerzﬂ;‘t@: Elx: | Yi—x,, - -,y and that the its errard = z,,; — Az¢
has covariance:

cov(ef) = Blefe | Yoo y1] = 6 (Elef iy, [Yener 1)) = B (PL,) = ™ 0 @ (Ry),

t—rK¢
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where the superscript ob}(P) indicates®, o --- o ®,(P) composedn-times. Therefore, the decoder
estimator error at any time stepis equivalent to the optimal estimator that one would obiéiall
observations up to time— «; were successfully delivered. This estimation architeciarsuperior to the
estimation architecture proposed in Section 1V, in fact gstimator obtained in Theorem 1 has error

covariancecov(zy1 — Ady,) = P/, where P/, is given by Equations (13)-(14) and can be written
as:

Ptt+1\t = ®p0...00,()
P o CID%i 0...0 CI)%(PO)
DL o Py 0.0 D (FRy)
@6_’“ odjo...00(FR)

= &5 "0 1 (Ry)

= cov(ed)

AVARAY,

where we used the factg = 0 for & > k;, 7. < 1 for & < k;, and Theorem 2(d). Therefore, the
error covariance of the estimator proposed in this seci@mialler than the error covariance of estimator
proposed in Section IV. We can summarize the previous rasulie following theorem:

Theorem 5:Let us consider the stochastic linear system given in Eqoat{1)-(2), where? > 0. Also
consider the packet arrival process defined by EquationL€)z} = %t the optimal estimator given by
Equations (11)-(14) when raw measuremeptsre transmitted over the network. Lef the estimator
given by Equation (50) where the state estimatedefined by Equations (45)-(48) is pre-computed by
the sensor and then transmitted over the network. Then timaag®n error covariance af{ is always

smaller than the estimation error covariancezffi.e.
cov(x, — 2%) < cov(x, — 2Y), VL.

Besides having a better performance, the estimator propwsedis section requires very limited
computational requirements at the receiver side, in fastiffices to store the most recent packet arrived
at the receiver and then to compute the best state estimaterant time by pre-multiplying the packet
data with a matrix which depend on the packet delay. More@&ifor the estimator of Section IV, also
the estimator based on co-located smart sensors does mireragy statistical a-priori knowledge of the
arrival process.

However, if the packet arrival statistics are stationarg aid, then it is possible to give stability criteria
and to compute the expected error covariance as shown irollogving theorem:

Theorem 6:Let us consider the stochastic linear system given in Egnat{1)-(2), wherg A, C) is
observable(A, Q'/?) is controllable, andR? > 0. Also consider the arrival process defined by Equa-
tions (18)-(20), and the estimator architecture given bydfigns (45)-(50). Then the estimator is stable
if and only if A is stable, or\,,,; < e wherec" (A) is the largest eigenvalue of the matrik

1
|U;¢LE‘E(A) mazx
If the estimator is stable then the covariance of the estimatrror defined as! = z;,, — Az¢ has the
following property:
lim Elefed’] = D™ = lim D (51)

where the matrixD}’ is computed as follows:

DY = (1= Ay)ADNAT + (1 — Ay)Q + AN PE, (52)
Dlizv = (1_/\k)AD.£:V+1AT+(1_)‘k)Q+/\kP<>eov k:N_laaO (53)

and P, is the unique positive definite solution of the Ricatti EqoatP, = ®,(P%). If 7. < oo, then
D> = Djmer = DY, for all N > 7,40
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Proof: The proof follows along the same lines of Theorems 1 and 3.uketonsider the following
estimator:

ot ot ut—1
Li_N[t—N (1= 7_n)AZ g N—1[t—N— YNty
_ ot
xt klt—k = (1= )Axt k—1|t—k— 1+7t—kxt—ka k=N-1,...,0
it _ = _
L_k|—k —xo,Wk—Oxk—O

It should be clear that by constructiafi = i’ﬂt if and only if N > 7,,,0.. If N < 7,40, then the estimator
#¢ cannot be optimal. Let us consider the estimator error defaser] |, = v — Al that can be

written as:
o = Tonn = A1 =W ATL s +205) = (= 9 @rer — AABT ) +ilwns — AZ))
= (1= ) (Alxy, — A} 11|k D+ we) +er = (1= y0) (Aéyy +wi) + 1ier

t vt v H H .
and its error covarlancé’kﬂlk = IE[ek,Jrl‘ke,ﬁl‘,~C |k, - .-, 7] is then given by:

Plyipen = (1- %th)(APt JIV|t N1 AT Q)+ NPy
szt—k+l|t—k = (1- ’Yf—k)(ARst—k\t—k—lA +Q) + %f—kpte—lw k=N-1,...,0
Pik\fk = P, 7L, =0

The error covarlancéjfﬂlt is then stochastic and depends on the arrival sequence.vdowice it is

linear in the arrival sequeneg, it is possible to compute the expected error covan@{fgﬂ‘k P,§+1|k
as follows:

Plyiy = (1—Ay)APCL AT+ (1= M)Q+ AP y

t—N[t—N—1
Ptt—k+1|t—k = (1 - /\k)APt—k|t—k—1AT + (1 - /\k)Q + Akpts—m k=N-1,...,0
Ptk|7k = R, ’Yikzo

Sincelim;_., PY , = P where PS = ®,(P%), thenlim,_. ]3; NA1[-N = DY exists and it is finite if
and only if /1 — Ay A is stable, i.ey/1 — )\N lo¥ .(A)] < 1. This is equivalent to\y > 1 — W.
Such )y exists if and only if);,s < o ( PR If this condition holds then Equations (52)-(53) follow.

Also it is simple to show tha{ D) }%_, is a decreasmg function af and bounded from below, therefore

limy_o. DY = D*. Moreover, sincéE[ede!’ | = limy_o Pzt+l|t’ then it followslim, ... E[efe?' | = D>,
Following Theorem 3, it is easy to show thatrif,.., < oo, then D> = Djme = D, for all N > 7,4,
which concludes the theorem. [ |

The previous theorem shows that performance of the smarhabpeéstimator under the assumption of
i.i.d. packet arrival process, can be obtained by solvirg lijiapunov Equation (52) and then iterating
N = T4 linear equations (53), if,,.. is finite. Otherwise ifr,,., = oo, then D> cannot be computed
exactly, however upper and lower bounds can be obtainedasiynto Theorem 4.

VII. NUMERICAL EXAMPLES

In this sections we illustrate the use of the tools develojpethe previous sections with the aid of
some numerical examples.
Let us consider the following probability function of patkdelay:

Ah:{ 0.05h, h=0,...,15

0.75, h>15 (54)

which is depicted in Fig. 7.
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— Eqn. (54)| |

Eqn. (56)

0 Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il

01234567 8 910111213141516171819202122
N

Fig. 7. Probability function of packet delay for different scenariod aritical probability A for dynamical systems (55).

Let us consider the following discrete time system:

1.001 0.05 0 O

A‘{o.% 1.001}’ ¢=[10] R=001, Q‘{o 0.01} (55)
which corresponds to the discretization with sampling qubfi’ = 0.05 of the continuous time sys-
tem & — x = 0. This system has one stable pole and one unstable pole, aisdthie model for
the discrete time dynamics of an inverted pendulum. Therelisctime eigenvalues of the matrix
are eig(A) = (1.05,0.95), which give the critical probability\, = 1 — 1/1.05> = 0.095, as stated in
Theorem 2(i). According to Theorem 3 and 6 the estimator ablstif and only if N > 2, in fact
A = 0.05 < )\, and Ay = 0.01 > \..

The trace of the covariance of the estimator error with @mtsgains,V;"', and the estimator error for
smart sensors))’ are shown in Fig. 8. As mentioned in Section IV, the error ciavece for time-varying
optimal estimator of Theorem 1 cannot be computed expliitit it is upperbounded and lowerbounded
by V¥ and by D), respectively. It is interesting to compare the perforneant these estimators with
the error covariance’?s, = ®,(P5 ), shown in the same figure, corresponding to the ideal casa whe
there is no packet loss and no delay, since this gives an ildee alegradation due the communication
network. It is also relevant to evaluate the performance rofeatimator with constant gains designed
without exploiting the prior knowledge about the packetvalrstatistics. A natural choice is to use the
standard Kalman gaik¢, = P<CT(CPLCT + R)™!, i.e. Ky = K¢,k = 0,..., N rather than the
optimal constant gain&’,’ defined in Theorem 3. The corresponding expected error iema@7,’ can
be obtained by Equations (41)-(42) and it is shown in Fig.@nkthis example it is clear that the tools
developed in this paper can help to substantially reducedégeadation of performance when statistics
of packet arrival are available.

Now, we illustrate how these tools can be also used to contparelifferent communication protocols.
Let us consider a protocol giving rise to arrival statistidsEquation (54) and a protocol giving rise to
the following arrival statistics: .

[ (&), h=0,...,10
An = { 1 =10 (56)

Vo
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Fig. 8. Trace of the steady state error covariance for the optimal estimétoconstant gainsi(; ), for the optimal estimator with a smart
sensor PYY). The horizontal linePS, corresponds to the trace of the error covariance in the ideal scenihianevdelay and no packet
loss, i.e.\, = 1 for all h, while T is the actual steady state error when using the Kalman H4in The error covariancesy” , D{’ are
unbounded forV < 2, while the covariance’s, is unbounded folN < 4, and they are all cosnstant constant f0r> 7,4, = 15.

for which 7, = 10, and it is graphically shown in Fig. 7. These two protocoks substantially different:
the first protocol has larger packet delivery with small giebaut also larger overall packet loss than the first
protocol, therefore it is difficult to evaluate which one istier suited for a real-time control application.
In Fig. 9 it is shown the trace of the error covarian¢g for the two protocols with respect to the system
dynamics of Equation (55). For a buffer with a short memomy fiinst protocol performs better, but for
a buffer of lengthN = 10 the second protocol starts performing better as the largekgt delivery
can compensate for a larger delay of arrived packets. Ifebuéngth is further increased, then the first
protocol returns to perform better. This example clearlgvghhow optimal estimation design can be used
to evaluate and compare the performance of different conmation protocols with respect to a specific
real-time application, which currently it is based only aukistics and designer experience, and therefore
prone to errors.

VIII. CONCLUSIONS

In this work we proposed a framework to optimally design andlyze the performance of estimators
in networked control system subject to simultaneous ranpacket delay and packet dropped. We showed
that the optimal estimator is time-varying, stochastia dones not depend on the specific communication
protocols adopted as long as measurements are time-staangdechn be re-ordered at the estimator site.
Also two alternative optimal estimator designs based ornefimemory buffers and constant gains were
described and it was shown that if packet arrival is i.i.dent the estimators are mean square stable if
and only if the packet loss probability is below a criticaluea Therefore, implicitly we also provided
necessary and sufficient conditions about existence ofesttimators. Finally, we presented numerical
algorithms for the computation of the expected estimatosrezovariance of all the proposed estimators.

The tools developed in this paper are useful both from a obsystem design perspective and from
a communication design perspective. In fact, from a cornperispective they can help to evaluate the
tradeoffs between performance (error covariance), memeapyirements (buffer length), and the hardware
complexity (“smart” sensor). In particular, the knowledge the packet arrival statistics can be used
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Fig. 9. Trace of the steady state error covariance for the optimal estimétto constant gainsi(;¥) for two different communication
protocols whose packet arrival statistics is given by Equations (5dY36).

to find the optimal constant gainsK'}+, and thus improving performance. From a communication
perspective, these tools can be used to aid communicatioioqml design for real-time applications.
In fact, as mentioned in Section |, when designing commuiaicgorotocols, in particular for wireless
systems, there is tradeoff between packet loss and packey. d& the moment, the choice between
favoring reduction of overall packet delay or reduction atket loss is based on heuristics and experience,
and it is not tailored to the specific real-time applicatiofiserefore, being able to quantitatively measure
performance of different protocols can improve cross4lagsign of complex networked control systems.

A possible future avenue of research is the extension ofwbik to the design of optimal LQG-like
controller design. This is not a trivial step as many impari@ssumptions in standard LQG control, like
the separation principle, do not always hold for NCSs [26]other research direction is the application
of these tools to real-time control applications in wirelegnsor networks. A preliminary attempt has
already been successfully applied to multiple target iragkd], but extensive experimental work is still
needed.
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