PSC: Progettazione di sistemi di controllo

III Trim. 2006

Lezione 10 — Maggio 12

Docente: Luca Schenato Stesori: Bortolato Massimo, Bustreo Matteo, Natali Nicola

10.1 Ricapitolazione del Controllo Ottimo LQ

Ripassiamo quanto fatto finora sul controllo ottimo LQ.

Si consideri il sistema lineare:

$$x_{k+1} = Ax_k + Bu_k; k = 0, \dots, T$$
 (10.1)

del quale si desidera calcolare una successione di ingresso $\{u_0, \ldots, u_T\}$ che minimizza un dato indice di costo quadratico, definito come segue:

$$J_T = \sum_{k=0}^{T-1} \left(x_k^T W x_k + u_k^T U u_k \right) + x_T^T W x_T; \qquad W \ge 0, U \ge 0$$
 (10.2)

Vale a dire, si desidera risolvere il problema di minimo:

$$min_{u_0,...,u_{T-1}}J_T(u_0,...,u_{T-1},x_0)$$
 (10.3)

Per calcolare il minimo abbiamo visto che conviene definire la funzione V_k^* di costo minimo da k a T, e risolvere ricorsivamente per $k=T,T-1,\ldots,0$ il problema:

$$V_k^*(x_k) = \min_{u_k} \left(x_n^T W x_n + u_n^T W u_n + V_{k+1}^*(x_{n+1}) \right)$$
(10.4)

con condizione iniziale:

$$V_T^*(x_T) = x_T^T W x_T (10.5)$$

Abbiamo inoltre scoperto che la funzione V_k^* costo minimo al tempo k si può esprimere come funzione quadratica dello stato del sistema:

$$V_k^*(x_k) = x_T^T S_k x_k \tag{10.6}$$

dove la successione di matrici $S_T, S_{T-1}, \ldots, S_0$ risolve ricorsivamente la:

$$S_k = A^T S_{k+1} A + W - A^T S_{k+1} B \left(B^T S_{k+1} B + U \right)^{-1} B^T S_{k+1} A$$
 (10.7)

con condizione iniziale:

$$S_T = W (10.8)$$

Infine il valore ottimo dei campioni di ingresso, che minimizzano la (10.4), risulta essere combinazione lineare dello stato:

$$u_k^* = -\left(B^T S_{k+1} B + U\right)^{-1} B^T S_{k+1} A x_k = -L_k x_k \tag{10.9}$$

Si può dunque calcolare il costo ottimo come:

$$V_0^*(x_0) = J_T^*(x_0) \tag{10.10}$$

Ci siamo poi posti il problema di calcolare l'ingresso ottimo nel caso di orizzonte temporale infinito, vale a dire considerando $T \longrightarrow \infty$. In questo caso sono sorte le seguenti domande:

- La successione di matrici S_k converge ad una matrice S_{∞} ? Abbiamo scoperto che c'è convergenza se la coppia (A, B) è stabilizzabile.
- La matrice S_{∞} così calcolata è unica? Abbiamo visto che c'è unicità se la coppia $(A, W^{1/2})$ è rivelabile.

Infine, nel caso in cui $S_k \longrightarrow S_{\infty}$, anche la matrice guadagno L_k converge ad un valore di regime calcolabile, considerando la (10.9), come:

$$L_{\infty} = \left(B^T S_{\infty} B + U\right)^{-1} B^T S_{\infty} A \tag{10.11}$$

Alcune considerazioni sul controllo ottimo LQ:

- \bullet Le matrici W e U vengono usualmente scelte diagonali;
- La matrice $(A L_k B)$ è sempre stabile. Il controllo ottimo fornisce dunque una retroazione di stato stabilizzante;
- Se il sistema è SISO, allora il margine di fase m_{φ} risulta essere $m_{\varphi} > 60^{\circ}$;
- Il controllo ottimo non da alcun indice sul transitorio oppure sulla capacità di reiezione dei disturbi del sistema retroazionato.

Controllo Ottimo LQG 10.2

Si desidera ora calcolare la sequenza di ingressi ottimi per un sistema dinamico lineare non più deterministico, bensì stocastico:

$$\begin{cases} x_{k+1} = Ax_k + Bu_k + w_k \\ y_k = Cx_k + v_k \\ k = 0, \dots, T \end{cases}$$
 (10.12)

dove le variabili aleatorie w_k e v_k sono Gaussiane a media nulla:

$$w_k \sim \mathcal{N}(0, Q), \qquad Q \ge 0$$
 (10.13)
 $v_k \sim \mathcal{N}(0, R), \qquad R \ge 0$ (10.14)

$$v_k \sim \mathcal{N}(0, R), \qquad R \ge 0 \tag{10.14}$$

Esattamente come nel caso deterministico, si ricerca la sequenza di ingressi $\{u_0, \ldots, u_T\}$ che minimizzano l'indice di costo quadratico:

$$J_T = \mathbb{E}\left[\sum_{k=0}^{T-1} \left(x_k^T W x_k + u_k^T U u_k\right) + x_T^T W x_T\right], \qquad W, U \ge 0$$
 (10.15)

Vale a dire, si desidera calcolare

$$u_k = f_k(u_0, ..., u_{k-1}, y_0, ..., y_k), \quad k = 0, ..., T$$
 (10.16)

tale da risolvere il problema di minimo:

$$min_{u_0,...,u_{T-1}}J_T(u_0,...,u_{T-1},x_0)$$
 (10.17)

È da notare che nella definizione della funzione costo (10.15) si è fatto uso dell'operatore di aspettazione. Infatti questa volta la traiettoria di stato $\{x_k\}$ è un processo aleatorio, e di conseguenza non ne possiamo conoscere le particolari realizzazioni.

Ricalcando quanto fatto nel controllo LQ, definiremo la funzione costo ottimo V_k^* dal passo k a T, e calcoleremo ricorsivamente per $k = T, T - 1, \dots, 0$:

$$V_k^*(x_k) \triangleq \min_{u_k} \left(\mathbb{E} \left[x_k^T W x_k + u_k^T U u_k + V_{k+1}^*(x_{k+1}) | Y_k, U_{k-1} \right] \right)$$
 (10.18)

a partire dalla condizione iniziale

$$V_T^*(x_T) \triangleq \mathbb{E}\left[x_T^T W x_T | Y_T, U_{T-1}\right]$$
(10.19)

dove sono stati definiti gli spazi

$$Y_k = (y_0, ..., y_k), U_k = (u_0, ..., u_k)$$

Per il calcolo esplicito dei costi (10.18) sarà utile dimostrare la seguente proposizione.

Proposizione 10.1. La funzione costo ottimo V_k^* per ogni passo $k=0,\ldots,T$ è pari a

$$V_k^*(x_k) = \mathbb{E}\left[x_k^T S_k x_k | Y_k, U_{k-1}\right] + c_k \tag{10.20}$$

dove S_k è una matrice $(n \times n)$ e c_k uno scalare non negativo, $c_k \in \mathbb{R}, c_k \geq 0$.

Dimostrazione: La dimostrazione è per induzione su k.

- 1. (caso base) k = T. $S_T = W$, $c_T = 0$ per definizione (10.19).
- 2. (passo induttivo) supponiamo che (10.20) sia vera per k + 1, dimostreremo che vale anche per k.

Per ipotesi si puó dunque scrivere

$$V_k^*(x_k) = min_{u_k} \mathbb{E} \Big[x_k^T W x_k + u_k^T U u_k + \mathbb{E} \left[x_{k+1}^T S_{k+1} x_{k+1} | Y_{k+1}, U_k \right] + c_{k+1} | Y_k, U_{k-1} |$$

Ma, considerando che

$$Y_{k+1} = y_{k+1} \cup Y_k$$
$$U_k = u_k \cup U_{k-1}$$

si può scrivere

$$V_k^*(x_k) = \min_{u_k} \mathbb{E} \left[x_k^T W x_k + u_k^T U u_k + x_{k+1}^T S_{k+1} x_{k+1} + c_{k+1} | Y_k, U_{k-1} \right]$$
(10.21)

Usando ora le (10.12),

$$V_k^*(x_k) = \min_{u_k} \mathbb{E} \Big[x_k^T W x_k + u_k^T U u_k + (A x_k + B u_k + w_k)^T S_{k+1} (A x_k + B u_k + w_k) + c_{k+1} | Y_k, U_{k-1} | \Big]$$

$$= \min_{u_k} \mathbb{E} \Big[x_k^T W x_k + u_k^T U u_k + x_k^T A^T S_{k+1} A x_k + 2 x_k^T A^T S_{k+1} B u_k + u_k^T S_{k+1} u_k + w_k^T S_{k+1} w_k + 2 w_k^T S_{k+1} (A x_k + B u_k) + c_{k+1} | Y_k, U_{k-1} | \Big]$$

Ma, dato che x_k e u_k sono scorrelati da w_k

$$\mathbb{E}\left[2w_k^T S_{k+1}(Ax_k + Bu_k)\right] = 0 \tag{10.22}$$

risulta

$$V_k^*(x_k) = \mathbb{E}\left[x_k^T W x_k + x_k^T A^T S_{k+1} A x_k | Y_k, U_{k-1}\right] + \mathbb{E}\left[w_k^T S_{k+1} w_k\right] + \\ + \min_{u_k} \mathbb{E}\left[u_k^T \left(U + B^T S_{k+1} B\right) u_k + 2u_k^T B^T S_{k+1} A x_k + c_{k+1} | Y_k, U_{k-1}\right]$$

Inoltre, sfruttando le proprietà dell'operatore traccia:

$$\mathbb{E}\left[\underbrace{w_k^T S_{k+1} w_k}_{\text{è scalare}}\right] = tr\left(\mathbb{E}\left[w_k^T S_{k+1} w_k\right]\right) = tr\left(\mathbb{E}\left[S_{k+1} w_k w_k^T\right]\right) = tr\left(Q S_{k+1}\right) (10.23)$$

scriviamo

$$V_k^*(x_k) = \mathbb{E}\left[x_k^T W x_k + x_k^T A^T S_{k+1} A x_k | Y_k, U_{k-1}\right] + tr\left(Q S_{k+1}\right) + \\ + min_{u_k} \left(u_k^T \left(U + B^T S_{k+1} B\right) u_k + 2u_k^T B^T S_{k+1} A \mathbb{E}\left[x_k | Y_k, U_{k-1}\right] + c_{k+1}\right)$$

Ma, per definizione

$$\mathbb{E}[x_k|Y_k, U_{k-1}] = \hat{x}_{k|k} \tag{10.24}$$

Di conseguenza l'ingresso ottimo u_k^* che minimizza V_k^* vale

$$u_k^* = -\left(B^T S_{k+1} B + u\right)^{-1} B^T S_{k+1} A \hat{x}_{k|k} = -L_k^* \hat{x}_{k|k}$$
(10.25)

e risulta essere combinazione lineare della stima di stato $\hat{x}_{k|k}$.

Si ottiene allora:

$$V_k^*(x_k) = \mathbb{E}\left[x_k^T W x_k + x_k^T A^T S_{k+1} A x_k | Y_k, U_{k-1}\right] + tr\left(Q S_{k+1}\right) - \\ - \mathbb{E}\left[\hat{x}_{k|k}^T A^T S_{k+1} B\left(U + B^T S_{k+1} B\right) B^T S_{k+1} A \hat{x}_{k|k} | Y_k, U_{k-1}\right] + c_{k+1}$$
(10.26)

Ricordando che vale sempre la

$$\mathbb{E}\left[x_{k}^{T}Tx_{k}|Y_{k},U_{k-1}\right] = \mathbb{E}\left[\left(x_{k}-\hat{x}_{k|k}+\hat{x}_{k|k}\right)^{T}T\left(x_{k}-\hat{x}_{k|k}+\hat{x}_{k|k}\right)|Y_{k},U_{k-1}\right]$$

$$= \mathbb{E}\left[\left(x_{k}-\hat{x}_{k|k}\right)^{T}T\left(x_{k}-\hat{x}_{k|k}\right)|Y_{k},U_{k-1}\right] + 2\mathbb{E}\left[\left(x_{k}-\hat{x}_{k|k}\right)^{T}T\hat{x}_{k|k}|Y_{k},U_{k-1}\right] + \mathbb{E}\left[\hat{x}_{k|k}^{T}T\hat{x}_{k|k}|Y_{k},U_{k-1}\right]$$

$$= tr\left(TP_{k|k}\right) + 0 + \hat{x}_{k|k}^{T}T\hat{x}_{k|k}$$
(10.27)

e ponendo nella (10.27)

$$T = A^{T} S_{k+1} B \left(U + B^{T} S_{k+1} B \right) B^{T} S_{k+1} A$$
 (10.28)

la (10.26) diviene

$$V_k^*(x_k) = \mathbb{E}\left[x_k^T \left(W + A^T S_{k+1} A - A^T S_{k+1} B \left(B^T S_{k+1} B\right) B^T S_{k+1} A\right) x_k | Y_k, U_{k-1} \right] + tr\left(Q S_{k+1}\right) + tr\left(T P_{k|k}\right) + c_{k+1}$$

$$(10.29)$$

La dimostrazione della proposizione è così conclusa se si definiscono la matrice S_k

$$S_k = A^T S_{k+1} A + W - A^T S_{k+1} B \left(B^T S_{k+1} B + U \right)^{-1} B^T S_{k+1} A$$
 (10.30)

e lo scalare

$$c_k = c_{k+1} + tr(QS_{k+1}) + tr(TP_{k|k})$$
 (10.31)

La dimostrazione precedente ci fornisce un metodo ricorsivo per il calcolo dell'ingresso ottimo, tramite la (10.25), e per l'aggiornamento delle matrici S_k e degli scalari c_k , tramite le equazioni (10.30) e (10.31).

Si ottiene infine che il costo minimo risulta pari a

$$J_T^* = V_o^*(x_0) = \mathbb{E}\left[x_0^T S_0 x_0\right] + \sum_{k=1}^T tr\left(Q S_{k+1} + P_{k_{|k}} T_k\right)$$
 (10.32)

dove il primo addendo dipende dallo stato iniziale, mentre il secondo è il termine dovuto al rumore.

In conclusione abbiamo visto che il controllo ottimo LQG è la serie di un filtro di Kalman e di un controllo LQ:

$$u_k^* = -L_k^* \hat{x}_{k|k} \tag{10.33}$$