Real-time for real machines

Luigi Palopoli

Bertinoro — 19/July/2003

Outline

* Basic definitions on real-time systems

A real-time system

«
Ikhstrumentation

Real-time
controller

Operator

A real-time controller is a computer based system, which produces results
fo inputs complying with some temporal constraints

Some useful definitions...

* Event triggered vs Time-triggered

Event-triggered: system's reactions
are elicited by the occurrence of
certain events in the environment

Time-triggered: interactions
with the environment take
place upon well defined instants

Some useful definitions |

* Single node vs distributed

1 CPU
Platform

Plant

Single node: computation is
concentrated in one node, which has
direct access to sensors and
actuators

Distributed: computation is
distributed across different nodes
which communicate by means of
a bus

Some useful definitions ... |l

e Hard real-time vs Soft real-time

Hard real-time: computation
must terminate within certain
deadlines

Soft real-time: deadlines can
occasionally be missed but the
anomaly has to be kept in check,

lest the Quality of Service be severely
degraded

Real-time systems: what's in a

name?

Embedded Software
Operating System

Board Support Packages =
Embedded Hardware 4 ’

wiopeld
ndwoy

* A an embedded controller
IS a complex ensemble of
software and hardware
components:

- Hardware devices

- Software support
components

- Software applications

* Event-triggered and Time-
triggered semantics are
often intertwined

Do they work?

e Sometimes they don't!!!

Mars pathfinder: contact lost
for 1.5 days due to a failure in
real-time software

Ariane V explosion: 800 M€ lost due
to a bug in software

care about real-

Why should a control engineer

time software?

WU R The pure “springs” of control engineer:

The polluted “delta” of system engineer

Performance can be severely degraded

communication and computation take a
(random) time

links and nodes have finite bandwidth
there is sampling and actuation jitter

information is quantised

instantaneous computations and
communication

infinite bandwidth links and nodes
ideal sampling

infinite precision

Outline

* Development cycle

™ From design to deployment: the

long run....
* The starting point is the outcome of classical

digital control; something like:

T
1+ yplp
T, T

T

T
1+2-2
T

4k—ﬂ+?§eM—2)

u(k)=u(k—1)+K

elk|-

* Underlying assumptions:

- samples are collected with period T

- the new u(k) is emitted and applied to the plant
as soon as the new e(k) arrives

From design to deployment: the
long run ... |

» First step: generation of source code (typically in C)

typedef ... REAL

struct PID_DATA {
struct {...} PARAMS;
struct {...} STATE;

struct { REAL uc; /*set point */
REAL v; /* measured variable */
REAL u; /* control variable */

} SIGNALS;
};
volid pid_init(struct PID _DATA * v) {...};
REAL pid _update(struct PID DATA * v) {...};

What do we work with?
* Fixed point (fast computation, handle one order of magnitude)
* Floating point (slower computation, handle different orders of

mannitrica)
lllayl llluuc/

long run ... |l

* |l step: embedding of the function into a thread (or
Task)

PID DATA d;
THREAD PIDtask () {
<fill in gains in d>
pid_init (&d) ;
while (1) {
<wait for an event>
readPort (a, &((d.SIGNALS) .V)) :;
pid_update (&4) ;
writePort (b, (d.SIGNALS) .u) ;

What is a task?

* A task is a piece of code that, when triggered, executes a
job on a processor

- The event triggering a task's execution (job) can either be an
alarm expiration (time-triggered paradigm) or an interrupt
triggered by the arrival of new data (even-triggered
paradigm)

The task takes control
of the CPU

Task creation

Job termination: the task
awalits a new triggering
event

Timing

start time of k-th job: s(k)

behaviour

finishing time of k-th job: f(k)

ﬁ A ..

Read pid_update write T
A L
L Computation time: c(k) _

A
- | Sampling Period: T P M

Computation delay can be stochastic

Real-time constraint:
Output has to be released before next

sample arrives:

flk) <Te ctk) < Tmaxck) < T

Possible improvement

PID DATA d;
THREAD PIDtask () {

<fill in gains in d>

pid _init (&4) ;

while (1) {

<wait for an event>
readPort (a, &((d.SIGNALS) .Vy));
' put (&4) ;

(d.SIGNALS) .u) ;
e state(&d) ;

Emit new data as soon as possible
and do the internal updates
afterward

Breaking Pandora's Box!

* While a task is waiting for an event it does not need
the processor's control: it is possible to execute
other tasks!

* This is called Concurrency

[The interrupt| was a great invention, but also a
Pandora's Box. Essentially, for the sake of efficiency,
concurrency [became] visible and then, all hell broke

loose

[E.W.Dijkstra]

Outline

Managing real-time concurrency

Managing concurrency

The problem arises when multiple tasks are ready to
execute at the same time

A component of the OS (scheduler) is needed to grant
the access to the CPU (or more generally to shared
resources)

A task can be in three states:

- SLEEPING: it awalits the triggering event
- READY: it requires the access to the CPU
- RUNNING: it handles the CPU

Task creation

Preemption: som
can suspend the job execution
in presence-0f a

task havi@g a greater priority

Job termination:\the task
waits for a new tri '
event

Dispatch: the OS
grants access to the
CPU

What's wrong with concurrency?

- From computer engineering point of view, it becomes much
more difficult to write and debug programs (especially if
tasks interact)

- deadlock
- livelock
- starvation

« From control engineering point of view, it becomes more
difficult

- to enforce timing constraints
- to ensure regularly spaced sampling

- to ensure regularly spaced command release

B | e |
| I

Problems with concurrency

* Delays introduced by scheduling

- Sampling intervals irregular
- Output release intervals irregular
* Real-time constraints

- How is it possible to ensure that every job
finishes in due time?

|s that all?

 Well it may not be!!

PID DATA d; Tasks communicate with other tasks
THREAD PIDtask ()\ { and with the envirohment!

<fill in gaiRs in d> 4"’//
pid_init (&d) ;
while (1) {

<wait for aR epent>

T e

plo upaddte

}

Communication

e Communication takes time and it entails
resource sharing

Communication medium

Readers Writers

Control Sensor 2 Sensor 1

Algorithms i i

Node 2 Node 1

Sh&lged Bus

Node 5 Node 4 Node 3

Tasks compete for ‘ ‘ ‘
processors and for the

Bus: a schedul/ng
mechanism is: needed Actuator 3 Actuator 2 Actuator 1

Example 2: Multilevel control

Task 1 (low activation
@ period): example
kinematic control

Task 2 (high activation @

period): example motor
PID

Task creation

Job termination

ResourceNfreed or
dato~qvailable

Request of unavaitable
resource or of data not
ready

BLOCKED

Real-time scheduling

Given a set of task, endowed with execution
timing constraint, and a set of shared
resources, decide an allocation of resources
to tasks (for each time instant) such that
timing constraints are met

