Real-time embedded controllers

Luigi Palopoli

Dealing with delays

DT models of sampled-data systems

- Using \mathcal{Z}-transform

- Supposed $G(s)=H(s) e^{-s \lambda}$,
- λ can be used to model computation delays
- The presence of a delay makes CT synthesis much more difficult (infinite dimension)

Example

- Example: $G(s)=e^{-s \lambda} \frac{a}{s+a}$ with $a>0$

Example

- Example: $G(s)=e^{-s \lambda} \frac{a}{s+a}$ with $a>0$
- Let $\lambda=l T-m T$, with $l \in \mathbb{N}, m \in[0,1)$

Example

- Example: $G(s)=e^{-s \lambda} \frac{a}{s+a}$ with $a>0$
- Let $\lambda=l T-m T$, with $l \in \mathbb{N}, m \in[0,1)$
- $G(z)=\left(1-z^{-1}\right) \mathcal{Z}\left[\mathcal{L}^{-1}\left[\frac{G(s)}{s}\right]\right]$

Example

- Example: $G(s)=e^{-s \lambda} \frac{a}{s+a}$ with $a>0$
- Let $\lambda=l T-m T$, with $l \in \mathbb{N}, m \in[0,1)$
- $G(z)=\left(1-z^{-1}\right) \mathcal{Z}\left[\mathcal{L}^{-1}\left[\frac{G(s)}{s}\right]\right]$
- $G(z)=\left(1-z^{-1}\right) \mathcal{Z}\left[\mathcal{L}^{-1}\left[e^{-l s T}\left(\frac{e^{m s T}}{s}-\frac{e^{m s T}}{s+a}\right)\right]=\right.$ $\left(1-z^{-1}\right) z^{-l} \mathcal{Z}\left[\mathcal{L}^{-1}\left[\frac{e^{m s T}}{s}-\frac{e^{m s T}}{s+a}\right]\right.$

Example

- $\mathcal{Z}\left[\frac{e^{s m T}}{s}\right]=\frac{z}{z-1}$
- $\mathcal{Z}\left[\frac{e^{s m T}}{s+a}\right]=\frac{z e^{-a m T}}{z-e^{-a T}}$
- $G(z)=\left(1-e^{-a m T}\right) \frac{z+\alpha}{z^{l}\left(z-e^{-a T}\right)}$, where $\alpha=\frac{e^{-a m T}-e^{-a T}}{1-e^{-a m T}}$

Matlab Control toolbox code

Effects of delays

- Due to the delay
- l poles arose in the origin
- a zero arose at $-\alpha$
$\rightarrow \alpha \rightarrow+0$ when $m \rightarrow 1$ (small delay)
$\rightarrow \alpha \rightarrow+\infty$ when $m \rightarrow 0$ (large delay)

Sample rate selection

Effects of sample rate selection

- Shannon theorem: not obvious!!!
- smoothness of responses
- Noise rejection
- Robustness

Block-diagrams

Continuous-Time
Control system

Sampled-data
 Control system

Continuous-time system

- Let the closed loop equation of the system be:

$$
\dot{x}=F x+G_{1} \dot{w}
$$

where $w(t)$ is a wiener Process.

Continuous-time system

- Let the closed loop equation of the system be:

$$
\dot{x}=F x+G_{1} \dot{w}
$$

where $w(t)$ is a wiener Process.

- A random process $w(t)$ is said a Wiener process if:
- $w(0)=0$
- $w(t)-w(s)$ is a Gaussian process with mean 0 and variance $(t-s) R_{w}$
- for all times $0<t_{1}<t_{2}<\ldots t_{n}, w\left(t_{1}\right), w\left(t_{2}\right)-w\left(t_{1}\right), \ldots$, $w\left(t_{n}\right)-w\left(t_{n-1}\right)$ are independent

Continuous-time system

- Let the closed loop equation of the system be:

$$
\dot{x}=F x+G_{1} \dot{w}
$$

where $w(t)$ is a wiener Process.

- A random process $w(t)$ is said a Wiener process if:
- $w(0)=0$
- $w(t)-w(s)$ is a Gaussian process with mean 0 and variance $(t-s) R_{w}$
- for all times $0<t_{1}<t_{2}<\ldots t_{n}, w\left(t_{1}\right), w\left(t_{2}\right)-w\left(t_{1}\right), \ldots$, $w\left(t_{n}\right)-w\left(t_{n-1}\right)$ are independent
- Property: \dot{w} is gaussian with mean 0 and variance R_{w}

Continuous-time system

- Let the closed loop equation of the system be:

$$
\dot{x}=F x+G_{1} \dot{w}
$$

where $w(t)$ is a wiener Process.

- A random process $w(t)$ is said a Wiener process if:
- $w(0)=0$
- $w(t)-w(s)$ is a Gaussian process with mean 0 and variance $(t-s) R_{w}$
- for all times $0<t_{1}<t_{2}<\ldots t_{n}, w\left(t_{1}\right), w\left(t_{2}\right)-w\left(t_{1}\right), \ldots$, $w\left(t_{n}\right)-w\left(t_{n-1}\right)$ are independent
- Property: \dot{w} is gaussian with mean 0 and variance R_{w}
- Assume that increments $d w$ are incorrelated with x and with w

Continuous-time system

- Let the closed loop equation of the system be:

$$
\dot{x}=F x+G_{1} \dot{w}
$$

where $w(t)$ is a wiener Process.

- A random process $w(t)$ is said a Wiener process if:
- $w(0)=0$
- $w(t)-w(s)$ is a Gaussian process with mean 0 and variance $(t-s) R_{w}$
- for all times $0<t_{1}<t_{2}<\ldots t_{n}, w\left(t_{1}\right), w\left(t_{2}\right)-w\left(t_{1}\right), \ldots$, $w\left(t_{n}\right)-w\left(t_{n-1}\right)$ are independent
- Property: \dot{w} is gaussian with mean 0 and variance R_{w}
- Assume that increments $d w$ are incorrelated with x and with w

Continuous-time system -I

- Property: \dot{w} is gaussian with mean 0 and variance R_{w}
- Assume that increments $d w$ are incorrelated with x and with w

CT system (Mean)

- If the initial state has nonzero mean then

$$
\begin{aligned}
& \frac{d m}{d t}=F m \\
& m(0)=m_{0}
\end{aligned}
$$

where $m(t)$ is the mean of $x(t)$.

CT system (continued)

- Introduce $P=E\left\{\tilde{x} \tilde{x}^{T}\right\}$, where $\tilde{x}=x-m$

CT system (continued)

- Introduce $P=E\left\{\tilde{x} \tilde{x}^{T}\right\}$, where $\tilde{x}=x-m$
- Intuitive way: $\frac{d \tilde{x}}{d t}=F \tilde{x}+G_{1} d w$

$$
d \tilde{x}=F \tilde{x} d t+G_{1} d w
$$

CT system (continued)

- Introduce $P=E\left\{\tilde{x} \tilde{x}^{T}\right\}$, where $\tilde{x}=x-m$
- Intuitive way: $\frac{d \tilde{x}}{d t}=F \tilde{x}+G_{1} d w$

$$
d \tilde{x}=F \tilde{x} d t+G_{1} d w
$$

- Expressing variations of $x x^{T}$ (from now on use x for \tilde{x}):

$$
d x x^{T}=x x^{T}-(x+d x)(x+d x)^{T}=x d x^{T}+d x x^{T}+d x d x^{T}
$$

CT system (continued)

- ...from which

$$
\begin{aligned}
& d x x^{T}=x(F x)^{T} d t+x\left(G_{1} d w\right)^{T} d t+F x x^{T}+G_{1} d w x^{T}+(F x)(F x)^{T} d t^{2}+ \\
& +(F x)\left(G_{1} d w\right)^{T} d t^{2}+\left(G_{1} d w\right)(F x)^{T} d t^{2}+\left(G_{1} d w\right)\left(G_{1} d w\right)^{T}
\end{aligned}
$$

CT system (continued)

- ...from which

$$
\begin{aligned}
& d x x^{T}=x(F x)^{T} d t+x\left(G_{1} d w\right)^{T} d t+F x x^{T}+G_{1} d w x^{T}+(F x)(F x)^{T} d t^{2}+ \\
& +(F x)\left(G_{1} d w\right)^{T} d t^{2}+\left(G_{1} d w\right)(F x)^{T} d t^{2}+\left(G_{1} d w\right)\left(G_{1} d w\right)^{T}
\end{aligned}
$$

- Taking expected values of both sides and considering that 1) w is incorrelated with $x, 2) E\left(d w d w^{T}\right)=R_{w} d t$ we get

$$
\frac{d P}{d t}=P F^{T}+F P+G_{1} R_{w} G_{1}^{T}
$$

CT system (continued)

- ...from which

$$
\begin{aligned}
& d x x^{T}=x(F x)^{T} d t+x\left(G_{1} d w\right)^{T} d t+F x x^{T}+G_{1} d w x^{T}+(F x)(F x)^{T} d t^{2}+ \\
& +(F x)\left(G_{1} d w\right)^{T} d t^{2}+\left(G_{1} d w\right)(F x)^{T} d t^{2}+\left(G_{1} d w\right)\left(G_{1} d w\right)^{T}
\end{aligned}
$$

- Taking expected values of both sides and considering that 1) w is incorrelated with $x, 2) E\left(d w d w^{T}\right)=R_{w} d t$ we get

$$
\frac{d P}{d t}=P F^{T}+F P+G_{1} R_{w} G_{1}^{T}
$$

- Taking the limit $d t \rightarrow 0$:

$$
\dot{P}=P F^{T}+F P+G_{1} R_{w} G_{1}^{T}
$$

Covariance

- Definition

$$
r(s, t)=\operatorname{Cov}\{x(t), x(s)\}=E\left\{(x(t)-m(t))^{T}(x(s)-m(s))\right\}
$$

- Let $s \geq t$, the system evolution is given by:
$x(s)=e^{A(s-t)} x(t)+\int_{s}^{t} e^{A(s-\tau)} w(\tau) d \tau$
- Computing the expectation value and because $x(t)$ is incorrelated from $w(t)$ we get

$$
r(s, t)=e^{A(s-t)} P(t), s \geq t
$$

Example

- First order systems: $\frac{d x}{d t}=f x+g_{1} w, f<0$

$$
\operatorname{var}\left\{x\left(t_{0}\right)\right\}=r_{0}, \operatorname{mean}\left(x\left(t_{0}\right)\right)=m(0)=m_{0}
$$

- Mean value:

$$
\frac{d m}{d t}=f m \rightarrow m(t)=m_{0} e^{f\left(t-t_{0}\right)}
$$

- Covariance function
- Differential equation, let $r_{1}=g_{1}^{2} R_{w}$,

$$
\dot{P}=2 f P+g_{1}^{2} R_{w}, P\left(t_{0}\right)=r_{0} \rightarrow P(t)=e^{2 f\left(t-t_{0}\right)} r_{0}+\frac{r_{1}}{2 f}\left(e^{2 f\left(t-t_{0}\right)}-1\right)
$$

- Assuming $f<0$ and $m_{0}=0$, we get: $r(s, t)=\frac{r_{1}}{2 f} e^{f|t-s|}$
- the process is asymptotically stationary: $r(\tau)=\frac{r_{1}}{2 f} e^{f|\tau|}$
- the spectral density is $\phi(\omega)=\frac{r_{1}}{2 \pi} \frac{1}{\omega^{2}+a^{2}}$

Sampled-data systems

- Sampled-data equation:

$$
\begin{aligned}
& x((k+1) T)=\Phi(T) x(k)+e(k T) \\
& \Phi(t)=\int_{0}^{T} e^{A \tau)} d \tau \\
& e(k T)=\int_{k T}^{(k+1) T} e^{A((k+1) T-\tau)} G_{1} w(\tau) d \tau
\end{aligned}
$$

Sampled-data systems

- Sampled-data equation:

$$
\begin{aligned}
& x((k+1) T)=\Phi(T) x(k)+e(k T) \\
& \Phi(t)=\int_{0}^{T} e^{A \tau)} d \tau \\
& e(k T)=\int_{k T}^{(k+1) T} e^{A((k+1) T-\tau)} G_{1} w(\tau) d \tau
\end{aligned}
$$

- Mean value Evolution:

$$
m(k+1)=\Phi(T) m(k), m(0)=m_{0}
$$

Sampled-data systems

- Sampled-data equation:

$$
\begin{aligned}
& x((k+1) T)=\Phi(T) x(k)+e(k T) \\
& \Phi(t)=\int_{0}^{T} e^{A \tau)} d \tau \\
& e(k T)=\int_{k T}^{(k+1) T} e^{A((k+1) T-\tau)} G_{1} w(\tau) d \tau
\end{aligned}
$$

- Mean value Evolution:

$$
m(k+1)=\Phi(T) m(k), m(0)=m_{0}
$$

- Covariance evolution:

$$
\begin{aligned}
& r_{x x}(k, h)=\operatorname{cov}(x(k), x(h))=E\left\{\tilde{x}(k) \tilde{x}(h)^{T}\right\}, \text { where } \tilde{x}=x-m \\
& \tilde{x}((k+1) T)=\Phi(T) \tilde{x}(k T)+e(k T)
\end{aligned}
$$

Sampled-data systems

- Introduce $P(k)=\operatorname{cov}(x(k), x(k))$ (T implied):

$$
\begin{aligned}
& \tilde{x}(k+1) \tilde{x}^{T}(k+1)=\Phi \tilde{x}(k) \tilde{x}(k)^{T} \Phi^{T}+\Phi \tilde{x}(k) e(k)^{T}+ \\
& \quad+e(k)(\Phi \tilde{x}(k))^{T}+e(k) e(k)^{T}
\end{aligned}
$$

Taking the expectation and considering that $\mathrm{e}(\mathrm{k})$ and $\mathrm{x}(\mathrm{k})$ are independent...

$$
P(k+1)=\Phi P(k) \Phi^{T}+E\left\{e(k) e(k)^{T}\right\}
$$

Sampled-data systems

- Introduce $P(k)=\operatorname{cov}(x(k), x(k))$ (T implied):

$$
\begin{aligned}
& \tilde{x}(k+1) \tilde{x}^{T}(k+1)=\Phi \tilde{x}(k) \tilde{x}(k)^{T} \Phi^{T}+\Phi \tilde{x}(k) e(k)^{T}+ \\
& \quad+e(k)(\Phi \tilde{x}(k))^{T}+e(k) e(k)^{T}
\end{aligned}
$$

Taking the expectation and considering that $\mathrm{e}(\mathrm{k})$ and $\mathrm{x}(\mathrm{k})$ are independent...

$$
P(k+1)=\Phi P(k) \Phi^{T}+E\left\{e(k) e(k)^{T}\right\}
$$

- Considering that $e(k T)=\int_{k T}^{(k+1) T} e^{A((k+1) T-\tau)} G_{1} \dot{w}(\tau) d \tau$, we get:

$$
C_{d}=E\left(e(k T) e(k T)^{T}\right)=\int_{0}^{T} \Phi(\tau) G_{1} R_{w} G_{1}^{T} \Phi(\tau) d \tau
$$

Sampled-data systems

- Introduce $P(k)=\operatorname{cov}(x(k), x(k))$ (T implied):

$$
\begin{aligned}
& \tilde{x}(k+1) \tilde{x}^{T}(k+1)=\Phi \tilde{x}(k) \tilde{x}(k)^{T} \Phi^{T}+\Phi \tilde{x}(k) e(k)^{T}+ \\
& \quad+e(k)(\Phi \tilde{x}(k))^{T}+e(k) e(k)^{T}
\end{aligned}
$$

Taking the expectation and considering that $\mathrm{e}(\mathrm{k})$ and $\mathrm{x}(\mathrm{k})$ are independent...

$$
P(k+1)=\Phi P(k) \Phi^{T}+E\left\{e(k) e(k)^{T}\right\}
$$

- Considering that $e(k T)=\int_{k T}^{(k+1) T} e^{A((k+1) T-\tau)} G_{1} \dot{w}(\tau) d \tau$, we get:

$$
C_{d}=E\left(e(k T) e(k T)^{T}\right)=\int_{0}^{T} \Phi(\tau) G_{1} R_{w} G_{1}^{T} \Phi(\tau) d \tau
$$

- To compute the covariance:

$$
\tilde{x}(k+1) \tilde{x}(k)^{T}=(\Phi \tilde{x} k+e(k)) \tilde{x}(k) \ldots .
$$

Because $\mathrm{e}(\mathrm{k})$ has zero mean and is independent from $\mathrm{x}(\mathrm{k}) \ldots$
$r_{x x}(k+1, k)=\Phi P(k)$ from which
$r_{x x}(h, k)=\Phi^{h-k} P(k), h \geq k$

Example

- First order systems: $\frac{d x}{d t}=f x+u+g_{1} \dot{w}, f>0$

$$
\operatorname{var}\left\{x\left(t_{0}\right)\right\}=r_{0}, \operatorname{mean}\left(x\left(t_{0}\right)\right)=m(0)=m_{0}
$$

- Design a discrete-time controller such that the equivalent CT system has a pole at $s=s_{0}$
- First order systems (ZoH for outputs):

$$
\begin{aligned}
& x(k+1)=e^{f T} x(k)+\frac{e^{f T}-1}{f} u(k)+\int_{k T}^{(k+1) T} g_{1} \dot{w}(\tau) d \tau \\
& \operatorname{var}\{0)\}=r_{0}, \operatorname{mean}(x(0))=m(0)=m_{0}
\end{aligned}
$$

- Choose $u(k)=k x(k)$ such that $e^{f T}+\frac{\left(e^{f T}-1\right)}{f}=e^{s_{0} T}$
- Mean value:

$$
m(k+1)=e^{s_{0} T} m(k), m(0)=m_{0} \rightarrow m(k)=e^{s_{0}\left(k-k_{0}\right) T} m_{0}
$$

Example (continued)

- Covariance function
- Computation of $P(k)$

$$
\begin{aligned}
& P(k+1)=e^{2 s_{0} T} P(k)+C_{d} \\
& C_{d}=\int_{0}^{T} e^{2 f \tau} G_{1}^{2} R_{w} d \tau=\frac{G_{1}^{2} R_{w}}{2 f}\left(e^{2 f T}-1\right)=\frac{r_{1}}{2 f}\left(e^{2 f T}-1\right) \\
& P(k)=e^{2 s_{0}\left(k-k_{0}\right) T} r_{0}+C_{d} \frac{1-e^{2 s_{0} T\left(k-k_{0}\right)}}{1-e^{2 s_{0} T}}
\end{aligned}
$$

- Steady state $(k \rightarrow \infty)$:

$$
\begin{aligned}
& m(k) \rightarrow 0 \\
& P(k) \rightarrow \frac{C_{d}}{1-e^{2 s_{0} T}} \\
& r_{x x}(k, h)=\frac{C_{d} e^{s_{0}}(k-h) T}{1-e^{2 s_{0} T}}
\end{aligned}
$$

- Compare $r_{x x}(0)$ with what the value $r_{x x}^{c}(0)$ that we found for the continuous-time case:

$$
\frac{r_{x x}(0)}{r_{x x}^{c}(0)}=\frac{\left(e^{2 f T}-1\right)}{1-e^{2 s_{0} T}}
$$

, which is increasing with period.

Outline

- Sample-rate selection
- Shannon theorem
- smoothness of responses
- Noise rejection
- Robustness

Robustness

- Consider a first order system: $\dot{x}=a x+b u$
- We consider a robustness problems
- b is known with uncertainity $b=\tilde{b}+d b$
- Sample with period T and design so that the closed loop poles are at $e^{s_{0} T}, s_{0}<0$
- DT system:

$$
x((k+1) T)=e^{a T} x(k T)+\frac{e^{a T}-1}{a} b u(k T)
$$

- Feedback: $u(k T)=\gamma x(k T)$ s.t.

$$
e^{a T}+\gamma \frac{e^{a T}-1}{a} b=e^{s_{0} T}
$$

Robustness with respect to $d b$

- Stability $\left|e^{a T}+\gamma \frac{e^{a T}-1}{a}(b+d b)\right| \leq 1$
- From which:

$$
\begin{aligned}
& 1-e^{s_{0} T} \geq \gamma^{\frac{e^{a T}-1}{a}} d b \geq-1-e^{s_{0} T} \\
& \gamma \frac{e^{a T}-1}{a}=\frac{e^{s_{0} T}-e^{a T}}{b} \\
& \frac{1-e_{0}^{s_{0} T}}{e^{s_{0} T}-e^{a T}} \geq \frac{d b}{b} \geq-\frac{1+e^{s_{0} T}}{e^{s_{0} T}-e^{a T}}
\end{aligned}
$$

- The measure of the maximum relative deviation:

$$
\mu_{d b}=\left|\frac{2}{e^{s_{0} T}-e^{a T}}\right|
$$

