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Dealing with delays
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DT models of sampled-data systems
• Using Z−transform

D/A (ZoH) G(s) A/D

G(z)

u(kT) y(t) y(kT)

• Supposed G(s) = H(s)e−sλ,
• λ can be used to model computation delays
• The presence of a delay makes CT synthesis much more

difficult (infinite dimension)
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Example
• Example: G(s) = e−sλ a

s+a
with a > 0

• Let λ = lT − mT , with l ∈ N, m ∈ [0, 1)

• G(z) = (1 − z−1)Z[L−1[G(s)
s

]]

• G(z) = (1 − z−1)Z[L−1[e−lsT ( emsT

s
− emsT

s+a
)] =

(1 − z−1)z−lZ[L−1[ emsT

s
− emsT

s+a
]
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Example
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• Z[ esmT

s
] = z

z−1

• Z[ esmT

s+a
] = ze−amT

z−e−aT

• G(z) = (1 − e−amT ) z+α
zl(z−e−aT )

, where α = e−amT−e−aT

1−e−amT
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Matlab Control toolbox code

10cm Td = 1.5

a= 1

T = 1

sysc = tf(a, [1 a],’td’,Td);

sysD = c2d(sysc,T);

Real-time embedded controllers – p. 6/24



Effects of delays
• Due to the delay

◦ l poles arose in the origin
◦ a zero arose at −α
→ α → +0 when m → 1 (small delay)
→ α → +∞ when m → 0 (large delay)
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Sample rate selection
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Effects of sample rate selection
• Shannon theorem: not obvious!!!
• smoothness of responses
• Noise rejection
• Robustness
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Block-diagrams
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Continuous-time system
• Let the closed loop equation of the system be:

ẋ = Fx + G1ẇ

where w(t) is a wiener Process.

• A random process w(t) is said a Wiener process if:

◦ w(0) = 0

◦ w(t) − w(s) is a Gaussian process with mean 0 and
variance (t − s)Rw

◦ for all times 0 < t1 < t2 < . . . tn, w(t1), w(t2) − w(t1), . . . ,
w(tn) − w(tn−1) are independent

• Property: ẇ is gaussian with mean 0 and variance Rw

• Assume that increments dw are incorrelated with x and with w
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• Property: ẇ is gaussian with mean 0 and variance Rw

• Assume that increments dw are incorrelated with x and with w

Real-time embedded controllers – p. 11/24



Continuous-time system
• Let the closed loop equation of the system be:
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Continuous-time system -I
• Property: ẇ is gaussian with mean 0 and variance Rw

• Assume that increments dw are incorrelated with x and
with w
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CT system (Mean)
• If the initial state has nonzero mean then

dm
dt

= Fm

m(0) = m0

where m(t) is the mean of x(t).
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CT system (continued)
• Introduce P = E{x̃x̃T}, where x̃ = x − m

• Intuitive way:
dx̃
dt

= Fx̃ + G1dw

dx̃ = Fx̃dt + G1dw

• Expressing variations of xxT (from now on use x for x̃):

d xxT = xxT − (x+dx)(x+dx)T = xdxT +dxxT +dxdxT
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CT system (continued)
• ...from which

dxxT = x(Fx)T dt + x(G1dw)T dt + FxxT + G1dwxT + (Fx)(Fx)T dt2+

+(Fx)(G1dw)T dt2 + (G1dw)(Fx)T dt2 + (G1dw)(G1dw)T

• Taking expected values of both sides and considering that 1) w is incorrelated with
x, 2) E(dwdwT ) = Rwdt we get

dP

dt
= PF T + FP + G1RwGT

1

• Taking the limit dt → 0:

Ṗ = PF T + FP + G1RwGT
1
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Covariance
• Definition

r(s, t) = Cov{x(t), x(s)} = E{(x(t) − m(t))T (x(s) − m(s))}

• Let s ≥ t, the system evolution is given by:
x(s) = eA(s−t)x(t) +

∫ t

s
eA(s−τ)w(τ)dτ

• Computing the expectation value and because x(t) is
incorrelated from w(t) we get

r(s, t) = eA(s−t)P (t), s ≥ t
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Example
• First order systems:

dx
dt

= fx + g1w, f < 0

var{x(t0)} = r0, mean(x(t0)) = m(0) = m0

• Mean value:
dm

dt
= fm → m(t) = m0ef(t−t0)

• Covariance function
◦ Differential equation, let r1 = g2

1Rw ,

Ṗ = 2fP + g2
1Rw, P (t0) = r0 → P (t) = e2f(t−t0)r0 +

r1

2f
(e2f(t−t0) − 1)

◦ Assuming f < 0 and m0 = 0, we get: r(s, t) = r1
2f

ef |t−s|

• the process is asymptotically stationary: r(τ) = r1
2f

ef |τ |

• the spectral density is φ(ω) = r1
2π

1
ω2+a2
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Sampled-data systems
• Sampled-data equation:

x((k + 1)T ) = Φ(T )x(k) + e(kT )

Φ(t) =
R T

0 eAτ)dτ

e(kT ) =
R (k+1)T

kT
eA((k+1)T−τ)G1w(τ)dτ

• Mean value Evolution:

m(k + 1) = Φ(T )m(k), m(0) = m0

• Covariance evolution:

rxx(k, h) = cov(x(k), x(h)) = E{x̃(k)x̃(h)T }, where x̃ = x − m

x̃((k + 1)T ) = Φ(T )x̃(kT ) + e(kT )
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Sampled-data systems
• Introduce P (k) = cov(x(k), x(k)) (T implied):

x̃(k + 1)x̃T (k + 1) = Φx̃(k)x̃(k)T ΦT + Φx̃(k)e(k)T +

+e(k)(Φx̃(k))T + e(k)e(k)T

Taking the expectation and considering that e(k) and x(k) are independent...

P (k + 1) = ΦP (k)ΦT + E{e(k)e(k)T }

• Considering that e(kT ) =
R (k+1)T

kT
eA((k+1)T−τ)G1ẇ(τ)dτ , we get:

Cd = E(e(kT )e(kT )T ) =

Z T

0
Φ(τ)G1RwGT

1 Φ(τ)dτ

• To compute the covariance:

x̃(k + 1)x̃(k)T = (Φx̃k + e(k))x̃(k)....

Because e(k) has zero mean and is independent from x(k)...

rxx(k + 1, k) = ΦP (k) from which

rxx(h, k) = Φh−kP (k), h ≥ k
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eA((k+1)T−τ)G1ẇ(τ)dτ , we get:

Cd = E(e(kT )e(kT )T ) =

Z T

0
Φ(τ)G1RwGT

1 Φ(τ)dτ

• To compute the covariance:

x̃(k + 1)x̃(k)T = (Φx̃k + e(k))x̃(k)....

Because e(k) has zero mean and is independent from x(k)...

rxx(k + 1, k) = ΦP (k) from which

rxx(h, k) = Φh−kP (k), h ≥ k

Real-time embedded controllers – p. 19/24



Sampled-data systems
• Introduce P (k) = cov(x(k), x(k)) (T implied):

x̃(k + 1)x̃T (k + 1) = Φx̃(k)x̃(k)T ΦT + Φx̃(k)e(k)T +

+e(k)(Φx̃(k))T + e(k)e(k)T

Taking the expectation and considering that e(k) and x(k) are independent...

P (k + 1) = ΦP (k)ΦT + E{e(k)e(k)T }

• Considering that e(kT ) =
R (k+1)T

kT
eA((k+1)T−τ)G1ẇ(τ)dτ , we get:
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Example
• First order systems:

dx
dt

= fx + u + g1ẇ, f > 0

var{x(t0)} = r0, mean(x(t0)) = m(0) = m0

• Design a discrete-time controller such that the equivalent CT system has a pole at
s = s0

• First order systems (ZoH for outputs):
x(k + 1) = efT x(k) + efT −1

f
u(k) +

R (k+1)T
kT

g1ẇ(τ)dτ

var{0)} = r0, mean(x(0)) = m(0) = m0

• Choose u(k) = kx(k) such that efT +
(efT −1)

f
= es0T

• Mean value:

m(k + 1) = es0T m(k), m(0) = m0 → m(k) = es0(k−k0)T m0
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Example (continued)
• Covariance function

◦ Computation of P (k)

P (k + 1) = e2s0T P (k) + Cd

Cd =
R T

0 e2fτ G2
1Rwdτ =

G2
1Rw

2f
(e2fT − 1) = r1

2f
(e2fT − 1)

P (k) = e2s0(k−k0)T r0 + Cd
1−e2s0T (k−k0)

1−e2s0T

◦ Steady state (k → ∞):

m(k) → 0

P (k) → Cd

1−e2s0T

rxx(k, h) = Cdes0(k−h)T

1−e2s0T

• Compare rxx(0) with what the value rc
xx(0) that we found for the continuous-time

case:
rxx(0)

rc
xx(0)

=
(e2fT − 1)

1 − e2s0T

, which is increasing with period.
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Outline
• Sample-rate selection

◦ Shannon theorem
◦ smoothness of responses
◦ Noise rejection
◦ Robustness

Real-time embedded controllers – p. 22/24



Robustness
• Consider a first order system: ẋ = ax + bu

• We consider a robustness problems
◦ b is known with uncertainity b = b̃ + db

• Sample with period T and design so that the closed loop poles are at es0T , s0 < 0

• DT system:

x((k + 1)T ) = eaT x(kT ) +
eaT − 1

a
bu(kT )

• Feedback: u(kT ) = γx(kT ) s.t.

eaT + γ
eaT − 1

a
b = es0T
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Robustness with respect to db
• Stability |eaT + γ eaT−1

a
(b + db)| ≤ 1

• From which:

1 − es0T ≥ γ eaT−1
a

db ≥ −1 − es0T

γ eaT−1
a

= es0T−eaT

b

1−es0T

es0T−eaT ≥ db
b
≥ − 1+es0T

es0T−eaT

• The measure of the maximum relative deviation:

µdb =

∣

∣

∣

∣

2

es0T − eaT

∣

∣

∣

∣
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