
Sistemi in tempo reale

Fixed Priority scheduling of Periodic tasks
Luigi Palopoli

Credits: Giuseppe Lipari and Marco Di Natale

Scuola Superiore Sant’Anna

Pisa -Italy

Sistemi in tempo reale – p. 1/64



Task Model

Sistemi in tempo reale – p. 2/64



Mathematical model of a task
• A task τi is a (infinite) sequence of jobs (or instances) Ji,k.
• Each job Ji,k = (ai,k, ci,k, di,k) is characterized by:

◦ an activation time (or arrival time) ai,k;
→ It is the time when the job is activated by an event of

by a condition;
◦ a computation time ci,k;
→ It is the time it takes to complete the job;

◦ an absolute deadline di,k

→ it is the absolute instant by which the job must
complete.

◦ the job finishes its execution at time fi,j ;
→ the response time of job Ji,j is ρi,j = fi,j − ai,j ;
→ for the job to be correct, it must be fi,j ≤ di,j .

Sistemi in tempo reale – p. 3/64



Task model
A task can be:

• periodic: has a regular structure, consisting of an infinite
cycle, in which it executes a computation and then suspends
itself waiting for the next periodic activation. An example of
pthread library code for a periodic task is the following:

void * PeriodicTask(void *arg)
{
<initialization>;
<start periodic timer, period = T>;
while (cond) {

<read sensors>;
<update outputs>;
<update state variables>;
<wait next activation>;

}
}

Sistemi in tempo reale – p. 4/64



Model of a periodic task
From a mathematical point of view, a periodic task
τi = (Ci,Di, Ti) consists of a (infinite) sequence of jobs Ji,k,
k = 0, 1, 2, . . ., with

ai,0 = 0

∀k > 0 ai,k = ai,k−1 + Ti

∀k ≥ 0 di,k = ai,k + Di

Ci = max{k ≥ 0|ci,k}

• Ti is the task’s period;
• Di is the task’s relative deadline;
• Ci is the task’s worst-case execution time (WCET);
• Ri is the worst-case response time: Ri = maxj{ρi,j};

◦ for the task to be schedulable, it must be Ri ≤ Di.

Sistemi in tempo reale – p. 5/64



Graphical representation
In this course, the tasks will be graphically represented with a
GANNT chart. In the following example, we graphically show
periodic task τ1 = (3, 6, 8).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

Notice that, while job Ji,0 and Ji,3 execute for 3 units of time
(WCET), job Ji,2 executes for only 2 units of time.

Sistemi in tempo reale – p. 6/64



Hyperperiod
• A task set T = {τ1, . . . , τn} is periodic if it consists of

periodic tasks only.
• The hypeperiod of a periodic task set is the least common

multiple (lcm) of the task’s periods;

H(T ) = lcmτi∈T (Ti)

• The patterns of arrival repeats every hypeperiod. In
practice, if two tasks arrive at the same time t, they will
arrive at the same time t + kH, for every integer number
k ≥ 0;

• Sometimes, the hyperperiod is defined also for task sets
consisting or periodic and sporadic tasks. The meaning is
slightly different.

Sistemi in tempo reale – p. 7/64



Offsets
• A periodic task can have an initial offset φi

• The offset is the arrival time of the first instance of a
periodic task;

• Hence:

ai,0 = φi

ai,k = φi + kTj

• In some case, offsets are set to a value different from o to
avoid all tasks starting at the same time.

Sistemi in tempo reale – p. 8/64



Timeline Scheduling for periodic tasks

Sistemi in tempo reale – p. 9/64



Timeline scheduling
• very popular in military and avionics systems
• also called cyclic executive or cyclic scheduling
• examples

◦ air traffic control
◦ Space Shuttle
◦ Boeing 777

Sistemi in tempo reale – p. 10/64



The idea
• the time axis is divided time slots
• slots are statically allocated to the tasks
• a timer activates execution (allocation of a slot)

Sistemi in tempo reale – p. 11/64



Example

Sistemi in tempo reale – p. 12/64



Implementation

Sistemi in tempo reale – p. 13/64



Advantages
• simple implementation (no real-time operating system is

required)
• common address space
• run-time overhead
• jitter control

Sistemi in tempo reale – p. 14/64



Drawbacks
• it is not robust during overloads

• it is difficult to expand the schedule

• it is not easy to handle aperiodic activities

• all process periods must be a multiple of the minor cycle
time

• it is difficult to incorporate processes with long periods

• any process with a sizable computation time will need to be
split into a fixed number of fixed sized procedures

Sistemi in tempo reale – p. 15/64



Overload Management
what do we do during task overruns?

• let the task continue
◦ we can have a domino effect on all the other tasks

(timeline break)
• abort the task

◦ the system can remain in inconsistent states

Sistemi in tempo reale – p. 16/64



Extensibility
• if one or more tasks need to be upgraded, we may have to

re-design the whole schedule again

Example: B is updated but CA + CB > ∆

Sistemi in tempo reale – p. 17/64



Extensibility
• We have to split B into two subtasks (B1, B2) and

recompute the schedule.

Sistemi in tempo reale – p. 18/64



Fixed priority Scheduling

Sistemi in tempo reale – p. 19/64



The fixed priority scheduling algorithm
• very simple scheduling algorithm;

◦ every task τi is assigned a fixed priority pi;
◦ the active task with the highest priority is scheduled.

• Priorities are integer numbers: the higher the number, the
higher the priority;
◦ In the research literature, sometimes authors use the

opposite convention: the lowest the number, the highest
the priority.

• In the following we show some examples, considering
periodic tasks, and constant execution time equal to the
period.

Sistemi in tempo reale – p. 20/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Example of schedule
• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),

τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2

has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 21/64



Note
• Some considerations about the schedule shown before:

◦ The response time of the task with the highest priority is
minimum and equal to its WCET.

◦ The response time of the other tasks depends on the
interference of the higher priority tasks;

◦ The priority assignment may influence the schedulability
of a task.

Sistemi in tempo reale – p. 22/64



Priority assignment

Sistemi in tempo reale – p. 23/64



Priority assignment
• Given a task set, how to assign priorities?
• There are two possible objectives:

◦ Schedulability (i.e. find the priority assignment that
makes all tasks schedulable)

◦ Response time (i.e. find the priority assignment that
minimize the response time of a subset of tasks).

• By now we consider the first objective only
• An optimal priority assignment Opt is such that:

◦ If the task set is schedulable with another priority
assignment, then it is schedulable with priority
assignment Opt.

◦ If the task set is not schedulable with Opt, then it is not
schedulable by any other assignment.

Sistemi in tempo reale – p. 24/64



Optimal priority assignment
• Given a periodic task set with all tasks having deadline

equal to the period (∀i, Di = Ti), and with all offsets equal
to 0 (∀i, φi = 0):
◦ The best assignment is the Rate Monotonic assignment
◦ Tasks with shorter period have higher priority

• Given a periodic task set with deadline different from
periods, and with all offsets equal to 0 (∀i, φi = 0):
◦ The best assignement is the Deadline Monotonic

assignment
◦ Tasks with shorter relative deadline have higher priority

• For sporadic tasks, the same rules are valid as for periodic
tasks with offsets equal to 0.

Sistemi in tempo reale – p. 25/64



Presence of offsets
• If instead we consider periodic tasks with offsets, then there

is no optimal priority assignment
◦ In other words,
→ if a task set T1 is schedulable by priority O1 and not

schedulable by priority assignment O2,
→ it may exist another task set T2 that is schedulable by

O2 and not schedulable by O1.
◦ For example, T2 may be obtained from T1 simply

changing the offsets!

Sistemi in tempo reale – p. 26/64



Scheduling analysis

Sistemi in tempo reale – p. 27/64



Analysis
• Given a task set, how can we guarantee if it is schedulable

of not?
• The first possibility is to simulate the system to check that

no deadline is missed;
• The execution time of every job is set equal to the WCET of

the corresponding task;
◦ In case of periodic task with no offsets, it is sufficient to

simulate the schedule until the hyperperiod
(H = lcmi(Ti)).

◦ In case of offsets, it is sufficient to simulate until
2H + φmax.

◦ If tasks periods are prime numbers the hyperperiod can
be very large!

Sistemi in tempo reale – p. 28/64



Utilization analysis
• In many cases it is useful to have a very simple test to see if

the task set is schedulable.
• A sufficient test is based on the Utilization bound:

◦ The utilization least upper bound for scheduling
algorithm A is the smallest possible utilization Ulub such
that, for any task set T , if the task set’s utilization U is
not greater than Ulub (U ≤ Ulub), then the task set is
schedulable by algorithm A.

Sistemi in tempo reale – p. 29/64



Utilisation
• Each task uses the processor for a fraction of time

Ui =
Ci

Ti

• the total processor utilisation is

Up =
∑

i

Ci

Ti

• this is a measure of the processor’s load

Sistemi in tempo reale – p. 30/64



Necessary condition
• if Up > 1 the task set is not surely schedulable
• however, if Up < 1 the task may not be schedulable

Sistemi in tempo reale – p. 31/64



Utilization bound for RM
• We consider n periodic (or sporadic) tasks with relative

deadline equal to periods.
• Priorities are assigned with Rate Monotonic;

• Ulub = n(21/n − 1)
◦ Ulub is a decreasing function of n;
◦ For large n: Ulub ≈ 0.69

Sistemi in tempo reale – p. 32/64



Schedulability test
• Therefore the schedulability test consist in:

◦ Compute U =
∑n

i=1
Ci

Ti

;
◦ if U ≤ Ulub, the task set is schedulable;
◦ if U > 1 the task set is not schedulable;
◦ if Ulub < U ≤ 1, the task set may or may not be

schedulable;

Sistemi in tempo reale – p. 33/64



Example
Example in which we show that for 3 tasks, if U < Ulub, the
system is schedulable.
τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 34/64



Example
Example in which we show that for 3 tasks, if U < Ulub, the
system is schedulable.
τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 34/64



Example
Example in which we show that for 3 tasks, if U < Ulub, the
system is schedulable.
τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 34/64



Example
Example in which we show that for 3 tasks, if U < Ulub, the
system is schedulable.
τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 34/64



Example
Example in which we show that for 3 tasks, if U < Ulub, the
system is schedulable.
τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 34/64



Example
Example in which we show that for 3 tasks, if U < Ulub, the
system is schedulable.
τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 34/64



Example
Example in which we show that for 3 tasks, if U < Ulub, the
system is schedulable.
τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 34/64



Example
Example in which we show that for 3 tasks, if U < Ulub, the
system is schedulable.
τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 34/64



Example
Example in which we show that for 3 tasks, if U < Ulub, the
system is schedulable.
τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 34/64



Example
Example in which we show that for 3 tasks, if U < Ulub, the
system is schedulable.
τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 34/64



Example
Example in which we show that for 3 tasks, if U < Ulub, the
system is schedulable.
τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 34/64



Example
Example in which we show that for 3 tasks, if U < Ulub, the
system is schedulable.
τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Sistemi in tempo reale – p. 34/64



Pessimism
• The bound is very Conservative: most of the times, a task

set with U > Ulub is schedulable by RM.
• A particular case is when tasks have periods that are

harmonic:
◦ A task set is harmonic if, for every two tasks τi, tauj ,

either Pi is multiple of Pj or Pj is multiple of Pi.
• For a harmonic task set, the utilization bound is Ulub = 1.
• In other words, Rate Monotonic is an optimal algoritm for

harmonic task sets.

Sistemi in tempo reale – p. 35/64



A necessary and sufficient test

Sistemi in tempo reale – p. 36/64



Response time analysis
• A necessary and sufficient test is obtained by computing the

worst-case response time (WCRT) for every task.
• For every task τi:

◦ Compute the WCRT Ri for task τi;
◦ If Ri ≤ Di, then the task is schedulable;
◦ else, the task is not schedulable; we can also show the

situation that make task τi miss its deadline!

◦• To compute the WCRT, we do not need to do any
assumption on the priority assignment.

• The algorithm described in the next slides is valid for an
arbitrary priority assignment.

• The algorithm assumes periodic tasks with no offsets, or
sporadic tasks.

Sistemi in tempo reale – p. 37/64



Response time analysis - II
• The critical instant for a set of periodic real-time tasks, with

offset equal to 0, or for sporadic tasks, is when all jobs start
at the same time.

• Theorem: The WCRT for a task corresponds to the response
time of the job activated at the critical instant.

• To compute the WCRT of task τi:
◦ We have to consider its computation time
◦ and the computation time of the higher priority tasks

(interference);
◦ higher priority tasks can preempt task τi, and increment

its response time.

Sistemi in tempo reale – p. 38/64



Response time analysis - III
• Suppose tasks are ordered by decreasing priority.

Therefore, i < j → prioi > prioj .

• Given a task τi, let R
(k)
i be the WCRT computed at step k.

R
(0)
i = Ci +

i−1
∑

j=1

Cj

R
(k)
i = Ci +

i−1
∑

j=1

⌈

R
(k−1)
i

Tj

⌉

Cj

• The iteration stops when:
◦ R

(k)
i =

(k+1)
i or

◦ R
(k)
i > Di (non schedulable);

Sistemi in tempo reale – p. 39/64



Example
Consider the following task set: τ1 = (2, 5), τ2 = (2, 9),
τ3 = (5, 20); U = 0.872.

R
(k)
i = Ci +

i−1
∑

j=1

⌈

R
(k−1)
i

Tj

⌉

Cj

R
(0)
3 = C3 + 1 · C1 + 1 · C2 = 9

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Sistemi in tempo reale – p. 40/64



Example
Consider the following task set: τ1 = (2, 5), τ2 = (2, 9),
τ3 = (5, 20); U = 0.872.

R
(k)
i = Ci +

i−1
∑

j=1

⌈

R
(k−1)
i

Tj

⌉

Cj

R
(1)
3 = C3 + 2 · C1 + 1 · C2 = 11

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Sistemi in tempo reale – p. 40/64



Example
Consider the following task set: τ1 = (2, 5), τ2 = (2, 9),
τ3 = (5, 20); U = 0.872.

R
(k)
i = Ci +

i−1
∑

j=1

⌈

R
(k−1)
i

Tj

⌉

Cj

R
(2)
3 = C3 + 3 · C1 + 2 · C2 = 15

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Sistemi in tempo reale – p. 40/64



Example
Consider the following task set: τ1 = (2, 5), τ2 = (2, 9),
τ3 = (5, 20); U = 0.872.

R
(k)
i = Ci +

i−1
∑

j=1

⌈

R
(k−1)
i

Tj

⌉

Cj

R
(3)
3 = C3 + 3 · C1 + 2 · C2 = 15 = R

(2)
3

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Sistemi in tempo reale – p. 40/64



Interacting Tasks

Sistemi in tempo reale – p. 41/64



Interacting tasks
• In reality, many tasks exchange data through shared

memory
• Consider as an example three periodic tasks:

◦ One reads the data from the sensors and applies a filter.
The results of the filter are stored in memory.

◦ The second task reads the filtered data and computes
some control law (updating the state and the outputs);
both the state and the outputs are stored in memory;

◦ finally, a third periodic task reads the outputs from
memory and writes on the actuator device.

• All three tasks access data in the shared memory
• Conflicts on accessing this data in concurrency could make

the data structures inconsistent.

Sistemi in tempo reale – p. 42/64



Resources and critical sections
• The shared data structure is called resource;
• A piece of code accessing the data structure is called

critical section;
• Two or more critical sections on the same resource must be

executed in mutual exclusion;
• Therefore, each data structure should be protected by a

mutual exclusion mechanism;
• In this lecture, we will study what happens when resources

are protected by mutual exclusion semaphores.

Sistemi in tempo reale – p. 43/64



Posix Esample

sem_t s;
. . .
sem_init(&s,1);
. . .
void * tau1(void * arg) {

sem_wait(&s);
<critical section>
sem_post(&s);

};
. . .

void * tau1(void * arg) {
sem_wait(&s);
<critical section>
sem_post(&s);

};

Sistemi in tempo reale – p. 44/64



Implications of resource sharing

Sistemi in tempo reale – p. 45/64



Notation
• The resource and the corresponding mutex semaphore will

be denoted by symbol Sj .
• A system consists of:

◦ A set of N periodic (or sporadic) tasks T = {τ1, . . . , τN};
◦ A set of shared resources S = {S1, . . . , SM};
◦ We say that a task τi uses resource Sj if it accesses the

resource with a critical section.
◦ The k-th critical of τi on Sj is denoted with csi,j(k).
◦ The length of the longest critical section of τi on Sj is

denoted by ξi,j .

Sistemi in tempo reale – p. 46/64



Blocking time
• A first important implocation of resource sharing is blocking

time
• A blocking condition happens when a high priority tasks

wants to access a resource that is held by a lower priority
task.

• A task incurs a blocking condition depending on the
interleaving of the schedule

Sistemi in tempo reale – p. 47/64



Example
No conficts in this case

Sistemi in tempo reale – p. 48/64



Example
Blocking time in this case

Sistemi in tempo reale – p. 49/64



Blocking and priority inversion
• Consider the following example, where p1 > p2.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2 L(S)
S

L(S)

S
U(S)

S

U(S)

• From time 4 to 7, task τ1 is blocked by a lower priority
taskτ2; this is a priority inversion.

• Priority inversion is not avoidable; in fact, τ1 must wait for τ2

to leave the critical section.
• However, in some cases, the priority inversion could be too

large.

Sistemi in tempo reale – p. 50/64



Example of priority inversion
• Consider the following example, with p1 > p2 > p3.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S S

U(S)

S

U(S)

• This time the priority inversion is very large: from 4 to 12.
• The problem is that, while τ1 is blocked, τ2 arrives and

preempt τ3 before it can leave the critical section.
• If there are other medium priority tasks, they could preempt

τ3 as well.
• Potentially, the priority inversion could be unbounded!Sistemi in tempo reale – p. 51/64



Dealing with priority inversion
• The only way to deal with priority inversion is by the

introduction of an appropriate concurrency protocol
◦ Non Preemptive protocol
◦ Priority inheritance protocol (PIP)
◦ Priority Ceiling Protocol (PCP)
◦ Immediate Priority Ceiling Protocol (Part of the OSEK

and POSIX standards)

Sistemi in tempo reale – p. 52/64



The priority Inheritance Protocol

Sistemi in tempo reale – p. 53/64



The Priority Inheritance protocol
• The solution to the problem of priority inversion is rather

simple;
◦ While the low priority task blocks an higher priority task,

it inherits the priority of the higher priority task;
◦ In this way, every medium priority task cannot make

preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)

Sistemi in tempo reale – p. 54/64



The Priority Inheritance protocol
• The solution to the problem of priority inversion is rather

simple;
◦ While the low priority task blocks an higher priority task,

it inherits the priority of the higher priority task;
◦ In this way, every medium priority task cannot make

preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)

Sistemi in tempo reale – p. 54/64



The Priority Inheritance protocol
• The solution to the problem of priority inversion is rather

simple;
◦ While the low priority task blocks an higher priority task,

it inherits the priority of the higher priority task;
◦ In this way, every medium priority task cannot make

preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)

Sistemi in tempo reale – p. 54/64



The Priority Inheritance protocol
• The solution to the problem of priority inversion is rather

simple;
◦ While the low priority task blocks an higher priority task,

it inherits the priority of the higher priority task;
◦ In this way, every medium priority task cannot make

preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)

Sistemi in tempo reale – p. 54/64



The Priority Inheritance protocol
• The solution to the problem of priority inversion is rather

simple;
◦ While the low priority task blocks an higher priority task,

it inherits the priority of the higher priority task;
◦ In this way, every medium priority task cannot make

preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)
Sistemi in tempo reale – p. 54/64



The Priority Inheritance protocol
• The solution to the problem of priority inversion is rather

simple;
◦ While the low priority task blocks an higher priority task,

it inherits the priority of the higher priority task;
◦ In this way, every medium priority task cannot make

preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S S

U(S)

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)
Sistemi in tempo reale – p. 54/64



The Priority Inheritance protocol
• The solution to the problem of priority inversion is rather

simple;
◦ While the low priority task blocks an higher priority task,

it inherits the priority of the higher priority task;
◦ In this way, every medium priority task cannot make

preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S S

U(S)

S

U(S)

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)
Sistemi in tempo reale – p. 54/64



The Priority Inheritance protocol
• The solution to the problem of priority inversion is rather

simple;
◦ While the low priority task blocks an higher priority task,

it inherits the priority of the higher priority task;
◦ In this way, every medium priority task cannot make

preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S S

U(S)

S

U(S)

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)
Sistemi in tempo reale – p. 54/64



The Priority Inheritance protocol
• The solution to the problem of priority inversion is rather

simple;
◦ While the low priority task blocks an higher priority task,

it inherits the priority of the higher priority task;
◦ In this way, every medium priority task cannot make

preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S S

U(S)

S

U(S)

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)
Sistemi in tempo reale – p. 54/64



The Priority Inheritance protocol
• The solution to the problem of priority inversion is rather

simple;
◦ While the low priority task blocks an higher priority task,

it inherits the priority of the higher priority task;
◦ In this way, every medium priority task cannot make

preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S S

U(S)

S

U(S)

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)
Sistemi in tempo reale – p. 54/64



Comments
• The blocking (priority inversion) is now bounded to the

length of the critical section of task τ3

• Tasks with intermediate priority τ2 cannot interfere with τ1

• However, τ2 has a blocking time, even if it does not use any
resource
◦ This is called indirect blocking
◦ This blocking time must be computed and taken into

account in the formula as any other blocking time.
• It remains to understand:

◦ What is the maximum blocking time for a task
◦ How we can account for blocking times in the

schedulability analysis
• From now on, the maximum blocking time for a task τi is

denoted by Bi.
Sistemi in tempo reale – p. 55/64



Computing the maximum blocking time
• We will compute the maximum blocking time only in the

case of non nested critical sections.
• To compute the blocking time, we must consider the

following two important theorems:
◦ Theorem 1 Under the priority inheritance protocol, a task

can be blocked only once on each different semaphore.
◦ Theorem 2 Under the priority inheritance protocol, a task

can be blocked by another lower priority task for at most
the duration of one critical section.

• This means that we have to consider that a task can be
blocked more than once, but only once per each resource
and once by each task.

Sistemi in tempo reale – p. 56/64



Blocking time computation
• We must build a resource usage table.

◦ On each row we, put a task in decreasing order of
priority; on each column we put a resource (the order is
not important);

◦ On each cell (i, j) we put ξi,j , i.e. the length of the
longest critical section of task τi on resource Sj , or 0 if
the task does not use the resource.

• A task can be blocked only by lower priority tasks:
◦ Then, for each task (row), we must consider only the

rows below (tasks with lower priority).
• A task can be blocked only on resources that it uses directly,

or used by higher priority tasks (indirect blocking);
◦ For each task, we must consider only those column on

which it can be blocked (used by itself or by higher
priority tasks).

Sistemi in tempo reale – p. 57/64



Example of blocking time computation
S1 S2 S3 B

τ1 2 0 0 ?
τ2 0 1 0 ?
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

• let’s start from B1

• τ1 can be blocked only on S1. Therefore, we must consider
only the first column, and take the maximum, which is 3.
Therefore, B1 = 3.

Sistemi in tempo reale – p. 58/64



Example of blocking time computation
S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 ?
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

• Now τ2: it can be blocked on S1 (indirect blocking) and on
S2. Therefore, we must consider the first 2 columns;

• Then, we must consider all cases where two distinct lower
priority tasks between τ3, τ4 and τ5 access S1 and S2, sum
the two contributions, and take the maximum;

• The possibilities are:
◦ τ4 on S1 and τ5 on S2: → 5;
◦ τ4 on S2 and τ5 on S1: → 4;

• The maximum is B2 = 5.

Sistemi in tempo reale – p. 59/64



Example of blocking time computation
S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 5
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

• Now τ3;
• It can be blocked on all 3 resources. We must consider all columns;
• The possibilities are:

◦ τ4 on S1 and τ5 on S2: → 5;
◦ τ4 on S2 and τ5 on S1 or S3: → 4;
◦ τ4 on S3 and τ5 on S1: → 2;
◦ τ4 on S3 and τ5 on S2 or S3: → 3;

• The maximum is B3 = 5.
Sistemi in tempo reale – p. 60/64



Example of blocking time computation
S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 5
τ3 0 0 2 5
τ4 3 3 1 ?
τ5 1 2 1 ?

• Now τ4;

• It can be blocked on all 3 resources. We must consider all
columns; However, it can be blocked only by τ5.

• The maximum is B4 = 2.
• τ5 cannot be blocked by any other task (because it is the

lower priority task!); B5 = 0;
Sistemi in tempo reale – p. 61/64



Example: Final result
S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 5
τ3 0 0 2 5
τ4 3 3 1 2
τ5 1 2 1 0

Sistemi in tempo reale – p. 62/64



Schedulability analysis

Sistemi in tempo reale – p. 63/64



Response time analysis
• In the previous example we have seen the test based on

response time analysis

Ri = Ci + Bi +
∑

j=1, ..., i−1

⌈

Ri

Tj

⌉

Cj

• There are also other options
• For instance we can apply the following sufficient test:

The system is schedulable if

∀i, 1 ≤ i ≤ n,

i−1
∑

k=1

Ck

Tk
+

Ci + Bi

Ti
≤ i(21/i − 1)

Sistemi in tempo reale – p. 64/64


	Task Model
	Mathematical model of a task
	Task model
	Model of a periodic task
	Graphical representation
	Hyperperiod
	Offsets
	Timeline Scheduling for periodic tasks
	Timeline scheduling
	The idea
	Example
	Implementation
	Advantages
	Drawbacks
	Overload Management
	Extensibility
	Extensibility
	Fixed priority Scheduling
	The fixed priority scheduling algorithm
	Example of schedule
	Example of schedule
	Example of schedule
	Example of schedule
	Example of schedule
	Example of schedule
	Example of schedule
	Example of schedule
	Example of schedule
	Example of schedule
	Example of schedule
	Example of schedule
	Example of schedule
	Example of schedule
	Example of schedule

	Note
	Priority assignment
	Priority assignment
	Optimal priority assignment
	Presence of offsets
	Scheduling analysis
	Analysis
	Utilization analysis
	Utilisation
	Necessary condition
	Utilization bound for RM
	Schedulability test
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example

	Pessimism
	A necessary and sufficient test
	Response time analysis
	Response time analysis - II
	Response time analysis - III
	Example
	Example
	Example
	Example

	Interacting Tasks
	Interacting tasks
	Resources and critical sections
	Posix Esample
	Implications of resource sharing
	Notation
	Blocking time
	Example
	Example
	Blocking and priority inversion
	Example of priority inversion
	Dealing with priority inversion
	The priority Inheritance Protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol

	Comments
	Computing the maximum blocking time
	Blocking time computation
	Example of blocking time computation
	Example of blocking time computation
	Example of blocking time computation
	Example of blocking time computation
	Example: Final result
	Schedulability analysis
	Response time analysis

