Sistemi in tempo reale Fixed Priority scheduling of Periodic tasks

Luigi Palopoli

Credits: Giuseppe Lipari and Marco Di Natale

Scuola Superiore Sant'Anna

Pisa -Italy

Task Model

Mathematical model of a task

- A task τ_i is a (infinite) sequence of jobs (or instances) $J_{i,k}$.
- Each job $J_{i,k} = (a_{i,k}, c_{i,k}, d_{i,k})$ is characterized by:
 - an activation time (or arrival time) $a_{i,k}$;
 - → It is the time when the job is *activated* by an event of by a condition;
 - a computation time $c_{i,k}$;
 - \rightarrow It is the time it takes to complete the job;
 - an absolute deadline $d_{i,k}$
 - $\rightarrow\,$ it is the absolute instant by which the job must complete.
 - the job finishes its execution at time $f_{i,j}$;
 - \rightarrow the response time of job $J_{i,j}$ is $\rho_{i,j} = f_{i,j} a_{i,j}$;
 - \rightarrow for the job to be correct, it must be $f_{i,j} \leq d_{i,j}$.

A task can be:

• *periodic*: has a regular structure, consisting of an infinite cycle, in which it executes a computation and then suspends itself waiting for the next periodic activation. An example of pthread library code for a periodic task is the following:

```
void * PeriodicTask(void *arg)
{
    <initialization>;
    <start periodic timer, period = T>;
    while (cond) {
        <read sensors>;
        <update outputs>;
        <update outputs>;
        <update state variables>;
        <wait next activation>;
    }
}
```


Model of a periodic task

From a mathematical point of view, a periodic task $\tau_i = (C_i, D_i, T_i)$ consists of a (infinite) sequence of jobs $J_{i,k}$, $k = 0, 1, 2, \ldots$, with

$$a_{i,0} = 0$$

$$\forall k > 0 \quad a_{i,k} = a_{i,k-1} + T_i$$

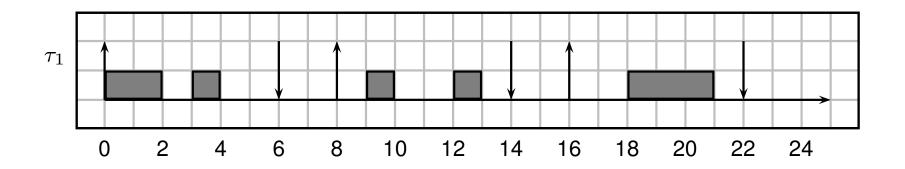
$$\forall k \ge 0 \quad d_{i,k} = a_{i,k} + D_i$$

$$C_i = \max\{k \ge 0 | c_{i,k}\}$$

- T_i is the task's period;
- D_i is the task's relative deadline;
- C_i is the task's worst-case execution time (WCET);
- R_i is the worst-case response time: $R_i = max_j\{\rho_{i,j}\};$
 - for the task to be schedulable, it must be $R_i \leq D_i$.

Graphical representation

In this course, the tasks will be graphically represented with a GANNT chart. In the following example, we graphically show periodic task $\tau_1 = (3, 6, 8)$.



Notice that, while job $J_{i,0}$ and $J_{i,3}$ execute for 3 units of time (WCET), job $J_{i,2}$ executes for only 2 units of time.

Hyperperiod

- A task set *T* = {τ₁,...,τ_n} is periodic if it consists of periodic tasks only.
- The *hypeperiod* of a periodic task set is the least common multiple (lcm) of the task's periods;

 $H(\mathcal{T}) = \mathsf{lcm}_{\tau_i \in \mathcal{T}}(T_i)$

- The patterns of arrival repeats every hypeperiod. In practice, if two tasks arrive at the same time *t*, they will arrive at the same time *t* + *kH*, for every integer number *k* ≥ 0;
- Sometimes, the hyperperiod is defined also for task sets consisting or periodic and sporadic tasks. The meaning is slightly different.

• A periodic task can have an *initial offset* ϕ_i

- The offset is the arrival time of the first instance of a periodic task;
- Hence:

$$a_{i,0} = \phi_i$$
$$a_{i,k} = \phi_i + kT_j$$

• In some case, offsets are set to a value different from o to avoid all tasks starting at the same time.

Timeline Scheduling for periodic tasks

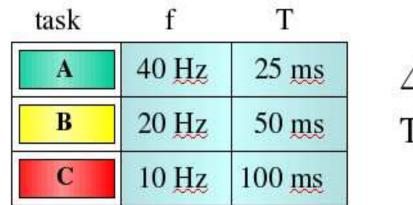
Timeline scheduling

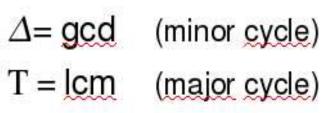
- very popular in military and avionics systems
- also called cyclic executive or cyclic scheduling
- examples
 - air traffic control
 - Space Shuttle
 - Boeing 777

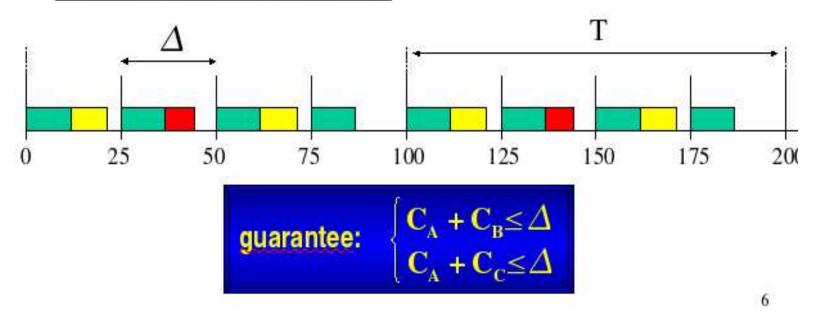
• the time axis is divided time slots

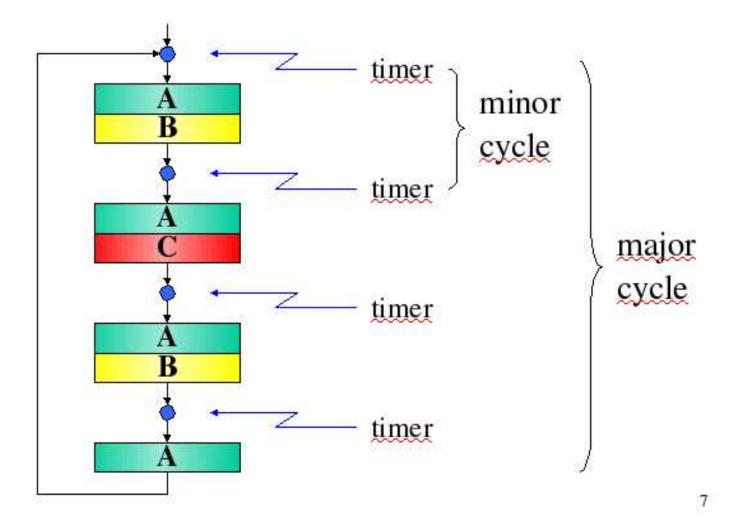
- slots are statically allocated to the tasks
- a timer activates execution (allocation of a slot)

Example









Advantages

- simple implementation (no real-time operating system is required)
- common address space
- run-time overhead
- jitter control

- it is not robust during overloads
- it is difficult to expand the schedule
- it is not easy to handle aperiodic activities
- all process periods must be a multiple of the minor cycle time
- it is difficult to incorporate processes with long periods
- any process with a sizable computation time will need to be split into a fixed number of fixed sized procedures

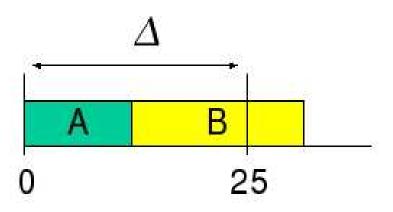
Overload Management

what do we do during task overruns?

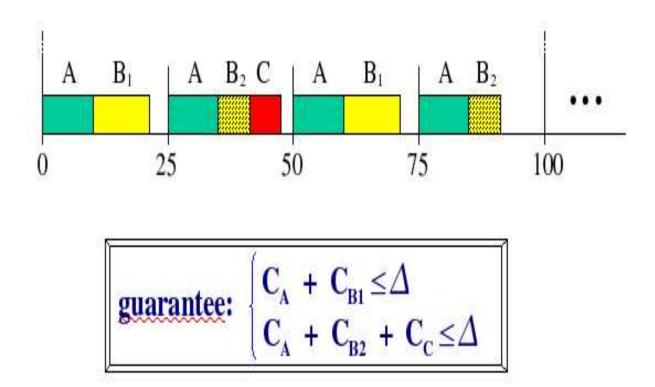
- let the task continue
 - we can have a domino effect on all the other tasks (timeline break)
- abort the task
 - the system can remain in inconsistent states

• if one or more tasks need to be upgraded, we may have to re-design the whole schedule again

Example: B is updated but $C_A + C_B > \Delta$



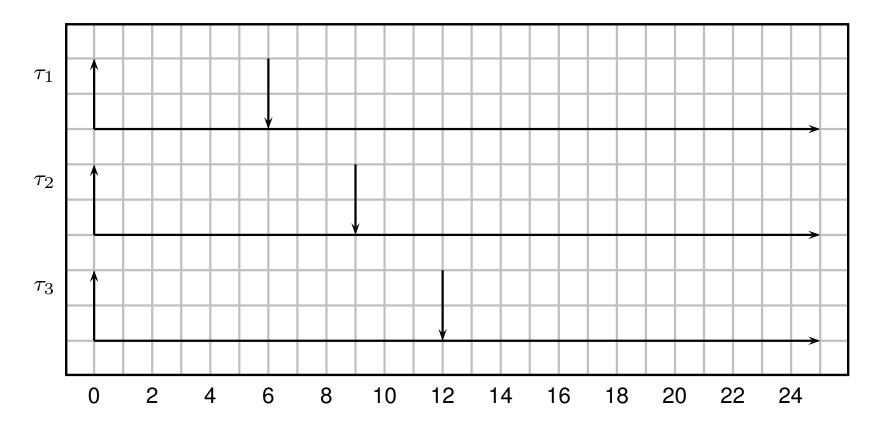
• We have to split B into two subtasks (B_1, B_2) and recompute the schedule.

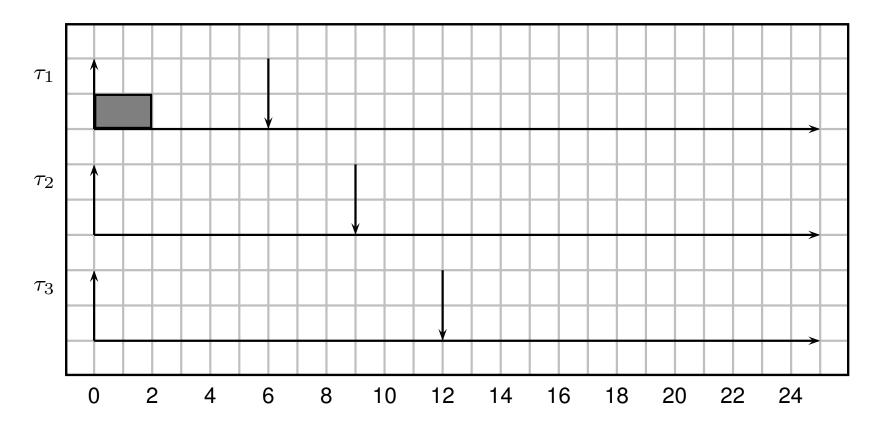


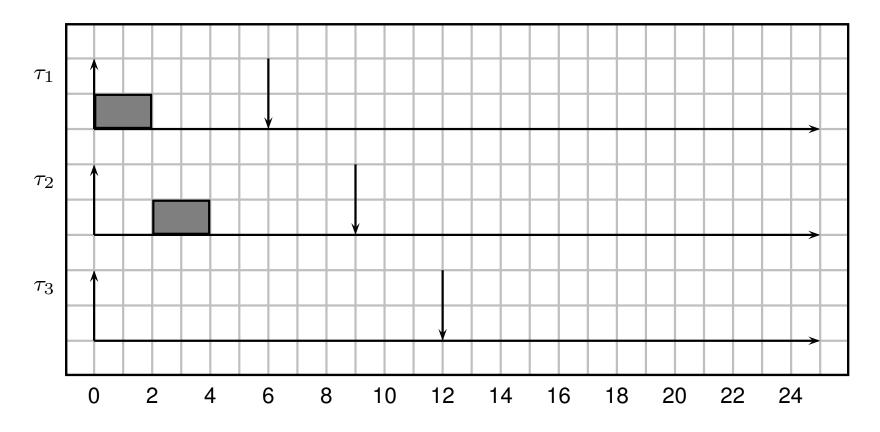
Fixed priority Scheduling

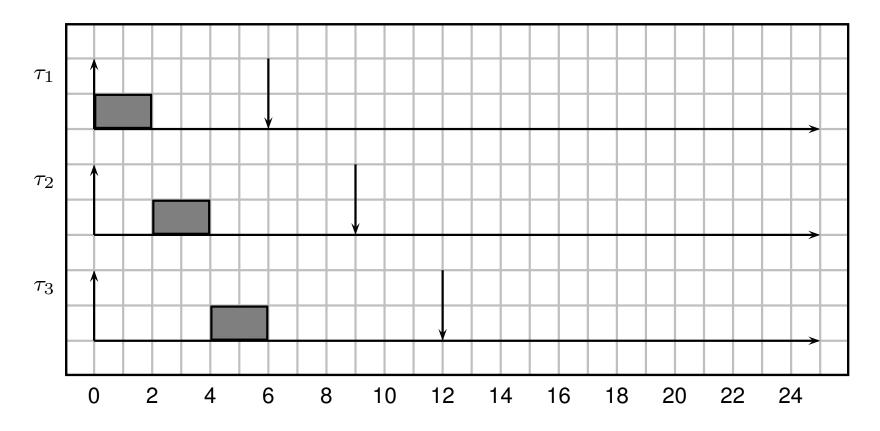
The fixed priority scheduling algorithm

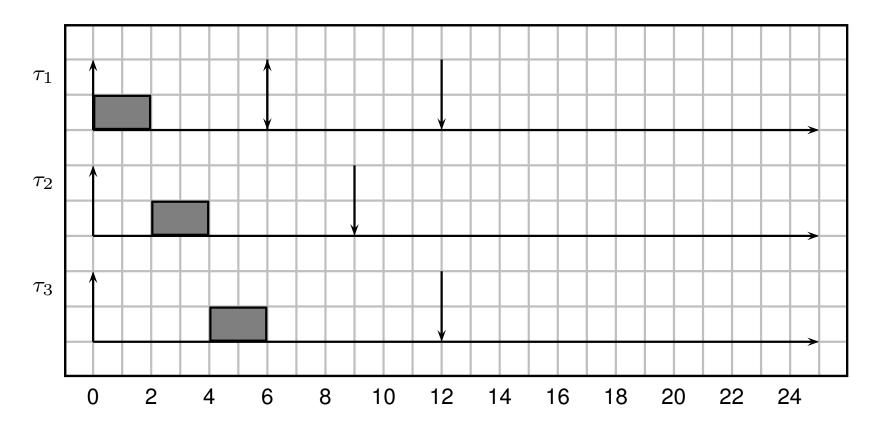
- very simple scheduling algorithm;
 - every task τ_i is assigned a fixed priority p_i ;
 - the active task with the highest priority is scheduled.
- Priorities are integer numbers: the higher the number, the higher the priority;
 - In the research literature, sometimes authors use the opposite convention: the lowest the number, the highest the priority.
- In the following we show some examples, considering periodic tasks, and constant execution time equal to the period.

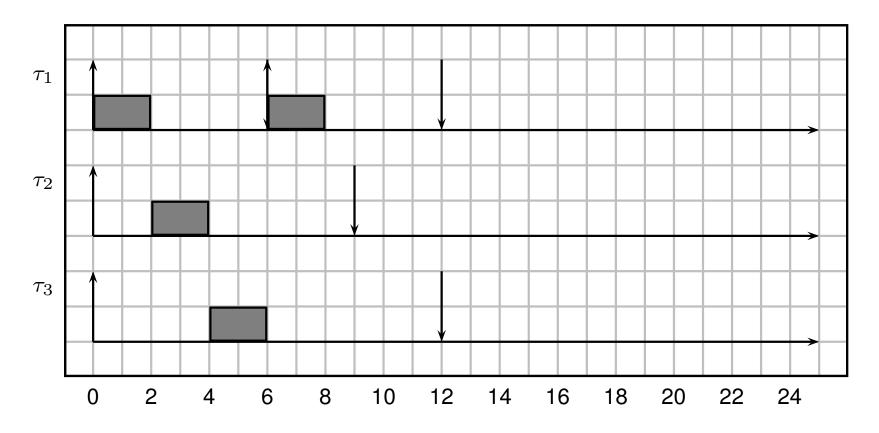


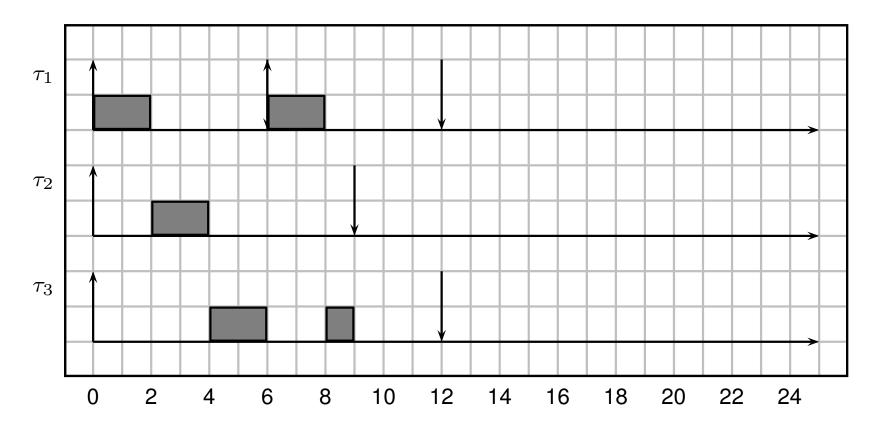


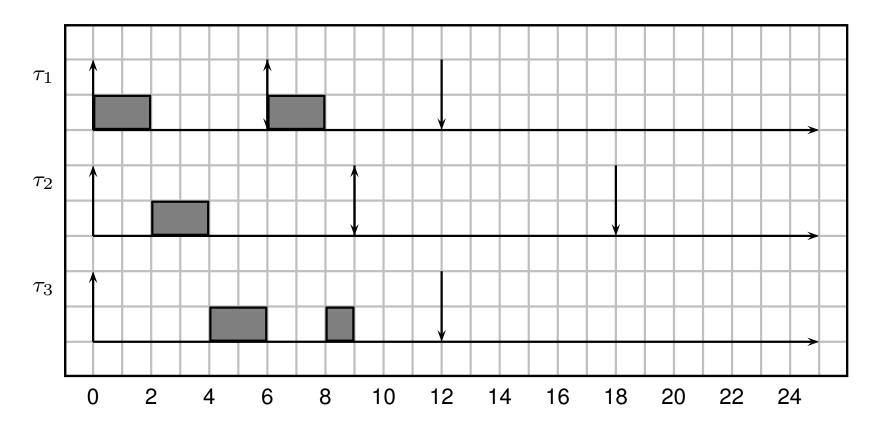


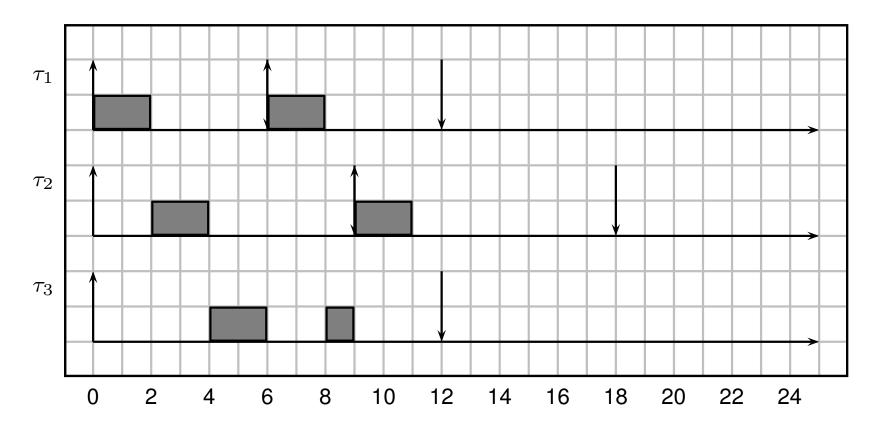


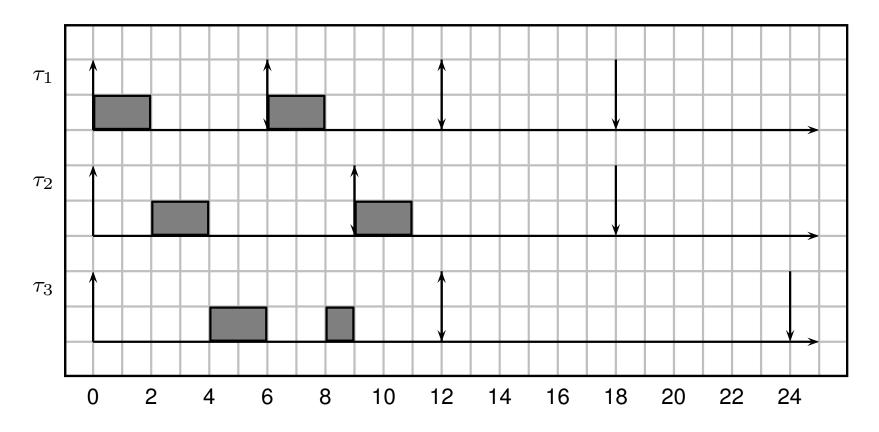


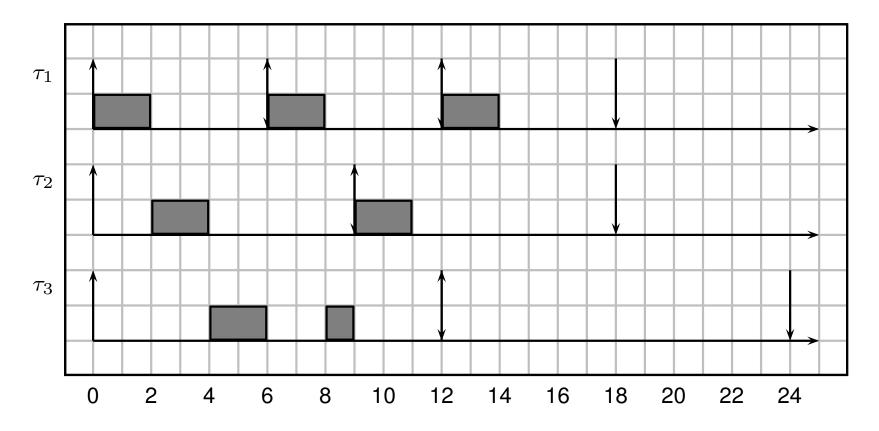


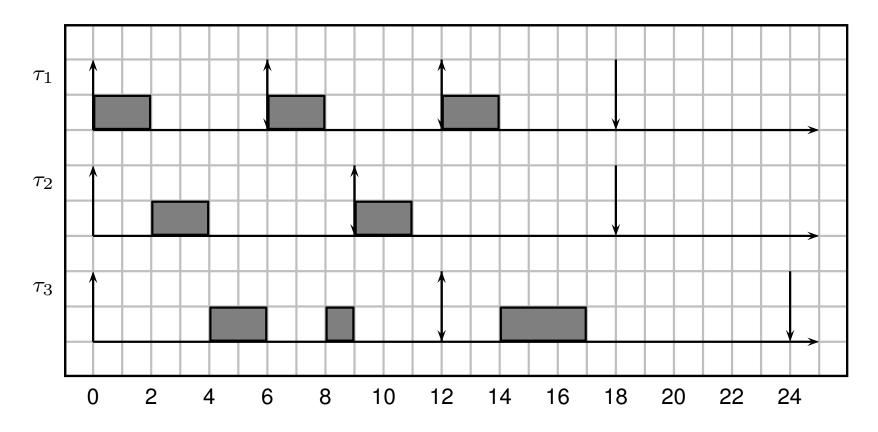


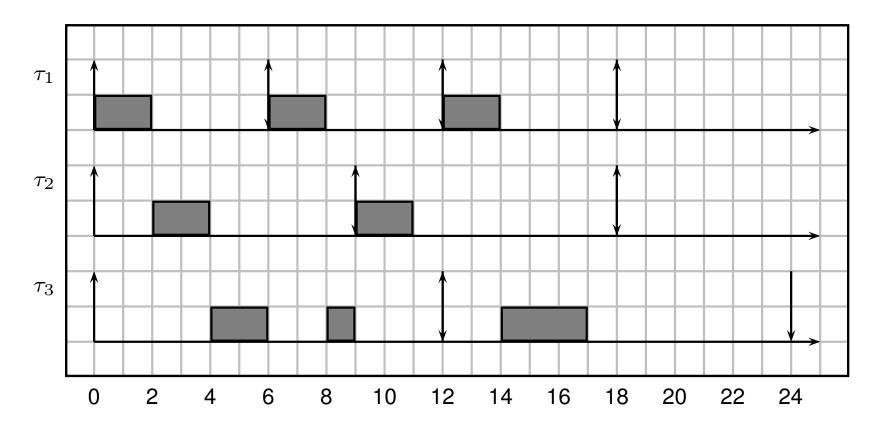


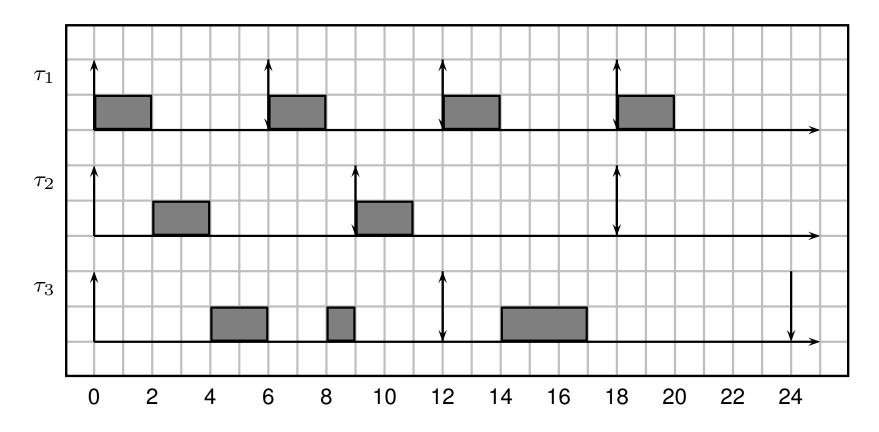


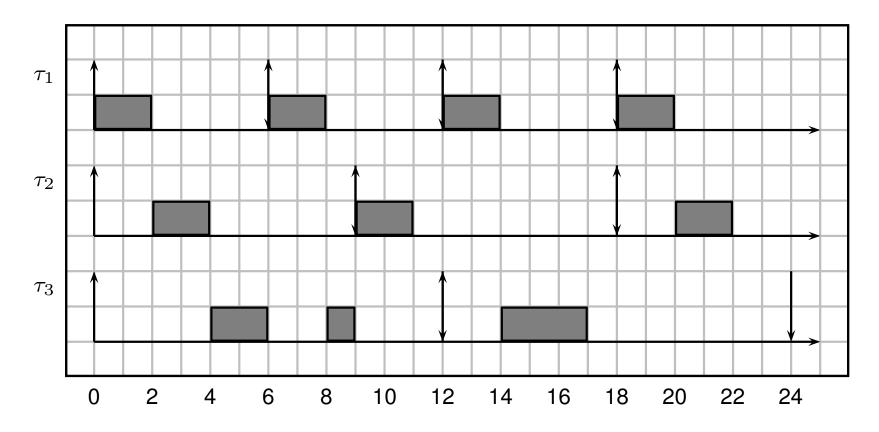












- Some considerations about the schedule shown before:
 - The response time of the task with the highest priority is minimum and equal to its WCET.
 - The response time of the other tasks depends on the interference of the higher priority tasks;
 - The priority assignment may influence the schedulability of a task.

Priority assignment

Priority assignment

- Given a task set, how to assign priorities?
- There are two possible objectives:
 - Schedulability (i.e. find the priority assignment that makes all tasks schedulable)
 - Response time (i.e. find the priority assignment that minimize the response time of a subset of tasks).
- By now we consider the first objective only
- An *optimal* priority assignment *Opt* is such that:
 - If the task set is schedulable with another priority assignment, then it is schedulable with priority assignment *Opt*.
 - If the task set is not schedulable with Opt, then it is not schedulable by any other assignment.

Optimal priority assignment

- Given a periodic task set with all tasks having deadline equal to the period (∀i, D_i = T_i), and with all offsets equal to 0 (∀i, φ_i = 0):
 - The best assignment is the *Rate Monotonic* assignment
 - Tasks with shorter period have higher priority
- Given a periodic task set with deadline different from periods, and with all offsets equal to 0 ($\forall i, \phi_i = 0$):
 - The best assignement is the *Deadline Monotonic* assignment
 - Tasks with shorter relative deadline have higher priority
- For sporadic tasks, the same rules are valid as for periodic tasks with offsets equal to 0.

Presence of offsets

- If instead we consider periodic tasks with offsets, then *there* is no optimal priority assignment
 - In other words,
 - → if a task set T_1 is schedulable by priority O_1 and not schedulable by priority assignment O_2 ,
 - \rightarrow it may exist another task set \mathcal{T}_2 that is schedulable by O_2 and not schedulable by O_1 .
 - For example, \mathcal{T}_2 may be obtained from \mathcal{T}_1 simply changing the offsets!

Scheduling analysis

Analysis

- Given a task set, how can we guarantee if it is schedulable of not?
- The first possibility is to *simulate* the system to check that no deadline is missed;
- The execution time of every job is set equal to the WCET of the corresponding task;
 - In case of periodic task with no offsets, it is sufficient to simulate the schedule until the *hyperperiod* $(H = lcm_i(T_i))$.
 - In case of offsets, it is sufficient to simulate until $2H + \phi_{\max}$.
 - If tasks periods are prime numbers the hyperperiod can be very large!

Utilization analysis

- In many cases it is useful to have a very simple test to see if the task set is schedulable.
- A sufficient test is based on the *Utilization bound*:
 - The *utilization least upper bound* for scheduling algorithm \mathcal{A} is the smallest possible utilization U_{lub} such that, for any task set \mathcal{T} , if the task set's utilization U is not greater than U_{lub} ($U \leq U_{lub}$), then the task set is schedulable by algorithm \mathcal{A} .

• Each task uses the processor for a fraction of time

$$U_i = \frac{C_i}{T_i}$$

• the total processor utilisation is

$$U_p = \sum_i \frac{C_i}{T_i}$$

• this is a measure of the processor's load

Necessary condition

- if $U_p > 1$ the task set is not surely schedulable
- however, if $U_p < 1$ the task may not be schedulable

Utilization bound for RM

- We consider *n* periodic (or sporadic) tasks with relative deadline equal to periods.
- Priorities are assigned with Rate Monotonic;

•
$$U_{lub} = n(2^{1/n} - 1)$$

• U_{lub} is a decreasing function of n;

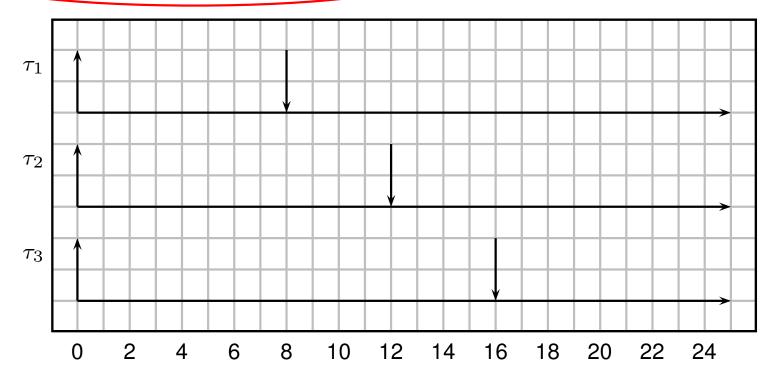
• For large
$$n$$
: $U_{lub} \approx 0.69$

Schedulability test

- Therefore the schedulability test consist in:
 - Compute $U = \sum_{i=1}^{n} \frac{C_i}{T_i}$;
 - if $U \leq U_{lub}$, the task set is schedulable;
 - if U > 1 the task set is not schedulable;
 - if $U_{lub} < U \le 1$, the task set may or may not be schedulable;

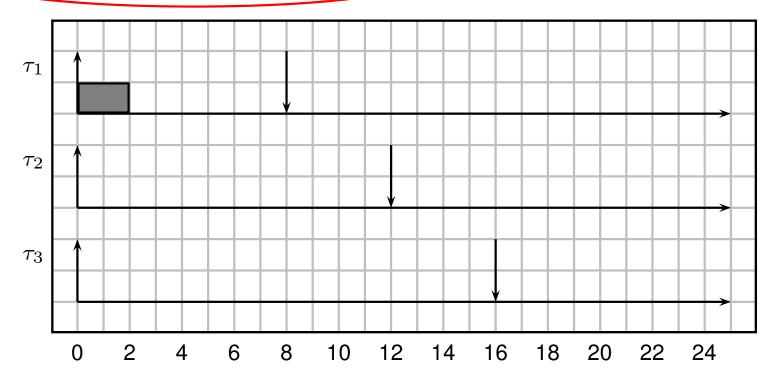
$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$



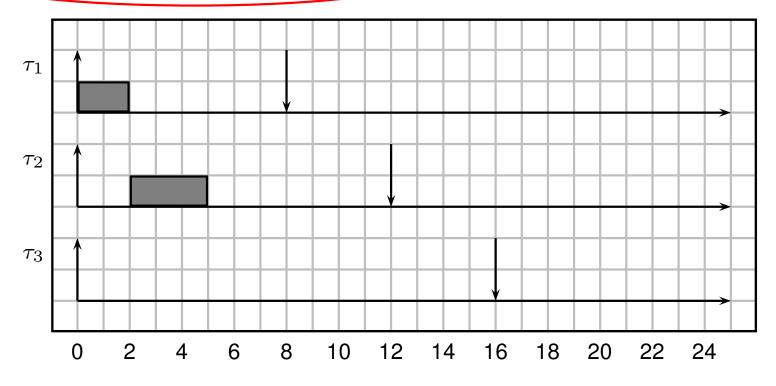
$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$



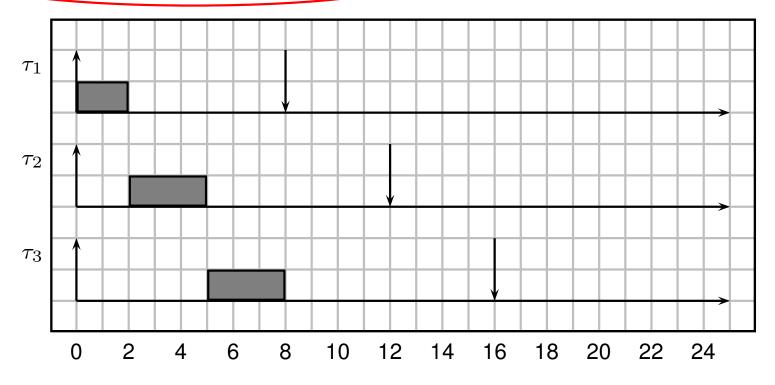
$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$



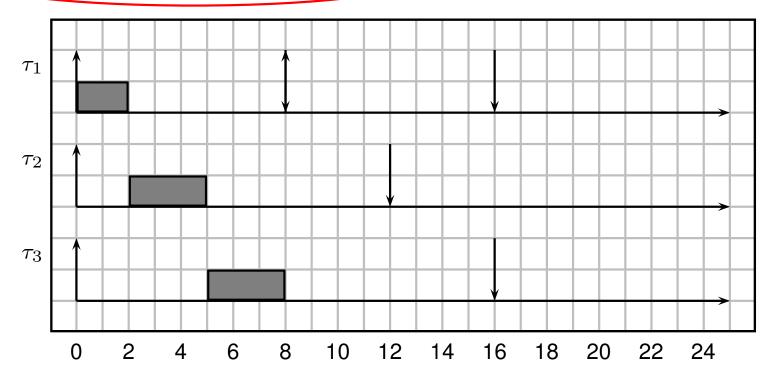
$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$



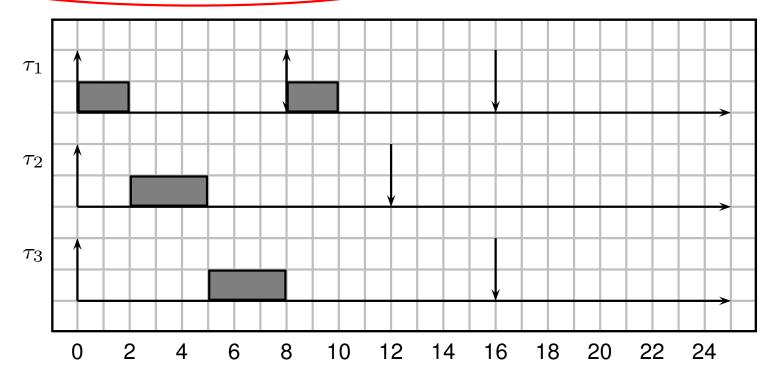
$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$



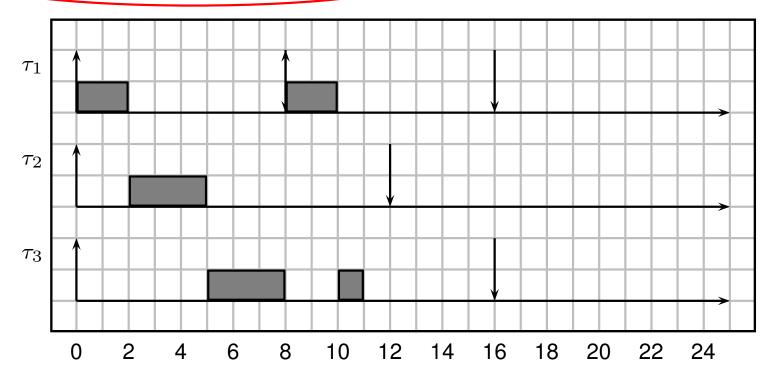
$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$



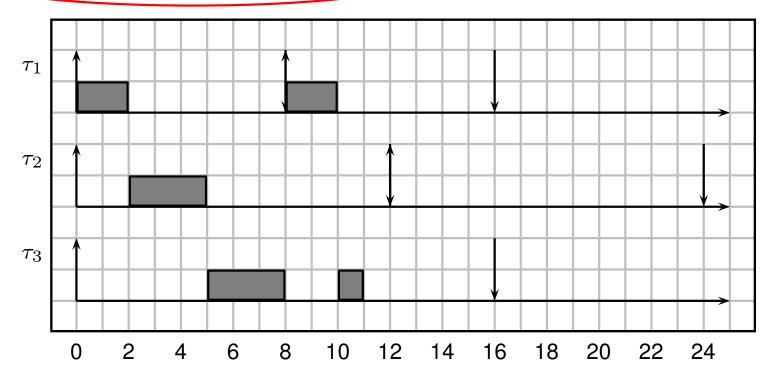
$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$



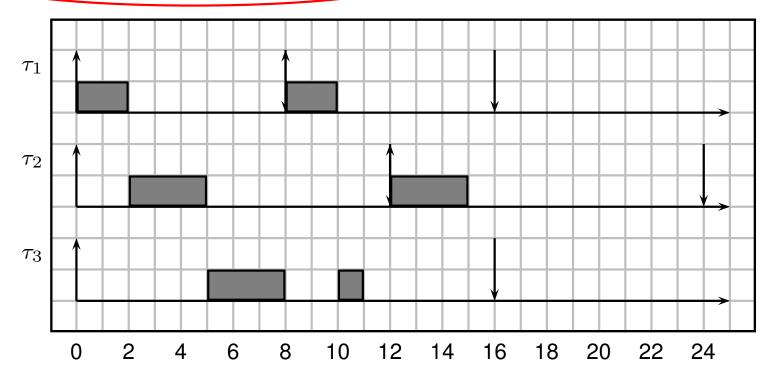
$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$



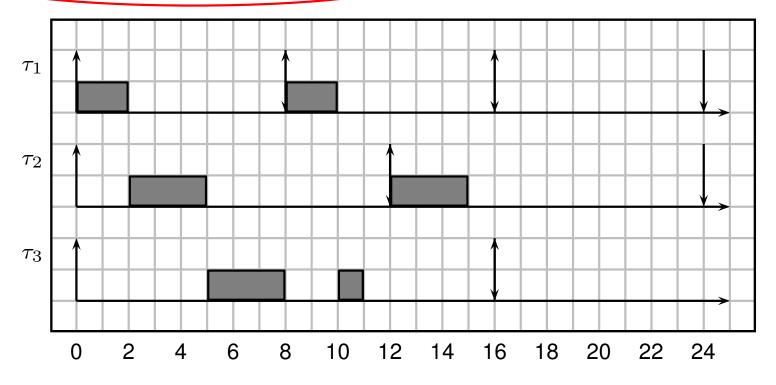
$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$



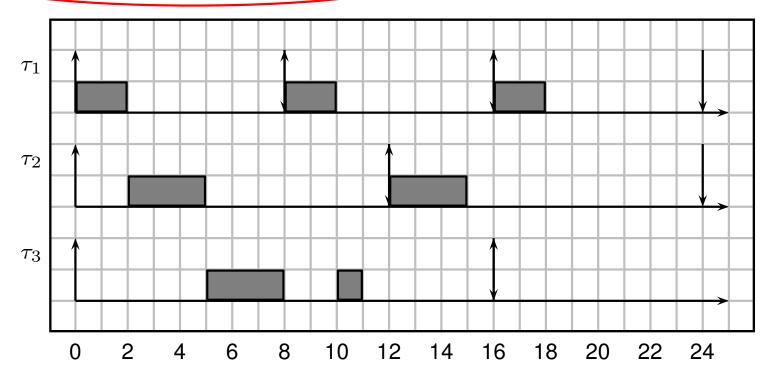
$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$



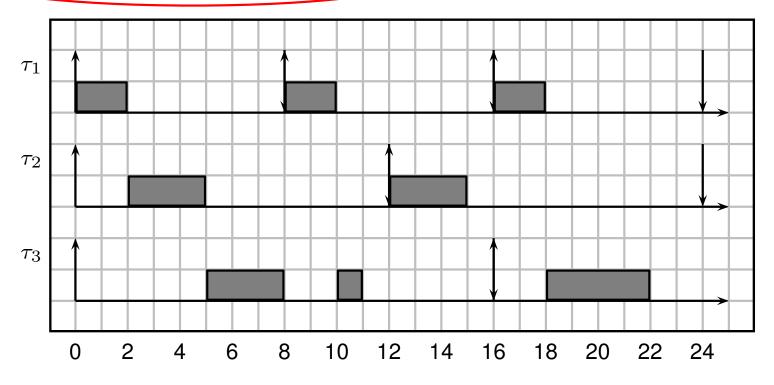
$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$



$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$



• The bound is very Conservative: most of the times, a task set with $U > U_{lub}$ is schedulable by RM.

- A particular case is when tasks have periods that are *harmonic*:
 - A task set is *harmonic* if, for every two tasks τ_i , tau_j , either P_i is multiple of P_j or P_j is multiple of P_i .
- For a harmonic task set, the utilization bound is $U_{lub} = 1$.
- In other words, Rate Monotonic is an *optimal* algoritm for harmonic task sets.

A necessary and sufficient test

Response time analysis

- A necessary and sufficient test is obtained by computing the *worst-case response time* (WCRT) for every task.
- For every task τ_i :
 - Compute the WCRT R_i for task τ_i ;
 - If $R_i \leq D_i$, then the task is schedulable;
 - else, the task is not schedulable; we can also show the situation that make task τ_i miss its deadline!
- To compute the WCRT, we do not need to do any assumption on the priority assignment.
- The algorithm described in the next slides is valid for an arbitrary priority assignment.
- The algorithm assumes periodic tasks with no offsets, or sporadic tasks.

Response time analysis - II

- The *critical instant* for a set of periodic real-time tasks, with offset equal to 0, or for sporadic tasks, is when all jobs start at the same time.
- **Theorem:** The WCRT for a task corresponds to the response time of the job activated at the critical instant.
- To compute the WCRT of task τ_i :
 - We have to consider its computation time
 - and the computation time of the higher priority tasks (*interference*);
 - higher priority tasks can *preempt* task τ_i , and increment its response time.

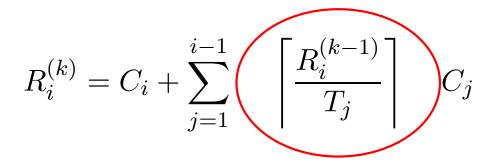
Response time analysis - III

- Suppose tasks are ordered by decreasing priority. Therefore, $i < j \rightarrow prio_i > prio_j$.
- Given a task τ_i , let $R_i^{(k)}$ be the WCRT computed at step k.

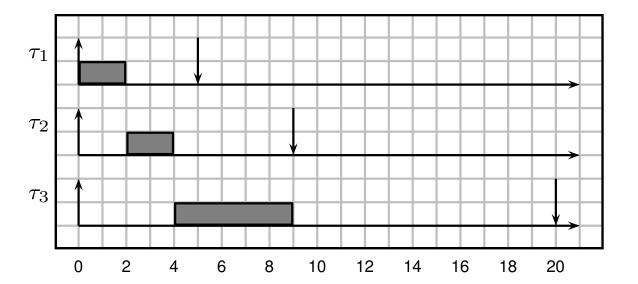
$$R_{i}^{(0)} = C_{i} + \sum_{j=1}^{i-1} C_{j}$$
$$R_{i}^{(k)} = C_{i} + \sum_{j=1}^{i-1} \left[\frac{R_{i}^{(k-1)}}{T_{j}} \right] C_{j}$$

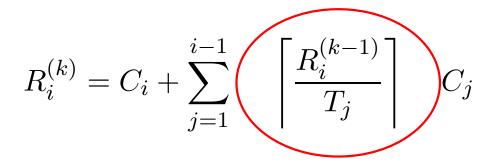
• The iteration stops when:

•
$$R_i^{(k)} =_i^{(k+1)}$$
 or
• $R_i^{(k)} > D_i$ (non schedulable);

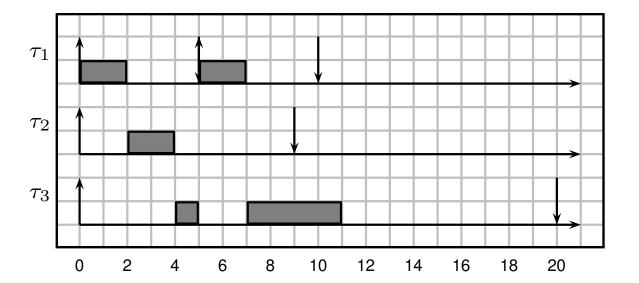


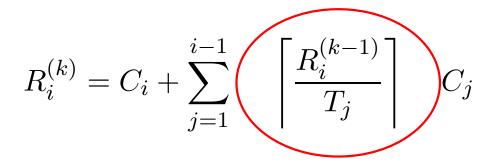
$$R_3^{(0)} = C_3 + 1 \cdot C_1 + 1 \cdot C_2 = 9$$



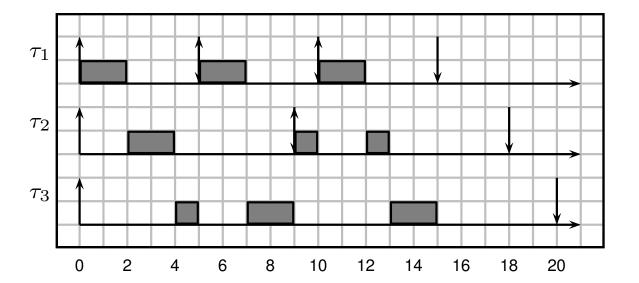


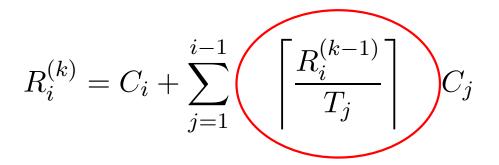
$$R_3^{(1)} = C_3 + 2 \cdot C_1 + 1 \cdot C_2 = 11$$



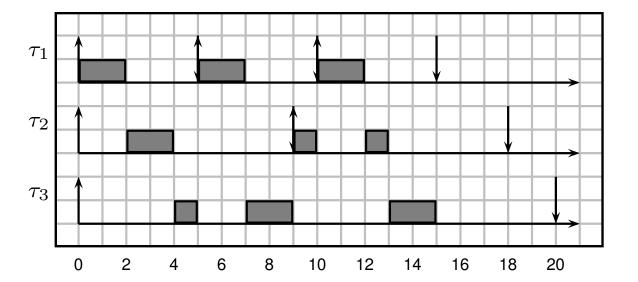


$$R_3^{(2)} = C_3 + 3 \cdot C_1 + 2 \cdot C_2 = 15$$





$$R_3^{(3)} = C_3 + 3 \cdot C_1 + 2 \cdot C_2 = 15 = R_3^{(2)}$$



Interacting Tasks

Interacting tasks

- In reality, many tasks exchange data through shared memory
- Consider as an example three periodic tasks:
 - One reads the data from the sensors and applies a filter.
 The results of the filter are stored in memory.
 - The second task reads the filtered data and computes some control law (updating the state and the outputs); both the state and the outputs are stored in memory;
 - finally, a third periodic task reads the outputs from memory and writes on the actuator device.
- All three tasks access data in the shared memory
- Conflicts on accessing this data in concurrency could make the data structures inconsistent.

Resources and critical sections

- The shared data structure is called *resource*;
- A piece of code accessing the data structure is called *critical section*;
- Two or more critical sections on the same resource must be executed in *mutual exclusion*;
- Therefore, each data structure should be *protected* by a mutual exclusion mechanism;
- In this lecture, we will study what happens when resources are protected by mutual exclusion semaphores.


```
sem_t s;
    sem_init(&s,1);
    void * tau1(void * arg) {
         sem_wait(&s);
         <critical section>
         sem_post(&s);
};
. . .
    void * tau1(void * arg) {
         sem_wait(&s);
         <critical section>
         sem_post(&s);
};
```

Implications of resource sharing

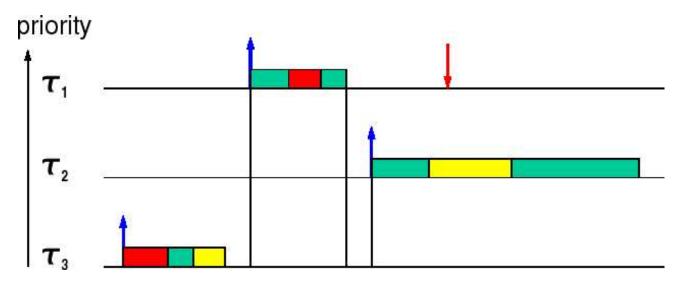
• The resource and the corresponding mutex semaphore will be denoted by symbol S_i .

- A system consists of:
 - A set of N periodic (or sporadic) tasks $\mathcal{T} = \{\tau_1, \ldots, \tau_N\}$;
 - A set of shared resources $S = \{S_1, \ldots, S_M\};$
 - We say that a task τ_i uses resource S_j if it accesses the resource with a critical section.
 - The k-th critical of τ_i on S_j is denoted with $cs_{i,j}(k)$.
 - The length of the longest critical section of τ_i on S_j is denoted by $\xi_{i,j}$.

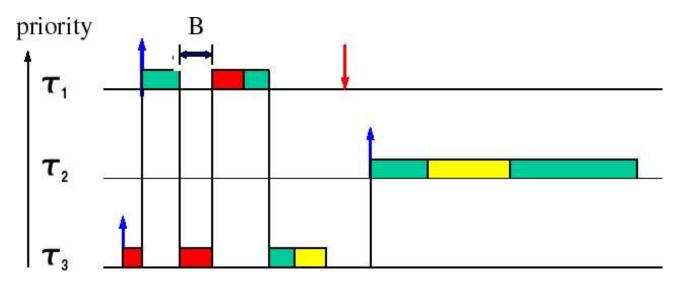
Blocking time

- A first important implocation of resource sharing is blocking time
- A blocking condition happens when a high priority tasks wants to access a resource that is held by a lower priority task.
- A task incurs a blocking condition depending on the interleaving of the schedule

No conficts in this case

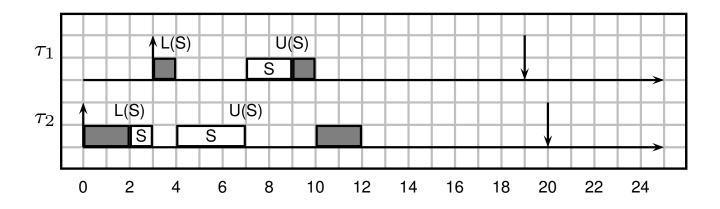


Blocking time in this case



Blocking and priority inversion

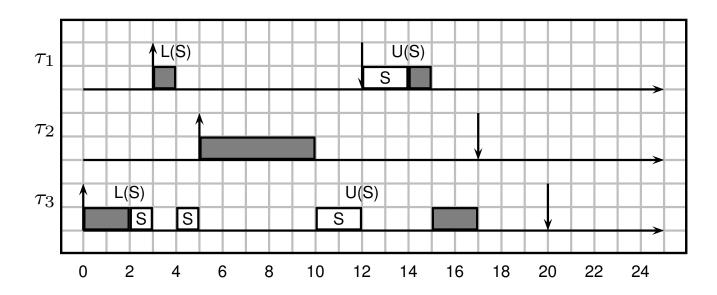
• Consider the following example, where $p_1 > p_2$.



- From time 4 to 7, task τ_1 is blocked by a lower priority task τ_2 ; this is a *priority inversion*.
- Priority inversion is not avoidable; in fact, τ_1 must wait for τ_2 to leave the critical section.
- However, in some cases, the priority inversion could be too large.

Example of priority inversion

• Consider the following example, with $p_1 > p_2 > p_3$.

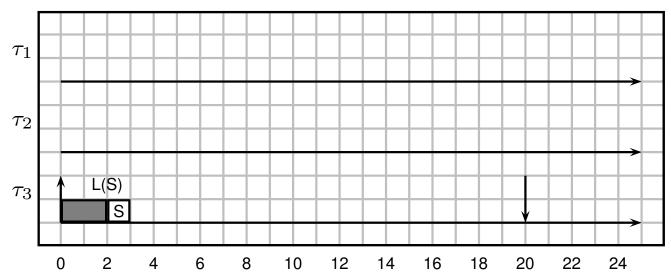


- This time the priority inversion is very large: from 4 to 12.
- The problem is that, while τ_1 is blocked, τ_2 arrives and preempt τ_3 before it can leave the critical section.
- If there are other medium priority tasks, they could preempt τ_3 as well.
- Potentially, the priority inversion could be unbounded! Sistemi in tempo reale p. 51/6

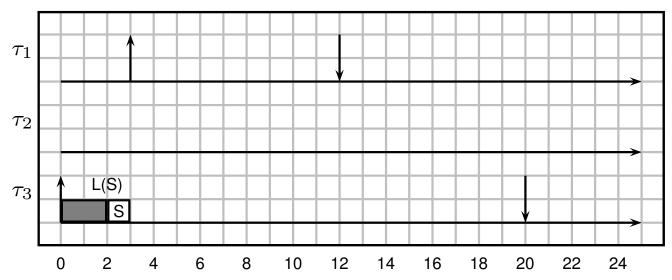
Dealing with priority inversion

- The only way to deal with priority inversion is by the introduction of an appropriate concurrency protocol
 - Non Preemptive protocol
 - Priority inheritance protocol (PIP)
 - Priority Ceiling Protocol (PCP)
 - Immediate Priority Ceiling Protocol (Part of the OSEK and POSIX standards)

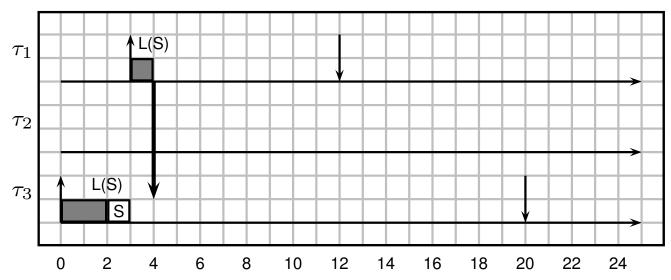
- The solution to the problem of priority inversion is rather simple;
 - While the low priority task blocks an higher priority task, it *inherits* the priority of the higher priority task;
 - In this way, every medium priority task cannot make preemption.
 - In the previous example:



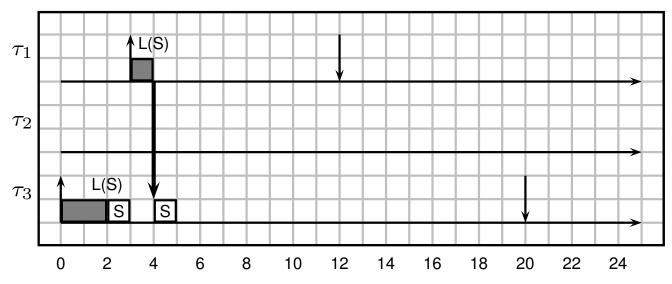
- The solution to the problem of priority inversion is rather simple;
 - While the low priority task blocks an higher priority task, it *inherits* the priority of the higher priority task;
 - In this way, every medium priority task cannot make preemption.
 - In the previous example:



- The solution to the problem of priority inversion is rather simple;
 - While the low priority task blocks an higher priority task, it *inherits* the priority of the higher priority task;
 - In this way, every medium priority task cannot make preemption.
 - In the previous example:

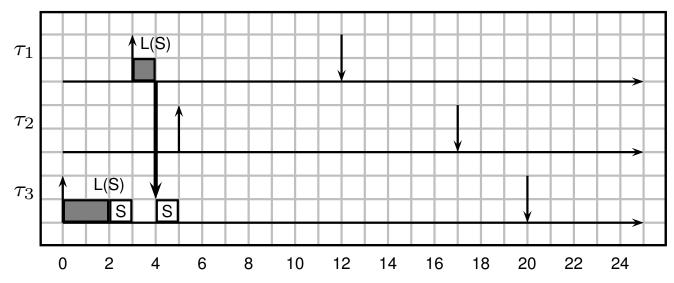


- The solution to the problem of priority inversion is rather simple;
 - While the low priority task blocks an higher priority task, it *inherits* the priority of the higher priority task;
 - In this way, every medium priority task cannot make preemption.
 - In the previous example:



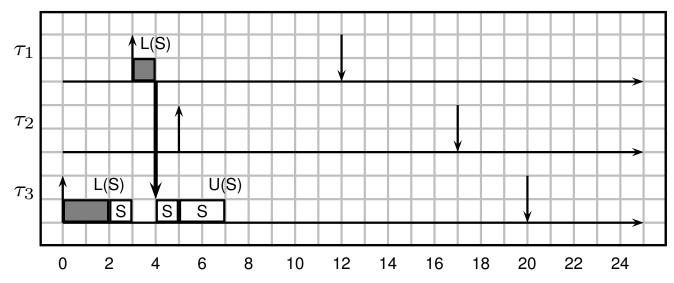
• Task au_3 inherits the priority of au_1

- The solution to the problem of priority inversion is rather simple;
 - While the low priority task blocks an higher priority task, it *inherits* the priority of the higher priority task;
 - In this way, every medium priority task cannot make preemption.
 - In the previous example:



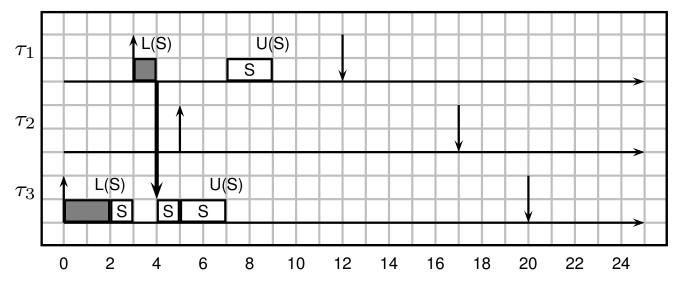
- \circ Task au_3 inherits the priority of au_1
- \sim Table constant ()

- The solution to the problem of priority inversion is rather simple;
 - While the low priority task blocks an higher priority task, it *inherits* the priority of the higher priority task;
 - In this way, every medium priority task cannot make preemption.
 - In the previous example:



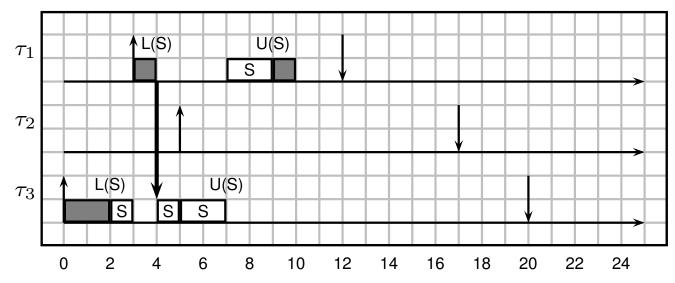
- \circ Task au_3 inherits the priority of au_1
- \sim Table constant ()

- The solution to the problem of priority inversion is rather simple;
 - While the low priority task blocks an higher priority task, it *inherits* the priority of the higher priority task;
 - In this way, every medium priority task cannot make preemption.
 - In the previous example:



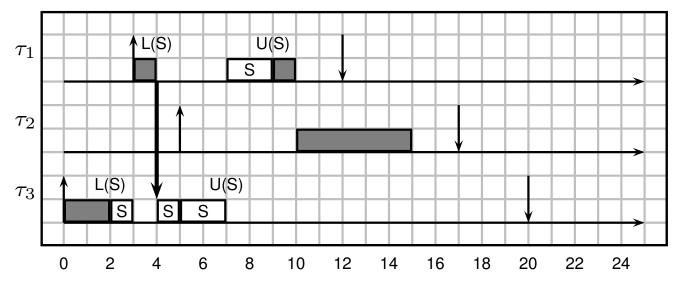
- \circ Task au_3 inherits the priority of au_1
- \sim Table constant ()

- The solution to the problem of priority inversion is rather simple;
 - While the low priority task blocks an higher priority task, it *inherits* the priority of the higher priority task;
 - In this way, every medium priority task cannot make preemption.
 - In the previous example:



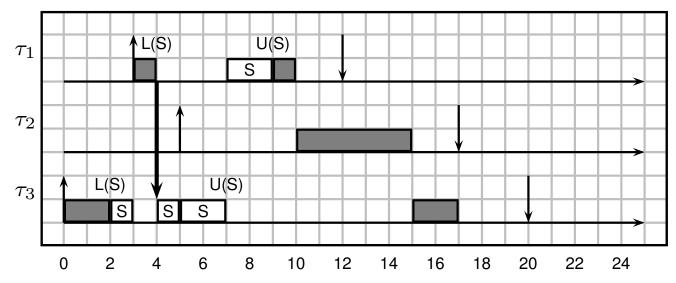
- \circ Task au_3 inherits the priority of au_1
- \sim Table constant ()

- The solution to the problem of priority inversion is rather simple;
 - While the low priority task blocks an higher priority task, it *inherits* the priority of the higher priority task;
 - In this way, every medium priority task cannot make preemption.
 - In the previous example:



- \circ Task au_3 inherits the priority of au_1
- \sim Table constant ()

- The solution to the problem of priority inversion is rather simple;
 - While the low priority task blocks an higher priority task, it *inherits* the priority of the higher priority task;
 - In this way, every medium priority task cannot make preemption.
 - In the previous example:



- \circ Task au_3 inherits the priority of au_1
- \sim Table constant ()

Comments

- The blocking (priority inversion) is now bounded to the length of the critical section of task τ_3
- Tasks with intermediate priority τ_2 cannot interfere with τ_1
- However, τ_2 has a blocking time, even if it does not use any resource
 - This is called *indirect blocking*
 - This blocking time must be computed and taken into account in the formula as any other blocking time.
- It remains to understand:
 - What is the maximum blocking time for a task
 - How we can account for blocking times in the schedulability analysis
- From now on, the maximum blocking time for a task τ_i is denoted by B_i .

Computing the maximum blocking time

- We will compute the maximum blocking time only in the case of non nested critical sections.
- To compute the blocking time, we must consider the following two important theorems:
 - **Theorem 1** Under the priority inheritance protocol, a task can be blocked only once on each different semaphore.
 - **Theorem 2** Under the priority inheritance protocol, a task can be blocked by another lower priority task for at most the duration of one critical section.
- This means that we have to consider that a task can be blocked more than once, but only once per each resource and once by each task.

Blocking time computation

• We must build a *resource usage table*.

- On each row we, put a task in decreasing order of priority; on each column we put a resource (the order is not important);
- On each cell (i, j) we put $\xi_{i,j}$, i.e. the length of the longest critical section of task τ_i on resource S_j , or 0 if the task does not use the resource.
- A task can be blocked only by lower priority tasks:
 - Then, for each task (row), we must consider only the rows below (tasks with lower priority).
- A task can be blocked only on resources that it uses directly, or used by higher priority tasks (*indirect blocking*);
 - For each task, we must consider only those column on which it can be blocked (used by itself or by higher priority tasks).

	S_1	S_2	S_3	B
$ au_1$	2	0	0	?
$ au_2$	0	1	0	?
$ au_3$	0	0	2	?
$ au_4$	3	3	1	?
$ au_5$	1	2	1	?

- let's start from B_1
- τ_1 can be blocked only on S_1 . Therefore, we must consider only the first column, and take the maximum, which is 3. Therefore, $B_1 = 3$.

	S_1	S_2	S_3	B
$ au_1$	2	0	0	3
$ au_2$	0	1	0	?
$ au_3$	0	0	2	?
$ au_4$	3	3	1	?
$ au_5$	1	2	1	?

- Now τ_2 : it can be blocked on S_1 (*indirect blocking*) and on S_2 . Therefore, we must consider the first 2 columns;
- Then, we must consider all cases where two distinct lower priority tasks between τ₃, τ₄ and τ₅ access S₁ and S₂, sum the two contributions, and take the maximum;
- The possibilities are:
 - $\circ \tau_4$ on S_1 and τ_5 on S_2 : \rightarrow 5;
 - τ_4 on S_2 and τ_5 on S_1 : $\rightarrow 4$;

	S_1	S_2	S_3	B
$ au_1$	2	0	0	3
$ au_2$	0	1	0	5
$ au_3$	0	0	2	?
$ au_4$	3	3	1	?
$ au_5$	1	2	1	?

- Now τ_3 ;
- It can be blocked on all 3 resources. We must consider all columns;
- The possibilities are:
 - $^{\circ}$ τ_4 on S_1 and τ_5 on S_2 : \rightarrow 5;
 - \circ τ_4 on S_2 and τ_5 on S_1 or S_3 : \rightarrow 4;
 - $^{\circ}$ τ_4 on S_3 and τ_5 on S_1 : $\rightarrow 2$;
 - $^{\circ}$ τ_4 on S_3 and τ_5 on S_2 or S_3 : $\rightarrow 3$;
- The maximum is $B_3 = 5$.

	S_1	S_2	S_3	B
$ au_1$	2	0	0	3
$ au_2$	0	1	0	5
$ au_3$	0	0	2	5
$ au_4$	3	3	1	?
$ au_5$	1	2	1	?

- Now τ_4 ;
- It can be blocked on all 3 resources. We must consider all columns; However, it can be blocked only by τ_5 .
- The maximum is $B_4 = 2$.
- τ_5 cannot be blocked by any other task (because it is the lower priority task!); $B_5 = 0$;

Example: Final result

	S_1	S_2	S_3	В
$ au_1$	2	0	0	3
$ au_2$	0	1	0	5
$ au_3$	0	0	2	5
$ au_4$	3	3	1	2
$ au_5$	1	2	1	0

Schedulability analysis

Response time analysis

 In the previous example we have seen the test based on response time analysis

$$R_i = C_i + B_i + \sum_{j=1,\dots,i-1} \left\lceil \frac{R_i}{T_j} \right\rceil C_j$$

- There are also other options
- For instance we can apply the following sufficient test: The system is schedulable if

$$\forall i, 1 \le i \le n, \sum_{k=1}^{i-1} \frac{C_k}{T_k} + \frac{C_i + B_i}{T_i} \le i(2^{1/i} - 1)$$