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Task Model
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Mathematical model of a task
• A task τi is a (infinite) sequence of jobs (or instances) Ji,k.
• Each job Ji,k = (ai,k, ci,k, di,k) is characterized by:

◦ an activation time (or arrival time) ai,k;
→ It is the time when the job is activated by an event of

by a condition;
◦ a computation time ci,k;
→ It is the time it takes to complete the job;

◦ an absolute deadline di,k

→ it is the absolute instant by which the job must
complete.

◦ the job finishes its execution at time fi,j ;
→ the response time of job Ji,j is ρi,j = fi,j − ai,j ;
→ for the job to be correct, it must be fi,j ≤ di,j .
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Task model
A task can be:

• periodic: has a regular structure, consisting of an infinite
cycle, in which it executes a computation and then suspends
itself waiting for the next periodic activation. An example of
pthread library code for a periodic task is the following:

void * PeriodicTask(void *arg)
{
<initialization>;
<start periodic timer, period = T>;
while (cond) {

<read sensors>;
<update outputs>;
<update state variables>;
<wait next activation>;

}
}
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Model of a periodic task
From a mathematical point of view, a periodic task
τi = (Ci,Di, Ti) consists of a (infinite) sequence of jobs Ji,k,
k = 0, 1, 2, . . ., with

ai,0 = 0

∀k > 0 ai,k = ai,k−1 + Ti

∀k ≥ 0 di,k = ai,k + Di

Ci = max{k ≥ 0|ci,k}

• Ti is the task’s period;
• Di is the task’s relative deadline;
• Ci is the task’s worst-case execution time (WCET);
• Ri is the worst-case response time: Ri = maxj{ρi,j};

◦ for the task to be schedulable, it must be Ri ≤ Di.
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Graphical representation
In this course, the tasks will be graphically represented with a
GANNT chart. In the following example, we graphically show
periodic task τ1 = (3, 6, 8).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

Notice that, while job Ji,0 and Ji,3 execute for 3 units of time
(WCET), job Ji,2 executes for only 2 units of time.
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Hyperperiod
• A task set T = {τ1, . . . , τn} is periodic if it consists of

periodic tasks only.
• The hypeperiod of a periodic task set is the least common

multiple (lcm) of the task’s periods;

H(T ) = lcmτi∈T (Ti)

• The patterns of arrival repeats every hypeperiod. In
practice, if two tasks arrive at the same time t, they will
arrive at the same time t + kH, for every integer number
k ≥ 0;

• Sometimes, the hyperperiod is defined also for task sets
consisting or periodic and sporadic tasks. The meaning is
slightly different.
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Offsets
• A periodic task can have an initial offset φi

• The offset is the arrival time of the first instance of a
periodic task;

• Hence:

ai,0 = φi

ai,k = φi + kTj

• In some case, offsets are set to a value different from o to
avoid all tasks starting at the same time.
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Timeline Scheduling for periodic tasks
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Timeline scheduling
• very popular in military and avionics systems
• also called cyclic executive or cyclic scheduling
• examples

◦ air traffic control
◦ Space Shuttle
◦ Boeing 777
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The idea
• the time axis is divided time slots
• slots are statically allocated to the tasks
• a timer activates execution (allocation of a slot)
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Example
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Implementation
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Advantages
• simple implementation (no real-time operating system is

required)
• common address space
• run-time overhead
• jitter control
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Drawbacks
• it is not robust during overloads

• it is difficult to expand the schedule

• it is not easy to handle aperiodic activities

• all process periods must be a multiple of the minor cycle
time

• it is difficult to incorporate processes with long periods

• any process with a sizable computation time will need to be
split into a fixed number of fixed sized procedures
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Overload Management
what do we do during task overruns?

• let the task continue
◦ we can have a domino effect on all the other tasks

(timeline break)
• abort the task

◦ the system can remain in inconsistent states
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Extensibility
• if one or more tasks need to be upgraded, we may have to

re-design the whole schedule again

Example: B is updated but CA + CB > ∆
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Extensibility
• We have to split B into two subtasks (B1, B2) and

recompute the schedule.

Sistemi in tempo reale – p. 18/64



Fixed priority Scheduling

Sistemi in tempo reale – p. 19/64



The fixed priority scheduling algorithm
• very simple scheduling algorithm;

◦ every task τi is assigned a fixed priority pi;
◦ the active task with the highest priority is scheduled.

• Priorities are integer numbers: the higher the number, the
higher the priority;
◦ In the research literature, sometimes authors use the

opposite convention: the lowest the number, the highest
the priority.

• In the following we show some examples, considering
periodic tasks, and constant execution time equal to the
period.
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Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
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Note
• Some considerations about the schedule shown before:

◦ The response time of the task with the highest priority is
minimum and equal to its WCET.

◦ The response time of the other tasks depends on the
interference of the higher priority tasks;

◦ The priority assignment may influence the schedulability
of a task.
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Priority assignment
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Priority assignment
• Given a task set, how to assign priorities?
• There are two possible objectives:

◦ Schedulability (i.e. find the priority assignment that
makes all tasks schedulable)

◦ Response time (i.e. find the priority assignment that
minimize the response time of a subset of tasks).

• By now we consider the first objective only
• An optimal priority assignment Opt is such that:

◦ If the task set is schedulable with another priority
assignment, then it is schedulable with priority
assignment Opt.

◦ If the task set is not schedulable with Opt, then it is not
schedulable by any other assignment.
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Optimal priority assignment
• Given a periodic task set with all tasks having deadline

equal to the period (∀i, Di = Ti), and with all offsets equal
to 0 (∀i, φi = 0):
◦ The best assignment is the Rate Monotonic assignment
◦ Tasks with shorter period have higher priority

• Given a periodic task set with deadline different from
periods, and with all offsets equal to 0 (∀i, φi = 0):
◦ The best assignement is the Deadline Monotonic

assignment
◦ Tasks with shorter relative deadline have higher priority

• For sporadic tasks, the same rules are valid as for periodic
tasks with offsets equal to 0.
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Presence of offsets
• If instead we consider periodic tasks with offsets, then there

is no optimal priority assignment
◦ In other words,
→ if a task set T1 is schedulable by priority O1 and not

schedulable by priority assignment O2,
→ it may exist another task set T2 that is schedulable by

O2 and not schedulable by O1.
◦ For example, T2 may be obtained from T1 simply

changing the offsets!
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Scheduling analysis
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Analysis
• Given a task set, how can we guarantee if it is schedulable

of not?
• The first possibility is to simulate the system to check that

no deadline is missed;
• The execution time of every job is set equal to the WCET of

the corresponding task;
◦ In case of periodic task with no offsets, it is sufficient to

simulate the schedule until the hyperperiod
(H = lcmi(Ti)).

◦ In case of offsets, it is sufficient to simulate until
2H + φmax.

◦ If tasks periods are prime numbers the hyperperiod can
be very large!
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Utilization analysis
• In many cases it is useful to have a very simple test to see if

the task set is schedulable.
• A sufficient test is based on the Utilization bound:

◦ The utilization least upper bound for scheduling
algorithm A is the smallest possible utilization Ulub such
that, for any task set T , if the task set’s utilization U is
not greater than Ulub (U ≤ Ulub), then the task set is
schedulable by algorithm A.
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Utilisation
• Each task uses the processor for a fraction of time

Ui =
Ci

Ti

• the total processor utilisation is

Up =
∑

i

Ci

Ti

• this is a measure of the processor’s load
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Necessary condition
• if Up > 1 the task set is not surely schedulable
• however, if Up < 1 the task may not be schedulable
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Utilization bound for RM
• We consider n periodic (or sporadic) tasks with relative

deadline equal to periods.
• Priorities are assigned with Rate Monotonic;

• Ulub = n(21/n − 1)
◦ Ulub is a decreasing function of n;
◦ For large n: Ulub ≈ 0.69
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Schedulability test
• Therefore the schedulability test consist in:

◦ Compute U =
∑n

i=1
Ci

Ti

;
◦ if U ≤ Ulub, the task set is schedulable;
◦ if U > 1 the task set is not schedulable;
◦ if Ulub < U ≤ 1, the task set may or may not be

schedulable;
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Example
Example in which we show that for 3 tasks, if U < Ulub, the
system is schedulable.
τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77
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Pessimism
• The bound is very Conservative: most of the times, a task

set with U > Ulub is schedulable by RM.
• A particular case is when tasks have periods that are

harmonic:
◦ A task set is harmonic if, for every two tasks τi, tauj ,

either Pi is multiple of Pj or Pj is multiple of Pi.
• For a harmonic task set, the utilization bound is Ulub = 1.
• In other words, Rate Monotonic is an optimal algoritm for

harmonic task sets.
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A necessary and sufficient test
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Response time analysis
• A necessary and sufficient test is obtained by computing the

worst-case response time (WCRT) for every task.
• For every task τi:

◦ Compute the WCRT Ri for task τi;
◦ If Ri ≤ Di, then the task is schedulable;
◦ else, the task is not schedulable; we can also show the

situation that make task τi miss its deadline!

◦• To compute the WCRT, we do not need to do any
assumption on the priority assignment.

• The algorithm described in the next slides is valid for an
arbitrary priority assignment.

• The algorithm assumes periodic tasks with no offsets, or
sporadic tasks.
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Response time analysis - II
• The critical instant for a set of periodic real-time tasks, with

offset equal to 0, or for sporadic tasks, is when all jobs start
at the same time.

• Theorem: The WCRT for a task corresponds to the response
time of the job activated at the critical instant.

• To compute the WCRT of task τi:
◦ We have to consider its computation time
◦ and the computation time of the higher priority tasks

(interference);
◦ higher priority tasks can preempt task τi, and increment

its response time.
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Response time analysis - III
• Suppose tasks are ordered by decreasing priority.

Therefore, i < j → prioi > prioj .

• Given a task τi, let R
(k)
i be the WCRT computed at step k.

R
(0)
i = Ci +

i−1
∑

j=1

Cj

R
(k)
i = Ci +

i−1
∑

j=1

⌈

R
(k−1)
i

Tj

⌉

Cj

• The iteration stops when:
◦ R

(k)
i =

(k+1)
i or

◦ R
(k)
i > Di (non schedulable);
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Example
Consider the following task set: τ1 = (2, 5), τ2 = (2, 9),
τ3 = (5, 20); U = 0.872.

R
(k)
i = Ci +

i−1
∑

j=1

⌈

R
(k−1)
i

Tj

⌉

Cj

R
(0)
3 = C3 + 1 · C1 + 1 · C2 = 9
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Example
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Interacting Tasks
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Interacting tasks
• In reality, many tasks exchange data through shared

memory
• Consider as an example three periodic tasks:

◦ One reads the data from the sensors and applies a filter.
The results of the filter are stored in memory.

◦ The second task reads the filtered data and computes
some control law (updating the state and the outputs);
both the state and the outputs are stored in memory;

◦ finally, a third periodic task reads the outputs from
memory and writes on the actuator device.

• All three tasks access data in the shared memory
• Conflicts on accessing this data in concurrency could make

the data structures inconsistent.
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Resources and critical sections
• The shared data structure is called resource;
• A piece of code accessing the data structure is called

critical section;
• Two or more critical sections on the same resource must be

executed in mutual exclusion;
• Therefore, each data structure should be protected by a

mutual exclusion mechanism;
• In this lecture, we will study what happens when resources

are protected by mutual exclusion semaphores.
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Posix Esample

sem_t s;
. . .
sem_init(&s,1);
. . .
void * tau1(void * arg) {

sem_wait(&s);
<critical section>
sem_post(&s);

};
. . .

void * tau1(void * arg) {
sem_wait(&s);
<critical section>
sem_post(&s);

};
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Implications of resource sharing
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Notation
• The resource and the corresponding mutex semaphore will

be denoted by symbol Sj .
• A system consists of:

◦ A set of N periodic (or sporadic) tasks T = {τ1, . . . , τN};
◦ A set of shared resources S = {S1, . . . , SM};
◦ We say that a task τi uses resource Sj if it accesses the

resource with a critical section.
◦ The k-th critical of τi on Sj is denoted with csi,j(k).
◦ The length of the longest critical section of τi on Sj is

denoted by ξi,j .

Sistemi in tempo reale – p. 46/64



Blocking time
• A first important implocation of resource sharing is blocking

time
• A blocking condition happens when a high priority tasks

wants to access a resource that is held by a lower priority
task.

• A task incurs a blocking condition depending on the
interleaving of the schedule
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Example
No conficts in this case
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Example
Blocking time in this case
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Blocking and priority inversion
• Consider the following example, where p1 > p2.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2 L(S)
S

L(S)

S
U(S)

S

U(S)

• From time 4 to 7, task τ1 is blocked by a lower priority
taskτ2; this is a priority inversion.

• Priority inversion is not avoidable; in fact, τ1 must wait for τ2

to leave the critical section.
• However, in some cases, the priority inversion could be too

large.
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Example of priority inversion
• Consider the following example, with p1 > p2 > p3.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S S

U(S)

S

U(S)

• This time the priority inversion is very large: from 4 to 12.
• The problem is that, while τ1 is blocked, τ2 arrives and

preempt τ3 before it can leave the critical section.
• If there are other medium priority tasks, they could preempt

τ3 as well.
• Potentially, the priority inversion could be unbounded!Sistemi in tempo reale – p. 51/64



Dealing with priority inversion
• The only way to deal with priority inversion is by the

introduction of an appropriate concurrency protocol
◦ Non Preemptive protocol
◦ Priority inheritance protocol (PIP)
◦ Priority Ceiling Protocol (PCP)
◦ Immediate Priority Ceiling Protocol (Part of the OSEK

and POSIX standards)
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The priority Inheritance Protocol
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The Priority Inheritance protocol
• The solution to the problem of priority inversion is rather

simple;
◦ While the low priority task blocks an higher priority task,

it inherits the priority of the higher priority task;
◦ In this way, every medium priority task cannot make

preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)
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Comments
• The blocking (priority inversion) is now bounded to the

length of the critical section of task τ3

• Tasks with intermediate priority τ2 cannot interfere with τ1

• However, τ2 has a blocking time, even if it does not use any
resource
◦ This is called indirect blocking
◦ This blocking time must be computed and taken into

account in the formula as any other blocking time.
• It remains to understand:

◦ What is the maximum blocking time for a task
◦ How we can account for blocking times in the

schedulability analysis
• From now on, the maximum blocking time for a task τi is

denoted by Bi.
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Computing the maximum blocking time
• We will compute the maximum blocking time only in the

case of non nested critical sections.
• To compute the blocking time, we must consider the

following two important theorems:
◦ Theorem 1 Under the priority inheritance protocol, a task

can be blocked only once on each different semaphore.
◦ Theorem 2 Under the priority inheritance protocol, a task

can be blocked by another lower priority task for at most
the duration of one critical section.

• This means that we have to consider that a task can be
blocked more than once, but only once per each resource
and once by each task.
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Blocking time computation
• We must build a resource usage table.

◦ On each row we, put a task in decreasing order of
priority; on each column we put a resource (the order is
not important);

◦ On each cell (i, j) we put ξi,j , i.e. the length of the
longest critical section of task τi on resource Sj , or 0 if
the task does not use the resource.

• A task can be blocked only by lower priority tasks:
◦ Then, for each task (row), we must consider only the

rows below (tasks with lower priority).
• A task can be blocked only on resources that it uses directly,

or used by higher priority tasks (indirect blocking);
◦ For each task, we must consider only those column on

which it can be blocked (used by itself or by higher
priority tasks).
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Example of blocking time computation
S1 S2 S3 B

τ1 2 0 0 ?
τ2 0 1 0 ?
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

• let’s start from B1

• τ1 can be blocked only on S1. Therefore, we must consider
only the first column, and take the maximum, which is 3.
Therefore, B1 = 3.
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Example of blocking time computation
S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 ?
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

• Now τ2: it can be blocked on S1 (indirect blocking) and on
S2. Therefore, we must consider the first 2 columns;

• Then, we must consider all cases where two distinct lower
priority tasks between τ3, τ4 and τ5 access S1 and S2, sum
the two contributions, and take the maximum;

• The possibilities are:
◦ τ4 on S1 and τ5 on S2: → 5;
◦ τ4 on S2 and τ5 on S1: → 4;

• The maximum is B2 = 5.
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Example of blocking time computation
S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 5
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

• Now τ3;
• It can be blocked on all 3 resources. We must consider all columns;
• The possibilities are:

◦ τ4 on S1 and τ5 on S2: → 5;
◦ τ4 on S2 and τ5 on S1 or S3: → 4;
◦ τ4 on S3 and τ5 on S1: → 2;
◦ τ4 on S3 and τ5 on S2 or S3: → 3;

• The maximum is B3 = 5.
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Example of blocking time computation
S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 5
τ3 0 0 2 5
τ4 3 3 1 ?
τ5 1 2 1 ?

• Now τ4;

• It can be blocked on all 3 resources. We must consider all
columns; However, it can be blocked only by τ5.

• The maximum is B4 = 2.
• τ5 cannot be blocked by any other task (because it is the

lower priority task!); B5 = 0;
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Example: Final result
S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 5
τ3 0 0 2 5
τ4 3 3 1 2
τ5 1 2 1 0
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Schedulability analysis
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Response time analysis
• In the previous example we have seen the test based on

response time analysis

Ri = Ci + Bi +
∑

j=1, ..., i−1

⌈

Ri

Tj

⌉

Cj

• There are also other options
• For instance we can apply the following sufficient test:

The system is schedulable if

∀i, 1 ≤ i ≤ n,

i−1
∑

k=1

Ck

Tk
+

Ci + Bi

Ti
≤ i(21/i − 1)
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