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Abstract— In this paper, we consider the problem of esti-
mating the state of a dynamical system from distributed noisy
measurements. Each agent constructs a local estimate based
on its own measurements and estimates from its neighbors.
Estimation is performed via a two stage strategy, the first being
a Kalman-like measurement update which does not require
communication, and the second being an estimate fusion using
a consensus matrix. In particular we study the interaction be-
tween the consensus matrix, the number of messages exchanged
per sampling time, and the Kalman gain. We prove that
optimizing the consensus matrix for fastest convergence and
using the centralized optimal gain is not necessarily the optimal
strategy if the number of message exchange per sampling time
is small. Moreover, we prove that under certain conditions
the optimal consensus matrix should be doubly stochastic. We
also provide some numerical examples to clarify some of the
analytical results.

I. INTRODUCTION

The recent technological advances in wireless commu-
nication and the decreasing in cost and size of electronic
devices, are promoting the appearance of large inexpensive
interconnected systems, each with computational and sensing
capabilities. These complex systems of agents can be used
for monitoring very large scale areas with fine resolution.
However, collecting measurements from distributed wireless
sensors nodes at a single location for on-line data processing
may not be feasible due to several reasons among which
long packet delay (e.g. due to multi-hop transmission) and/or
limited bandwidth of the wireless network, due e.g. to energy
consumption requirements.

This problem is apparent in wireless ad-hoc sensor net-
works where information needs to be multi-hopped from
one node to another using closer neighbors. Therefore there
is a growing need for in-network data processing tools and
algorithms that provide high performance in terms of on-line
estimation while (i) reducing the communication load among
all sensor nodes, (ii) being very robust to sensor node failures
or replacements and packet losses, and (iii) being suitable for
distributed control applications.

In this work we will focus on distributed estimation of
dynamical systems for which sensor nodes are not physically
collocated and can communicate with each other according
to some underlying communication network. For example,
suppose that we want to estimate the temperature in a
building that changes according to a random walk, i.e T (t+
1) = T (t) + w(t), where w(t) is a zero-mean random
variable with covariance q, and we have N sensors that can
measure temperature corrupted by some noise, i.e. yi(t) =
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T (t)+ni(t), where ni(t) are independent zero-mean random
variables with same covariance r. If all measurements were
instantaneously available to a single location, it is well
known from the centralized Kalman filter that the optimal
steady state estimator would have the following structure:

T̂ (t + 1) = (1− l∗)T̂ (t) + l∗mean(y(t))

where mean(y(t)) := 1
N

∑N
i=1 yi(t), and 0 < l∗ < 1 is

the optimal Kalman gain that depends on the process noise
covariance q and the equivalent measurement noise variance
r/N . This expression already shows two important features
of the optimal estimator. The first feature is that the optimal
state estimate T̂ (t + 1) is a weighted average between the
previous state estimate T̂ (t) and the average of the sensor
measurements, thus implying that averaging reduces uncer-
tainty. The second is that the optimal gain needs to be tuned
to optimally balance process noise and the equivalent noise of
the averaged measurements. In a distributed setting, it is not
possible to assume that all measurements are instantaneously
available at a specific location, since communication needs to
be consistent with the underlying multi-hop communication
graph G, and each sensor nodes has its own temperature
estimate T̂i(t). However, if it was possible to provide an
algorithm that computes the mean of set of number only
through local communication, the optimal estimate could be
computed at each sensor node as follows:

T̂i(t + 1) = (1− l∗)mean(T̂ (t)) + l∗mean(y(t))
= mean

(
(1− l∗)T̂ (t) + l∗y(t)

)

These algorithms are known as average consensus algo-
rithms and can be solved by using updates z+ = Qz,
where z is the vector whose entries are the quantities to be
averaged1 and Q is a doubly stochastic matrix, i.e. a matrix
with properties Qij ≥ 0,

∑
j Qij = 1 and

∑
i Qij = 1.

Under some weak connectivity properties, these matrices
guarantee that limm→∞[Qmz]i = mean(z), i.e. all elements
of vector Qmz converge to their initial mean mean(z).
Therefore, provided it is possible to communicate sufficiently
fast within two subsequent sensor measurements, i.e. m À 1,
then intuitively we can assume that the following distributed
estimation strategy yields the optimal global state estimate:

z = (1− l∗)T̂i(t) + l∗yi(t)
{

measur. &
predict. stage

T̂i(t + 1) = [Qmz]i consensus stage

Olfati-Saber [6] and Spanos et al. [7] were the first to propose
this two-stage strategy based on computing first the mean of
the sensor measurements via consensus algorithms, and then
to update and predict the local estimates using the centralized
Kalman optimal gains. This approach can be extended to
multivariable systems where the process evolves according

1The entries of z can be real numbers, complex numbers or even matrices



to T (t + 1) = AT (t) + w(t) and the state is only partially
observable, i.e. yi(t) = CiT (t) + vi, as shown in the static
scenario by Xiao et al. [12] (A = I, w(t) = 0) and in the
dynamic scenario in [8][5]. In this context, i.e. m À 1, it
natural to optimize Q for fastest convergence rate of Qm,
which correspond to the second largest singular value of Q,
for which there are already very efficient optimization tools
available [10] [11]. The assumption m À 1 is reasonable in
applications for which communication is inexpensive as com-
pared to sensing. This is the case, for example, in rendezvous
control or coordination of mobile sensors where moving
and sensing the position is energetically more expensive
than transmitting it to their neighbors. However, there are
many other important applications in which the number m of
messages exchanged per sampling time per node needs to be
small, as required in static battery-powered wireless sensor
networks. Therefore the assumption that [Qmz]i ≈ mean(z)
is not valid. In this context, for example, it is not clear
whether maximizing the rate of convergence of Q is the
best strategy. Moreover, also the optimal gain l becomes
a function of the matrix Q and the number of exchanged
messages m, which is unlikely to coincide with the optimal
centralized Kalman gain proposed in all the aforementioned
papers [6][7][8][5][12].

Recently, Alriksson at al. [1] and Speranzon et al. [9],
considered the case m = 1, i.e. sensors are allowed to com-
municate only once between sampling instants. In particular,
in [1], the authors consider a general MIMO scenario where
the matrix Q = Q(t) (= W in their terminology) is selected
at each time step in order to minimize the estimation error
covariance of each sensor for the next time step, with the
only constraint to leave the estimate unbiased corresponding
to

∑
j Qij = 1, i.e. row-sum equal to unity. Also the

gain l = li(t) (= K in their terminology) is different for
each sensor and chosen at each time-step using the standard
Kalman prediction and correction procedures in order to
minimize each sensor estimation error. Simulations show that
this iterative algorithm converges and provide good perfor-
mance, thus providing a methodology to jointly optimize Q
and l, however the authors do not provide any proof of
convergence nor any global optimality guarantee. In fact,
this distributed optimization approach greedily minimizes the
error covariance of each sensor at each time step, which
might not be globally optimal. Differently, in [9] the authors
do not separate the algorithm between a consensus stage and
an update and correct stage, but they consider a single update
equation

T̂ (t + 1) = KT̂ (t) + Hy(t)

where T̂ = [T̂1 . . . T̂N ]∗ and y = [y1 . . . yn]∗2, with the
additional unbiasedness constraint

∑
j(Kij + Hij) = 1, i.e.

row-sum equal to unity. Using our terminology we note that
we would have K = (1−l)Q and H = lQ, which satisfy the
constraint. Then they propose to compute the design matrices
K, H by formulating an optimization problem where at each
time step to minimize the sum of all sensor node covariance
errors. Similarly to [1], this approach seems to converge and
to provide good performance, but once again without any
proof of global optimality and insight about the connectivity
properties of the underlying graph.

2The symbol “*” denotes the conjugate transpose.

In this paper, we want to study the interaction between the
consensus matrix Q, the number of messages per sampling
time m, and the gain l. With respect with the aforementioned
works, we consider a simpler scenario with a scalar state and
sensors can measure the state affected by gaussian noise with
the same covariance, which still captures some of the most
important features of the problem. In fact, also in this simple
setup the joint optimization of Q and l is not convex, as
discussed in Section V. Our goal is to provide better insights
about the problem of distributed estimation using consensus
matrices, rather then posing it as a black-box optimization
algorithm. Therefore, we explore some important regimes,
namely fast communication m → ∞, “small” measurement
noise (r/q → 0) and “small” process noise (q/r → 0).

This analysis provides useful guidelines for choosing the
local filter gain l and the consensus matrix Q also for more
general scenarios. As a side result of our analysis we also
see that the standard recipe of choosing Q optimizing the
second largest eigenvalue is not necessarily the best thing to
do; similarly choosing the centralized optimal gain lc is not
necessarily the optimal strategy. Moreover, we prove that
under certain conditions the optimal matrix Q should be
doubly stochastic.

We also provide some numerical examples to clarify some
of the analytical results.

II. PROBLEM FORMULATION

Consider a set V of N sensor nodes which are labeled i =
1, 2, . . . , N. These sensors can communicate on a network
modeled as a direct graph G = (V,E), where the edge (i, j)
is in E if and only if the node i can transmit its information
to the node j. We assume that the graph G is time-invariant.
A physical process with state x ∈ R evolves according to
the continuous-time system

ẋ(t) = v(t) (1)

where v(t) is a continuous-time white noise3 of zero mean
and intensity q ≥ 0, that is E[q(t)q(s)] = qδ(t − s). The
initial condition is also a random variable with expectation
x0 and variance σ.
Each sensor take measurements of the physical process
according to the equation

yi(kT ) = x(kT ) + ni(kT ) (2)

where T is the time-sampling and k the index in-
dicating the k-th measure. Note that yi ∈ R, ∀ i.
We shall denote y(kT ) = [y1(kT ), . . . , yN (kT )]∗ and
n(kT ) = [n1(kT ), . . . , nN (kT )]∗. Moreover the noise
processes ni(kT ) ∈ R are such that E[n(kT )] = 0,
E[n(kT )n(hT )] = rIδhk where δhk is the Kronecker delta.

Note also that (2) can be rewritten in the following vector
form

y(kT ) = x(kT )1+ n(kT ). (3)

where 1 = [1 . . . 1]∗. From now on we assume, without loss
of generality, that T = 1. Suppose now that, between each
pair of subsequent measurement update indices k and k +1,
the each node exchanges m messages; we assume that these
transmissions take place at the following times k + δ, k +

3We recall that what is commonly referred to as “continuous time white
noise” can be thought of as the “derivative” of a Wiener process which,
unfortunately, is nowhere differentiable. More rigourously x(t) is a Wiener
process.



2δ, . . . , k + (m − 1)δ, k + mδ, where δ = 1
m . Note that

k + mδ = k + 1. Moreover suppose that the i-th sensor
possesses at each of the above indices a estimate of x(k)
that, by convention, we indicate by the following notation
x̂i (k + δ|k) , x̂i (k + 2δ|k) , . . . , x̂i (k + (m− 1)δ|k) ,
x̂i (k + 1|k). More compactly we can write

x̂ (k + hδ|k) = [x̂1 (k + hδ|k) , . . . , x̂N (k + hδ|k)]∗ .

We assume that these estimates are updated according to the
following rule

{
x̂ (k|k) = (1− l) x̂(k|k − 1) + ly(k)

x̂ (k + hδ|k) = Q(k)x̂ (k + (h− 1)δ|k) (4)

where Q(k) is a suitable matrix compatible with the com-
munication graph and where 0 < l < 1, ∀ k ≥ 0. From now
on we assume that l(k) = l and Q(k) = Q, i.e. they are
constant.

If we impose that x̂i is an unbiased estimator for each i
and for each update index, we have that Q must satisfy the
following condition

Q1 = 1. (5)

In fact by imposing that E [x̂ (k + hδ|k)] = x01, ∀ 0 ≤ h ≤
m, it results from the update rule that

E [x̂ (k + (h + 1)δ|k)] = E [Qx̂ (k + hδ|k)] = x0Q1

In order to have that x0Q1 = x01, for any possible value
x0, we obtain that (5) must hold. Furthermore if we restrict
to nonnegative Q, namely a matrix with nonnegative entries,
condition (5) imposes that Q is a stochastic matrix. From
now on, we assume that Q is stochastic. Moreover the local
estimators are initialized by setting x̂(0|0) = y(0).

Now we define the new variable x̃ (k + hδ|k) =
x (k + hδ)1− x̂ (k + hδ|k) which represents the estimation
error. In order to analyze the structure of the recursive
equations that x̃ (k + hδ|k) satisfies, it is convenient to
rewrite (1) in the following way

x (k + (h + 1)δ) = x (k + hδ) + w (k + hδ) (6)

where

w (k + hδ) =
∫ k+hδ

k+hδ

v(τ)dτ. (7)

Note that E [w (k + hδ)] = 0 and that E
[
w2 (k + hδ)

]
= q

m .
By straightforward calculations, we get that, for h = 0,

x̃(k|k) = (1− l) x̃(k|k − 1)− ln(k) (8)

and, for 1 ≤ h ≤ m,

x̃ (k + hδ|k) = Qhx̃ (k|k) +

(
h−1∑

i=0

w (k + iδ)

)
1 (9)

In order to analyze the asymptotic properties of the above
estimates it is convenient to introduce the following matrices

P (k + hδ|k) = E
[
x̃ (k + hδ|k) x̃ (k + hδ|k)∗

]
, (10)

defined for 0 ≤ h ≤ m. One can show that P (k + hδ|k)
satisfies, for h = 0,

P (k|k) = (1− l)2 P (k|k − 1) + l2rI (11)

and, for h = m,

P (k + 1|k) = QmP (k|k)(Qm)∗ + q11∗. (12)

Plugging (11) into (12) and plugging (12) into (11) evaluated
at the index k+1 we obtain the following recursive equations

P (k + 1|k) =(1− l)2QmP (k|k − 1) (Q∗)m +
+ l2rQm (Q∗)m + q11∗

and

P (k + 1|k + 1) = (1− l)2 QmP (k|k) (Q∗)m +

+ (1− l)2 q11∗ + l2rI

Since x̂(0|0) = y(0) we have that P (0|0) = rI and
P (1|0) = rQm (Qm)∗ + q11∗. By rewriting the last two
recursive equations as expressions depending respectively on
P (1|0) and P (0|0) we obtain

P (k + 1|k) =(1− l)2kQkmP (1|0) (Q∗)km +

+ rl2
k−1∑

i=0

(1− l)2iQ(i+1)m (Q∗)(i+1)m +

+ q

(
k−1∑

i=0

(1− l)2i

)
11∗

and

P (k|k) =q

k−1∑

i=0

(1−l)2i+211∗+l2r

k−1∑

i=0

(1−l)2iQim (Q∗)im

By taking the limit for k →∞, we get

lim
k→∞

P (k + 1|k) =rl2
∞∑

i=0

(1− l)2iQ(i+1)m (Q∗)(i+1)m +

+ q
1

1− (1− l)2
11∗

and

lim
k→∞

P (k|k) =q
(1− l)2

1− (1− l)2
11

∗ + rl2
∞∑

i=0

(1− l)2iQim (Q∗)im

Now let us define the following functionals cost4

J1(l, Q; m, r, q) = tr
{

lim
k→∞

P (k + 1|k)
}

and
J2(l, Q; m, r, q) = tr

{
lim

k→∞
P (k|k)

}

We can formulate the following minimization problem.

Problem Given a graph G and a nonnegative integer m,
find a real l such that 0 < l < 1, and a matrix Q ∈ Q,
minimizing J1 or J2.

Remark 1: In the sequel of the paper we will consider
only J1. The reason will be clear in the next sections where
the minimization on J1 will permit us to retrieve, for some
particular cases, the results already known in the literature
regarding the Kalman filtering. For the sake of the simplicity,

4In the remainder of the paper, when there is no risk of confusion, we
might drop some arguments of the cost (e.g. denote J1(l, Q) rather than
J1(l, Q; m, r, q)).



we will denote this functional cost simply by J in place of
J1. Hence

J = rl2tr

{ ∞∑
i=0

(1−l)2iQ(i+1)m (Q∗)(i+1)m

}
+q

1

1−(1−l)2
N

Remark 2: Let us denote with σ(Q) =
{1, λ1, λ2, . . . , λN−1} the spectrum of Q. Note that,
if Q is a normal matrix, namely QQ∗ = Q∗Q then formula
in the previous remark can be rewritten as

J =
rl2 + qN

1− (1− l)2
+ rl2

N−1∑

j=1

|λj |2m

1− (1− l)2|λj |2m

Also note that if Q is normal and stochastic, then it is also
doubly stochastic.

From now on, we will assume that Q is a normal matrix
and we will denote by Q the set of the normal matrices
compatible with the graph G. Relevant subclasses of normal
matrices are, for instance, Abelian Cayley matrices [4],
circulant matrices and symmetric matrices.

III. OPTIMAL CONSENSUS MATRIX Q FOR FIXED GAIN l

In this section we assume that the estimation gain l is
fixed, and thus the problem we want to solve becomes the
following

Q(l; m) = arg min
Q∈Q

J(Q, l;m). (13)

Although the study of the above problem is quite hard
in general, a detailed analysis can be carried out in some
interesting situations. In particular in the following we will
restrict to the following three cases:
• the communication graph G is undirected
• the sensors can communicate arbitrarily fast within two

subsequent measurements, i.e., m →∞
• the estimation gain l is sufficiently large, i.e. l → 1,

which intuitively corresponds to the situation in which
the variance of the measurement noise is negligible with
respect to the variance of the process, i.e r

q ≈ 0.
Before proceeding to treat these cases separately, we observe
that

min
Q∈Q

J =
rl2 + qN

1− (1− l)2
+ min

Q∈Q
rl2

N−1∑

j=1

|λj |2m

1− (1− l)2|λj |2m

and hence we can restrict only to the evaluation of last term
of the previous equation. Since this quantity will appear often
along the section, we denote it as

S(Q, l;m) =
N−1∑

j=1

|λj |2m

1− (1− l)2|λj |2m
(14)

A. Undirected communication graph G
We start by noticing that the assumption that the com-

munication graph G is undirected implies that, given any
Q ∈ Q, also Q∗ belongs to Q. Consider now the symmetric
matrix (Q+Q∗)/2, that we denote as Qsym. Clearly, Qsym

is normal and it is compatible with G, therefore Qsym ∈ Q.
The following lemma provides an interesting comparison
between J(Q, l; m) and J(Qsym, l;m) showing that the
former is always greater or at most equal to the latter.

Lemma 3.1: Let Q be any matrix in Q and let Qsym be
defined as above. Then

J(Q, l; m) ≥ J(Qsym, l;m).
Proof: Let λi be any eigenvalue of Q. Then Re {λi} is

an eigenvalue of Qsym, where Re {λi} denote the real part
of λi. Clearly |Re {λi}| ≤ |λi| which implies that

|Re {λi} |2m

1− (1− l)2|Re {λi} |2m
≤ |λi|2m

1− (1− l)2|λi|2m
.

Therefore we have that

S(Qsym, l; m) ≤ S(Q, l; m)

and hence also

J(Qsym, l;m) ≤ J(Q, l;m).

Remark 3: It is important to note that the previous lemma
cannot be generalized to general stochastic matrices Q.
In fact, it is easy to find a non-normal Q for which the
symmetrized matrix Qsym defined above gives a larger cost
index.

An immediate consequence of the above Lemma is that,
when the communication graph is undirected, the minimum
of the functional cost J is reached by symmetric matrices.
Thus, if Qsym is the subset of Q containing the symmetric
matrices, that is Qsym = {Q ∈ Q : Q = Q∗}, solving (15)
is equivalent to solve

arg min
Q∈Qsym

J(Q, l; m). (15)

The following result provides a powerful characterization of
(15).

Theorem 3.1: Let Qsym be as above. Then the functional
cost J(Q, l;m) defined on Qsym is a convex function.

Proof: Consider the function f : B ⊆ Rn → R defined
as

f(x) =
n∑

i=1

x2m
i

1− αx2m
i

,

where m ∈ N, 0 < α < 1, x = [x1, x2, . . . , xn]T and
where B = {x ∈ Rn : |x| ≤ 1}. It is easy to verify that the
function f is convex and symmetric, i.e. it is invariant to
any permutation of the vector entries xi. Hence, it follows
from the theory of convex spectral functions that also J is a
convex function [2].

Theorem 3.1 states that (15) is a convex problem implying
thus that the solution of (15) is unique and that it can be
performed efficiently by suitable numeric algorithms. In fact,
Xiao et al. [11] adopted this strategy to optimize similar
performance costs over symmetric stochastic matrices.

B. Fast communication (m →∞)
Before stating the main result of this subsection we recall

the following definition. Let Q be any matrix such that Q1 =
1 and assume that its spectrum σ(Q) is contained in the
closed unit disk. Define

ρ(Q) =
{

1 if dim ker(Q− I) > 1
maxλ∈σ(Q)\{1} |λ| if dimker(Q− I) = 1 ,

(16)



It is called the essential spectral radius of Q.
The following result holds.

Theorem 3.2: Let Q1 and Q2 be two matrices such that
ρ(Q1) > ρ(Q2). Then there exists m̄ (depending only on
ρ(Q1)− ρ(Q2)) such that

J(Q1, l; m) ≥ J(Q2, l; m), ∀m > m̄.
Proof: See Appendix

C. Large gain (l → 1)
We start by providing the following notational definition.

Given a matrix A we denote with ‖A‖F the Frobenius norm
of A, namely ‖A‖F =

√
tr {AA∗}. Given any two matrices

Q1 and Q2 belonging to Q, the following result provides an
interesting comparison between J(Q1, l;m) and J(Q2, l,m)
when the gain l is sufficiently close to 1.

Theorem 3.3: Let Q1, Q2 be two matrices such that
‖Qm

1 ‖F > ‖Qm
2 ‖F . Then there exists l̄ (depending only on

‖Qm
1 ‖F − ‖Qm

2 ‖F ) such that

J(Q1, l; m)− J(Q2, l;m) > 0, ∀l > l̄. (17)
Proof: See Appendix

Remark 4: At first sight, Theorem 3.2 and Theorem 3.3
seem in contradiction. However, this can be explained by ob-
serving that ‖Qm‖2F = 1 + ρ2m(Q) + o(ρ2m(Q)), therefore,
for large m, minimizing the Frobenius norm of Qm or the
spectral radius of Q is almost equivalent.

IV. OPTIMAL GAIN l FOR FIXED CONSENSUS MATRIX Q

In this section we assume that the consensus matrix Q is
fixed. Hence the problem we want to solve is the following

arg min
l∈(0,1)

J(Q, l; m, r, q) (18)

The previous optimization problem is convex in l. This
fact can be easily checked by observing that the functional
cost J can be written as sum of functions of the form:

g(l) =
xl2

1− x(1− l)2
, h(l) =

x

1− x(1− l)2
, x ∈ [0, 1]

which are convex in l ∈ (0, 1).
Consider now a generic matrix Q ∈ Q and let

lopt(Q,m) = arg min
l∈ (0,1)

J(Q, l;m).

Convexity of J allows easy computation of lopt(Q, m).
In the remaining of this section we shall see that the

sequence {lopt(Q,m)}∞m=0 is monotonically non-decreasing
in m. Moreover, it is bounded below and above by lopt

d and
lopt
c , which are the optimal gains minimizing J respectively

when Q = I and when Q = 1
N 11

∗, i.e.

lopt
d = arg min

l∈(0,1)

J(I, l; m), lopt
c = arg min

l∈(0,1)

J

(
1

N
11

∗, l; m
)

Note that Q = I and Q = 1
N 11

∗ represent the two
extreme cases in modeling the flow of information between
the sensors. Indeed, Q = I corresponds to the situation
in which the sensors do not communicate; in such a case
there are N Kalman filters running separately (the subscript
”d” in lopt

d means decentralized, i.e. no communication).
In the other case, instead, we have that the underlying
communication graph is complete and this means that each

sensor has full knowledge about the estimates of all the
other sensors (the subscript ”c” in lopt

c means centralized, i.e.
full communication). The following proposition characterizes
precisely lopt

d and lopt
c .

Proposition 4.1: Let lopt
d and lopt

c be as above. Then

lopt
d =

−q +
√

q2 + 4qr

2r
, lopt

c =
−q +

√
q2 + 4qr̄

2r̄

where r̄ = r
N .

The role played by lopt
d and lopt

c is clarified in next
proposition where it is shown that they are respectively
a lower bound and an upper bound for any lopt(Q,m).
Precisely, it is stated a stronger result characterizing the
sequence {lopt(Q,m)}∞m=0.

Theorem 4.1: Let Q ∈ Q. Let lopt(Q,m) be defined as
above. Then the following chains of inequalities hold true

lopt
d = lopt(Q, 0) ≤ lopt(Q, 1) ≤ . . . ≤ lopt(Q,m) ≤
≤ lopt(Q,m + 1) ≤ . . . ≤ lopt(Q,∞) ≤ lopt

c

and

J
(
Q, lopt

d ; 0
) ≥ J

(
Q, lopt(Q, 1); 1

) ≥
≥ J

(
Q, lopt(Q, 2); 2

) ≥ . . . ≥ J
(
Q, lopt

c ;∞)

Moreover lopt(Q,∞) = lopt
c if and only if Q is irreducible

and aperiodic.

In the interest of space the proof of this theorem and some
other theorems in the following sections are omitted and can
be found in a longer version of this paper in [3].

V. JOINT OPTIMIZATION OF Q AND l: SPECIAL CASES

We have shown in the previous two sections that the
functional cost J is a convex function, both if we fix the
gain and we assume J defined on the set of the symmetric
matrices and if we fix the consensus matrix and we assume
that the gain is the independent variable. We ask now whether
J is a convex function jointly in l and Q ∈ Qsym. The
answer is negative, by computing the Hessian of the function
g : [0, 1]× [0, 1] → R defined as

g(x, y) =
x2y2

1− (1− x)2y2
.

where x and y play the role of l and |λj |m, respectively, in
the cost functional J . Therefore, the joint minimization of J

Qopt(m, r, q) lopt(m, r, q) ∈ arg min
l∈ (0,1); Q∈Q

J(Q, l; m, r, q)

(19)
results to be quite hard in general. Nevertheless, restricting
to some asymptotic case on the values of m, r and q, it
is possible to provide an analytical characterization of the
above problem. In particular we will consider the following
situations:
• the sensors can communicate arbitrarily fast within two

subsequent measurements, i.e., m →∞
• r

q ≈ 0, i.e. the variance of the measurement noise is
negligible with respect to the variance of the process

• q
r ≈ 0, i.e. the variance of the process is negligible with
respect to the variance of the measurement noise

First note that Qopt(m, r, q) lopt(m, r, q) are indeed only
functions of m and r/q. In the sequel, without risk of
confusion, we shall omit arguments which are kept fixed.



A. Fast communication (m →∞)
Let Qopt(m), lopt(m) be a solution of (19). In this subsec-

tion we provide a characterization of Qopt(m) and lopt(m)
when m →∞. Then the following result holds.

Theorem 5.1: Let Qopt(m), lopt(m) be as defined above.
Then

lim
m→∞

ρ(Qopt(m)) = min
Q∈Q

ρ(Q).

and
lim

m→∞
lopt(m) = lopt

c .

Moreover, if arg minQ∈Q ρ(Q) is a singleton, then also

lim
m→∞

Qopt(m) = arg min
Q∈Q

ρ(Q).

B. Small measurement noise (r/q → 0)
In this subsection we treat the case in which the vari-

ance of the measurement noise is negligible with respect
of the variance of the process, that is r/q → 0. Let
Qopt(r/q), lopt(r/q) be a solution of (19), then the following
result holds.

Theorem 5.2: Let Qopt(r/q), lopt(r/q) be defined above
and let

Q̄ ∈ arg min
Q∈Q

‖Qm‖F .

Then
lim

r/q→0
‖(Qopt(r/q))m‖F = ‖Q̄m‖F .

Moreover

lopt(r/q) = 1− ‖Q̄m‖2F
N

r

q
+ o (r/q) .

In addition if arg minQ∈Q ‖Qm‖F is a singleton also

lim
r/q→0

Qopt(r/q) = Q̄.

holds.
Note that lopt

c = 1 − 1
N

r
q + o( r

q ) and lopt
d = 1 − r

q + o( r
q ),

showing that the communication graph G determines the
coefficient of the first order expansion in r/q.

C. High measurement noise q/r → 0
Similarly to the previous section, we now consider the

other limiting case for q/r ≈ 0.
Theorem 5.3: Let Qopt(q/r), lopt(q/r) be defined as

above and denote with p(Q) the number of eigenvalues of
Q on the unit circle. Then

lim
q/r→0

p(Qopt(q/r)) = min
Q∈Q

p(Q) =: popt.

Moreover

lopt(q/r) =

√
N

popt

√
q

r
+ o

(√
q/r

)
.

Note that lopt
c (q/r) =

√
N

√
q/r+o(

√
q/r) and lopt

d (q/r) =√
q/r + o(

√
q/r), therefore, the optimal gain depends on

the communication structure of the underlying communi-
cation graph. In fact, if sensors cannot communicate, then
necessarily Qopt = I , therefore lopt(q/r) = lopt

d (q/r),
while if the communication graph is fully connected, then
Qopt = 1

N 11
∗, therefore lopt(q/r) = lopt

c (q/r).

The previous theorem states also that for q << r then
it is necessary to choose a matrix Q consistent with the
communication graph that minimizes the number of unitary
eigenvalues.

VI. AN ILLUSTRATIVE EXAMPLE

In this section we provide a numerical comparison be-
tween the approach presented in this paper and the method
proposed in [1]. The authors in [1], analyze a general MIMO
scenario where the gain l = l(t) (K in their terminology) and
the consensus matrix Q = Q(t) are time varying quantities
which are chosen recursively at each time step. In order to
compare the results in [1] with our approach we assume
the averaging matrix W in [1] corresponds to performing m
consensus iterations using the matrix Q, i.e. W = Qm. The
gain l is chosen to minimize the estimation error covariance
of the local estimators (i.e. in a decentralized fashion). In [1]
l is different for each sensor; here instead, in order to simplify
the analysis, we assume all sensors must have the same gain.
The consensus matrix Q is chosen so that the estimation
error covariance of the local estimators is minimized after
consensus (weighted averaging in [1]).
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In the simulation reported here, we assume that N =
100, q = 1 and r = 1. Moreover we assume that Q is the



set of the circulant stochastic matrices of the form

Q =




1− 2k k 0 0 · · · 0 k
k 1− 2k k 0 · · · 0 0
0 k 1− 2k k · · · 0 0
...

...
...

... · · · ...
...

k 0 0 0 · · · k 1− 2k




where k is a real in
[
0, 1

2

]
.

We consider both the minimization of J1 and J2, with J1, J2

defined as in the Section II. We use the following nota-
tional conventions. Qopt

1 (m), lopt
1 (m) and Qopt

2 (m), lopt
2 (m)

are the optimal consensus matrices and the optimal gains
respectively for J1 and J2 obtained by solving numerically
the problem formulated at the end of Section II, given by:

Qopt
1 (m), lopt

1 (m) ∈ arg min l∈(0,1), Q∈Q J1(Q, l; m, r, q)
Qopt

2 (m), lopt
2 (m) ∈ arg min l∈(0,1), Q∈Q J2(Q, l; m, r, q)

Moreover, lr(t,m) and Qr(t,m) represent the optimal gain
and the optimal consensus matrix which are found re-
cursively at the time step t by the method in [1]. The
asymptotic values (in t) of lr(t,m) and Qr(t,m) are de-
noted respectively by lr(m) and Qr(m) with corresponding
asymptotic cost values5 Jr

1 (m) := J1(Qr(m), lr(m),m) and
Jr

2 (m) := J2(Qr(m), lr(m),m). Finally, since the set Q
is parameterized by k, we shall identify a matrix Q with
the corresponding value of the parameter k. Hence, we use
kopt
1 (m), kopt

2 (m) and kr(m) in lieu of Qopt
1 (m), Qopt

2 (m)
and Qr(m).

We run simulations for m ranging in the interval [1, 15].
A few remarks are now in order. First of all we warn
the reader that the iterative (local) optimization proposed
in [1] converges to values of the parameters lr(m) and
kr(m) which are different from the optimal values obtained
minimizing the asymptotic cost, as proposed in this paper
(see Figures 2 and 3).
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Fig. 2. Optimal consensus matrices Q parameterized by k. In the plot the
are also reported the values of k which minimize the spectral radius ρ(Q)
and the Frobenius norm ||Q||F .

In top panel of Figure 1 we report the value
of J1 corresponding to the “optimal” parameter pairs

5There is no proof of convergence in [1]; however this is observed
experimentally.
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(i) lopt
1 (m), Qopt

1 (m), (ii) lopt
2 (m), Qopt

2 (m) and (iii)
lr(m), Qr(m). Clearly6 lopt

1 (m), Qopt
1 (m) do better than the

others while lr(m), Qr(m) yield the worst performance.
A similar consideration holds for J2 (bottom panel of

Figure 1. In this case lopt
2 (m), Qopt

2 (m) give the best per-
formance, only slightly better than lr(m), Qr(m) while
lopt
1 (m), Qopt

1 (m) yield the worst performance. Note in fact
that the pair lopt

2 (m), Qopt
2 (m) is found minimizing J2; it

is remarkable that, even though lr(t,m), Qr(t,m) mini-
mize step by step an estimation error (and hence a cost
which resembles J2) its asymptotic value does not provide
the minimum of J2. It is also interesting to observe that
J2(l

opt
1 (m), Qopt

1 (m),m) grows with m.
In figure 2 we depict the behavior of kopt

1 (m), kopt
2 (m)

and kr(m), whereas in figure 3 the behavior of lopt
1 (m),

lopt
2 (m) and lr(m).

VII. CONCLUSIONS

In this paper we have studied a prototypical problem of
distributed estimation for Sensor Networks; the state of a
scalar linear system is estimated via a two stage procedure
which consists in (i) a standard (and decentralized) Kalman-
like update and (ii) information propagation using consensus
strategies. To this purpose two design parameters, i.e. the
Kalman gain l and the consensus matrix Q have to be
designed. This choice is made by optimizing the steady
state prediction (or estimation) error. We have discussed,
under specific circumstances, the behavior of the “optimal”
parameters. This is summarized in table of Figure 4.

Although these results have been obtained for a rather
simple scenario where the state is scalar and all sensors
are equal, they provide useful guidelines for choosing the
local filter gain l and the consensus matrix Q also for more
general scenarios. In fact, as discussed in Section V the joint
optimization of Q and l is not convex even in our simple
setup.

Finally, we compared our approach with the recursive
optimization proposed by Alriksson et al. [1], showing also
that their strategy fails to minimize the steady state cost (see
Figures 1).

6lopt
1 (m), Qopt

1 (m) are found minimizing J1.



Section III undirected graph m → ∞ l → 1

Fixed l
Qopt symmetric
Section III − A

Qopt ∈ arg min
Q∈Q

ρ(Q)

Section III − B

Qopt ∈ arg min
Q∈Q

‖Qm‖F

Section III − C

Section IV m = 0 0 < m < ∞
m → ∞

+Q aperiodic irreducible

Fixed Q lopt(Q, 0) = lopt

d
Theorem 4.1

lopt

d
< lopt(Q, m) ≤ lopt(Q, m + 1) < lopt

c

Theorem 4.1
lopt(Q,∞) = lopt

c

Theorem 4.1

Section V m → ∞ r/q → 0 r/q → ∞

Optimal
l and Q

Qopt ∈ arg min
Q∈Q

ρ(Q),

lopt → lopt
c

Section V − A

Qopt ∈ arg min
Q∈Q

‖Qm‖F ,

lopt ' 1 −
||Q̄m||2F

N
r
q

Section V − B

Qopt ∈ arg min
Q∈Q

p(Q)

lopt
c '

√

N
popt

√

q

r

Section V − C

Fig. 4. Summarizing table of results

APPENDIX

Proof of Theorem 3.2. Let ρ1 = ρ(Q1), ρ2 = ρ(Q2) and
ε = ρ(Q1)− ρ(Q2). Observe that

S(Q1, l; m) ≥ ρ2m
1

1− (1− l)2ρ2m
1

≥ (ρ2 + ε)2m

1− (1− l)2 (ρ2 + ε)2m

≥ (ρ2 + ε)2m

1− (1− l)2ρ2m
2

and that

S(Q2, l; m) ≤ N
ρ2m
2

1− (1− l)2ρ2m
2

.

Hence, if (ρ2 + ε)2m ≥ Nρ2m
2 , we have that

S(Q1, l;m) ≥ S(Q2, l;m). Straightforward calculations
show that this last condition is satisfied if and only if
m ≥ log N

2 log
(
1+ ε

ρ2

) . Note that log N
2 log(1+ε) ≥ log N

2 log
(
1+ ε

ρ2

) .

Therefore by letting m̄ =
⌈

log N
2 log(1+ε)

⌉
the statement of the

theorem follows. ¥

Proof of Theorem 3.3. Let f(l, m) = S(Q1, l; m) −
S(Q2, l;m) and ε = ‖Qm

1 ‖F − ‖Qm
2 ‖F . Note that

f(l) =
∑∞

i=0

(
‖Q(i+1)m

1 ‖2F − ‖Q(i+1)m
2 ‖2F

)
(1 − l)2i =

∑∞
i=0 αi(1 − l)2i where αi = ‖Q(i+1)m

1 ‖2F − ‖Q(i+1)m
2 ‖2F .

Observe that α0 ≥ ε2 and that, for i ≥ 1, αi ≥ −(N −
1)ρ2m(i+1), where ρ = ρ(Q2). Hence, it follows that

f(l, m) ≥ ε2 − (N − 1)

∞∑
i=1

ρ2m(i+1)(1− l)2i

= ε2 − ρ4m(1− l)2(N − 1)

1− ρ2m(1− l)2
≥ ε2 − (1− l)2(N − 1)

1− (1− l)2

Clearly, if the last term is nonnegative, then we have that
f(l,m) ≥ 0, ∀m. Straightforward calculations show that this
condition is satisfied if and only if

l ≥ 1−
√

ε2

N − 1 + ε2
= l̄.

Therefore, S(Q1, l;m) − S(Q2, l; m) > 0, ∀l > l̄ and
consequently J(Q1, l; m) > J(Q2, l;m), thus proving the
claim of the theorem. ¥
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