Some results on optimal estimation and control for lossy NCS

Luca Schenato
Networked Control Systems

Drive-by-wire systems

Wireless Sensor Networks

Swarm robotics

Traffic Control: Internet and transportation

Smart structures: adaptive space telescope

Smart materials: sheets of MEMS sensors and actuators

NCSs: physically distributed dynamical systems interconnected by a communication network
NCSs: what’s new for control?

Classical architecture: Centralized structure
NCSs: what’s new for control?

NCSs: Large scale distributed structure

Connectivity
Limited capacity

Interference
COMMUNICATION
NETWORK
Congestion

Packet loss
Random delay
Quantization

COMMUNICATION NETWORK

Plant

Packet loss
Random delay
Quantization

Connectivity
Limited capacity
Interdisciplinary research needed

COMMUNICATIONS ENGINEERING
- Comm. protocols for RT apps
- Packet loss and random delay
- Wireless Sensor Networks
- Bit rate and Inf. Theory

SOFTWARE ENGINEERING
- Embedded software design
- Middleware for NCS
- RT Operating Systems
- Layering abstraction for interoperability

NETWORKED CONTROL SYSTEMS
- Graph theory
- Distributed computation
- Complexity theory
- Consensus algorithms

COMPUTER SCIENCE
Interdisciplinary research needed

COMMUNICATIONS ENGINEERING
- Comm. protocols for RT apps
- Packet loss and random delay
- Wireless Sensor Networks
- Bit rate and Inf. Theory

SOFTWARE ENGINEERING
- Embedded software design
- Middleware for NCS
- RT Operating Systems
- Layering abstraction for interoperability

NETWORKED CONTROL SYSTEMS
- Graph theory
- Distributed computation
- Complexity theory
- Consensus algorithms

COMPUTER SCIENCE
- Average TimeSync (ATS): a distributed consensus protocol for sensor networks clock synchronization

Martedi prossimo
NCS example: Pursuit Evasion Games w Sensor Networks

Sensor nodes w/ motion sensors

Information flow from SN

Evaders

Pursuers
Motivating example: wireless sensor networks

Forest Temperature Monitoring
(data-extraction application)

Wildfire detection & tracking
(real-time application)

- Can we design optimal estimators that compensate for random delay and packet loss?
- What is the performance if we have packet arrival statistics?
- How can we compare different communication/routing protocols in terms of estimation performance?
Optimal LQG

\[u^c_t = u^c_t \]

\[x_{t+1} = Ax_t + Bu^a_t + w_t \]

\[y_t = Cx_t + v_t \]

\[
\min_{u^c_1, \ldots, u^c_T} J = \sum_{t=1}^{T} E[x_t^T W x_t + u_t^T U u_t], \quad T \to \infty
\]

Sensors and actuators are co-located, i.e. no delay nor loss
1. Separation principle holds: Optimal controller = Optimal estimator design + Optimal state feedback design
2. Closed Loop system always stable (under standard cont/obs. hypotheses)
3. Gains K,L are constant solution of Algebraic Riccati Equations
Optimal LQG control over DCN

Actuators
\[u_t^a = \begin{cases} u_t^c - \tau \\ 0 \end{cases} \]

Plant
\[x_{t+1} = Ax_t + Bu_t^a + w_t \]

Sensors
\[y_t = Cx_t + v_t \]

Controller?

DIGITAL COMMUNICATION NETWORK

Controller

Random delay or drop

\[u_t^c - \tau_c \rightarrow \]

\[\text{ACK?} \]

\[Y_t - \tau_s \rightarrow \]
Some consideration on the separation principle

\[u^c_t = u^c_t \]

\[x_{t+1} = Ax_t + Bu^a_t + w_t \]

\[y_t = Cx_t + v_t \]

Actuators

\[u^c_t = u^c_t \]

Plant

\[x_{t+1} = Ax_t + Bu^a_t + w_t \]

Sensors

\[y_t = Cx_t + v_t \]

State feedback

\[u^c_t = L\hat{x}_t \]

Kalman filter

\[\hat{x}_t = A\hat{x}_{t-1} + Bu^c_{t-1} + K(y_t - C\hat{x}_t) \]

Random delay
Packet loss

\[\hat{x}_t = E[x_t | y_t, y_{t-1}, \ldots, y_0, u^a_{t-1}, \ldots, u^a_1] \]

\[= f(y_t, y_{t-1}, \ldots, y_0) \]

if \((u^a_{t-1}, \ldots u^a_1)\) known \(\Rightarrow e_t = x_t - \hat{x}_t = f(y_t, y_1, \ldots, y_1, y_0)\)
Modeling of Digital Communication Network (DCN)

Assumptions:
(1) Quantization noise $<<$ sensor noise
(2) Packet-rate limited (bit-rate)
(3) No transmission noise (data corrupted=dropped packet)
(4) Packets are time-stamped

Random delay & Packet loss ($\tau=1$) at receiver
Estimation modeling

PLANT

\[x_{t+1} = Ax_t + w_t \]
\[y_t = Cx_t + v_t \]

Digital Communication Network

ESTIMATOR

Buffer
\[y_1 \ast y_3 \ast y_4 \ast \ldots \]

\[\hat{x}_t \]

- No packet arrives
 \[t = 3 \]
 \[y_3 \rightarrow [y_1 \ y_3] \]

- Packet out of order
 \[t = 4 \]
 \[y_2 \rightarrow [y_1 \ y_2 \ y_3] \]

- Multiple packets arrive
 \[t = 5 \]
 \[y_4, y_6 \rightarrow [y_1 \ y_2 \ y_3 \ y_4 \ y_6] \]

\[\ddots \]
Minimum variance estimation

\[\hat{x}_t = \mathbb{E}[x_t | \{y_k\}] \text{ available at estimator at time } t \]

PLANT

\[
\begin{align*}
 x_{t+1} &= Ax_t + w_t \\
 y_t &= Cx_t + v_t
\end{align*}
\]

Digital Communication Network

ESTIMATOR

\[
\gamma_k^t = \begin{cases}
 1 & \text{if } y_k \text{ arrived before or at time } t, \ t \geq k \\
 0 & \text{otherwise}
\end{cases}
\]

\[
\tilde{y}_k = \gamma_k^t (Cx_k + v_k) = C_k^t x_k + u^t
\]

Kalman time-varying linear system

\[\hat{x}_t = \mathbb{E}[x_t | \tilde{y}_1, \ldots, \tilde{y}_t, \gamma_1^t, \ldots, \gamma_t^t] \]
Minimum variance estimation

\[t = 3 \]

\[\hat{x}_0 \]

\[x^+ = A\hat{x} \]
\[P^+ = APA^T + Q \]

\[x^+ = A\hat{x} + K_k^t(\hat{y}_k^t - CA\hat{x}) \]
\[P^+ = APA^T + Q - APC^T(CPC^T + R)^{-1}CPA^T \]

\(\gamma = 0 \)

\(\gamma = 1 \)

Lyapunov Equation (unstable)

Riccati Equation (stable)
Minimum variance estimation

\[t = 3 \]

\[
\begin{bmatrix}
 y_2 \\
 y_3 \\
 \hat{x}_1
\end{bmatrix}
\]

\[\gamma = 0 \]

\[
\begin{align*}
 \dot{x}^+ &= A\dot{x} \\
 P^+ &= APA^T + Q
\end{align*}
\]

Lyapunov Equation (unstable)

\[\gamma = 1 \]

\[
\begin{align*}
 \dot{x}^+ &= A\dot{x} + K_k^t(\tilde{y}_k^t - CA\dot{x}) \\
 P^+ &= APA^T + Q - APC^T(CPC^T + R)^{-1}CPA^T
\end{align*}
\]

Riccati Equation (stable)
Minimum variance estimation

\[t = 3 \]
\[\begin{array}{c}
\text{y2} \\
\text{y3} \\
\hline
\text{\(\hat{x}_2 \)}
\end{array} \]

\[\gamma = 0 \]
\[\begin{align*}
\dot{x}^+ &= A\hat{x} \\
P^+ &= APA^T + Q
\end{align*} \]
Lyapunov Equation (unstable)

\[\gamma = 1 \]
\[\begin{align*}
\dot{x}^+ &= A\hat{x} + K_k^t(y_k^t - CA\hat{x}) \\
P^+ &= APA^T + Q - APC^T(CPC^T + R)^{-1}CPA^T
\end{align*} \]
Riccati Equation (stable)
Minimum variance estimation

\[t = 3 \]

\[\begin{array}{c}
 y_2 \\
 y_3 \\
 \tilde{x}_3 \\
\end{array} \]

\[\gamma = 0 \]

\[\begin{align*}
 \dot{x}^+ &= A\dot{x} \\
 P^+ &= APA^T + Q
\end{align*} \]

Lyapunov Equation
(unstable)

\[\gamma = 1 \]

\[\begin{align*}
 \dot{x}^+ &= A\dot{x} + K_t (\tilde{y}_k - CA\tilde{x}) \\
 P^+ &= APA^T + Q - APCT(CPC^T + R)^{-1}CPAT
\end{align*} \]

Riccati Equation
(stable)
Minimum variance estimation

Lyapunov Equation (unstable)

$$\begin{align*}
\hat{x}^+ &= A\hat{x} \\
P^+ &= APA^T + Q
\end{align*}$$

Riccati Equation (stable)

$$\begin{align*}
\hat{x}^+ &= A\hat{x} + K_k^t (\tilde{y}_k^t - CA\hat{x}) \\
P^+ &= APA^T + Q - APC^T (CPC^T + R)^{-1} CPA^T
\end{align*}$$
Minimum variance estimation

\[
\begin{align*}
\hat{x}_1 &= t = 4 \\
y_2 &\quad y_3
\end{align*}
\]

Lyapunov Equation (unstable)

\[
\begin{align*}
\dot{x}^+ &= A\hat{x} \\
P^+ &= APA^T + Q
\end{align*}
\]

Riccati Equation (stable)

\[
\begin{align*}
\dot{x}^+ &= A\hat{x} + K_k^t(\tilde{y}_k - CA\hat{x}) \\
P^+ &= APA^T + Q - APC^T(CPC^T + R)^{-1}CPA^T
\end{align*}
\]

\(\gamma = 0\)

\(\gamma = 1\)
Minimum variance estimation

\[t = 4 \]

Lyapunov Equation (unstable)
\[
\begin{align*}
\dot{x}^+ &= A\dot{x} \\
P^+ &= APA^T + Q
\end{align*}
\]

Riccati Equation (stable)
\[
\begin{align*}
\dot{x}^+ &= A\dot{x} + K_k(\tilde{y}_k^T - CA\tilde{x}) \\
P^+ &= APA^T + Q - APCT(CPCT + R)^{-1}CPAT
\end{align*}
\]
Minimum variance estimation

\[t = 4 \]

\[y_2 \quad y_3 \]

\[\hat{x}_3 \]

\[\gamma = 0 \]

Lyapunov Equation (unstable)

\[\hat{x}^+ = A\hat{x} \]
\[P^+ = APA^T + Q \]

\[\gamma = 1 \]

Riccati Equation (stable)

\[\hat{x}^+ = A\hat{x} + K^T_k (\tilde{y}_k - C\hat{x}) \]
\[P^+ = APA^T + Q - APC^T(CPC^T + R)^{-1}CPA^T \]
Minimum variance estimation

\[t = 4 \]

\[
\begin{pmatrix}
y_2 \\
y_3 \\
\hat{x}_4
\end{pmatrix}
\]

\[\gamma = 0 \]

\[
\hat{x}^+ = A\hat{x} \\
P^+ = APA^T + Q
\]

Lyapunov Equation (unstable)

\[\gamma = 1 \]

\[
\hat{x}^+ = A\hat{x} + K_k(\tilde{y}_k - CA\hat{x}) \\
P^+ = APA^T + Q - APC^T(CPC^T + R)^{-1}CPA^T
\]

Riccati Equation (stable)
Minimum variance estimation

\[t = 5 \]

\[y_1 \rightarrow \begin{array}{c} y_1 \ y_2 \ y_3 \\ \hat{x}_4 \end{array} \]

\[\gamma = 0 \]

\[\begin{align*}
\hat{x}^+ &= A\hat{x} \\
P^+ &= APA^T + Q
\end{align*} \]

Lyapunov Equation (unstable)

\[\gamma = 1 \]

\[\begin{align*}
\hat{x}^+ &= A\hat{x} + K_k^t(y_k^t - CA\hat{x}) \\
P^+ &= APA^T + Q - APC^T(CPC^T + R)^{-1}CPA^T
\end{align*} \]

Riccati Equation (stable)
Properties of Optimal Estimator

- Optimal for any arrival process
- Stochastic time-varying gain $K_t = K(\gamma_1, \ldots, \gamma_t)$
- Possibly infinite memory buffer
- Inversion of up to t matrices at any time t

\[
\begin{align*}
\hat{x}_t &= A\hat{x} + \gamma_t y_t P C^T (C P C^T + R)^{-1} (\bar{y}_t - C A \hat{x}) \\
P^{-1} &= A P A^T + Q - \gamma_{t-N} A P C^T (C P C^T + R)^{-1} C P A^T
\end{align*}
\]
Minimum variance estimation

\[t = 4 \]

\[\hat{y}_2 \hat{y}_3 \]

\[\hat{x}_2 \]

\[\gamma = 0 \]

\[\hat{x}^+ = A\hat{x} \]
\[P^+ = APA^T + Q \]

\[\gamma = 1 \]

\[\hat{x}^+ = A\hat{x} + K_k(\hat{y}_k - CA\hat{x}) \]
\[P^+ = APA^T + Q - APC^T(CPC^T + R)^{-1}CPA^T \]

Lyapunov Equation (unstable)

Riccati Equation (stable)
Minimum variance estimation

Lyapunov Equation (unstable)

\[
\begin{align*}
\dot{x}^+ &= A\hat{x} \\
P^+ &= APA^T + Q
\end{align*}
\]

Riccati Equation (stable)

\[
\begin{align*}
\dot{x}^+ &= A\hat{x} + K_k^t(y_k^t - CA\hat{x}) \\
P^+ &= APA^T + Q - APC^T(CPC^T + R)^{-1}CPA^T
\end{align*}
\]

\[\gamma = 0\]

\[\gamma = 1\]
What about stability and performance?

Additional assumption on arrival sequence necessary: i.i.d. arrival with stationary distribution

\(\tau_k \): delay of packet \(y_k \), \(\tau_k = \infty \) if \(y_k \) never arrives

\[
\begin{align*}
\lambda_h \triangleq & \mathbb{P}[\tau_k \leq h], \\
\lambda_{loss} \triangleq & \mathbb{P}[\tau_k = \infty]
\end{align*}
\]
Optimal estimation with constant gains and buffer finite memory

\[\{K_h\}_{h=0}^{N-1}, \quad N \text{ static gains} \]

\[\tilde{x}^+ = A\tilde{x} + \gamma^t_{t-h} K_h (\tilde{y}^t_{t-h} - CA\tilde{x}), \quad h = N - 1, \ldots, 0 \]

- Does not require any matrix inversion
- Simple to implement
- Upper bound for optimal estimator: \(P_t \leq \tilde{P}_{t|t} \implies \mathbb{E}_\gamma[P_{t|t}] \leq \mathbb{E}_\gamma[\tilde{P}_{t|t}] = \overline{P}_{t|t} \)
- \(N \) is design parameter

GOAL: compute \(\overline{P}_{t|t} \)
Suboptimal minimum variance estimation

\[t = 3 \]

\[
\begin{bmatrix}
K_3 & K_2 & K_1
\end{bmatrix}
\]

\[y_2 \ y_3 \]

\[\hat{x}_1 \]

\[\gamma = 0 \]

\[\hat{x}^+ = A\hat{x} \]

Open loop

\[\gamma = 1 \]

\[\hat{x}^+ = A\hat{x} + K_l(\tilde{y}_k - CA\hat{x}) \]

Closed loop
Suboptimal minimum variance estimation

\[t = 4 \]

Lyapunov Equation (unstable)

\[\gamma = 0 \]

\[\hat{x}^+ = A\hat{x} \]

Riccati Equation (stable)

\[\gamma = 1 \]

\[\hat{x}^+ = A\hat{x} + K_l(\tilde{y}_k^t - CA\hat{x}) \]
Steady state estimation error

Fixed gains:

\[\mathcal{L}_\lambda(K, P) = \lambda A(I-KC)P(I-KC)^T A^T + (1-\lambda) APA^T + Q + \lambda AKR K^T A^T \]

\[
\bar{P} = \mathcal{L}_{\lambda_{N-1}}(K_{N-1}, \bar{P}) \\
\bar{P}^+ = \mathcal{L}_{\lambda_k}(K_k, \bar{P}), \quad k = N-2, \ldots, 0 \\
\lim_{t \to \infty} \bar{P}_{t|t} = \bar{P}
\]

Optimal fixed gains:

\[\Phi_\lambda(P) = APA^T + Q - \lambda APCT^T (CPC^T + R)^{-1} CP A^T \]

Modified Algebraic Riccati Equation (MARE)

\[\Phi_{\lambda_{N-1}}(P_{N-1}) = \Phi_{\lambda_{N-1}}(P_{N-1}) \]

\[\Phi_{\lambda_k}(P_{k+1}), \quad k = N-2, \ldots, 0 \]

\[K_k = P_k C^T (CP_k C^T + R)^{-1} \]

(offline computation)
Numerical example (1)

Discrete time linearized inverted pendulum:

\[A = \begin{bmatrix} 1.01 & 0.05 \\ 0.05 & 1.01 \end{bmatrix}, \quad C = [1 \ 0], \quad R = 1, \quad Q = \begin{bmatrix} 0.01 & 0.01 \\ 0.01 & 1 \end{bmatrix} \]
Time-varying arrival probability distribution

\[\lambda^1 \quad 0 \leq t \leq 50 \]

\[\lambda^2 \quad t > 50 \]
Back to the control problem

Actuators
\[u_t^a = u_t^c \]

Plant
\[x_{t+1} = Ax_t + Bu_t^a + w_t \]

Sensors
\[y_t = Cx_t + v_t \]

State feedback
\[u_t^c = L\hat{x}_t \]

Static Kalman filter
\[\hat{x}_t = A\hat{x}_{t-1} + B u_{t-1}^c + K(y_t - C\hat{x}_t) \]
Back to the control problem

\[u_t^c = u_t^c \]

Actuators

Plant

\[x_{t+1} = Ax_t + Bu_t^a + w_t \]

Sensors

\[y_t = Cx_t + v_t \]

\[z^{-1} \]

State feedback

\[u_t^c = L\hat{x}_t \]

Time-varying Kalman filter w/ memory

\[\hat{x}_t = A\hat{x}_{t-1} + Bu_{t-1}^c + K_t(y_t - C\hat{x}_t) \]

\[\hat{x}_t = E[x_t|y_t, y_{t-1}, \ldots, y_0, u_{t-1}^a, \ldots, u_1^a] \]

if \(u_{t-1}^c \neq u_{t-1}^a \) \(\implies e_t = x_t - \hat{x}_t = f(y_t, \ldots, y_0, u_t^c, \ldots, u_0^c, u_1^a, \ldots, u_1^a) \)

\[P_{t|t-1} = AP_{t-1|t-1}A^T + Q + B(u_{t-1}^a - u_{t-1}^c)(u_{t-1}^a - u_{t-1}^c)^TB^T \]

Estimation error coupled with control action \(\Rightarrow \) no separation principle
LQG over TCP-like (ACK-based) protocols

Actuators

\[u^a_t = \begin{cases} u^c_t & \nu_t = 1 \\ 0 & \nu_t = 0 \end{cases} \]

Plant

\[x_{t+1} = Ax_t + Bu^a_t + w_t \]

Sensors

\[y_t = Cx_t + v_t \]

Packet loss

\[\nu_t \]

State feedback

\[u^c_t = L \nu \tilde{x}_t \]

Time-varying Kalman filter w/ memory

\[\tilde{x}_t = A \tilde{x}_{t-1} + Bu^a_{t-1} + K_t (y_t - C \tilde{x}_t) \]

Separation principle hold (I know exactly \(u^a_{t-1} \))

\(\nu_t \) Bernoulli rand. var and independent of observation arrival process

Static state feedback, \(L \) solution of dual MARE
LQG over UDP-like (no-ACK) protocols

- LQG problem still well defined: \(\min_{u^c_1, \ldots, u^c_t} E[\sum_{h=1}^{t} x_t^T W x_t + (u^a_t)^T U u^a_t] \)
- No separation principle hold (\(u^{a}_{t-1} \) NOT known exactly)
- ... but still have some statistical information about \(u^{a}_{t-1} \)
LQG over UDP-like (no-ACK) protocols

- Bernoulli arrival process $P[\nu_t = 1] = \bar{\nu}, P[\gamma_t = 1] = \bar{\gamma}$
- $\bar{\nu}u^c_t = E[u^a_{t-1}]$
- Sub-optimal controller forced to be state estimator+state feedback
- Optimal choice of K,L is unique solution of 4 coupled Riccati-like equations

"Compensability and Optimal Compensation of systems with white parameters", De Koning, TAC'92
LQG as optimization problem

\[\text{Min}_{K,L} \quad \text{Trace} \left(\begin{bmatrix} W & 0 \\ 0 & \bar{\nu} L^T U L \end{bmatrix} P \right) \]

\[s.t. \quad P = \mathbb{E} \left[\begin{bmatrix} A & -\nu_k B L \\ \gamma_k K C & A - \bar{\nu} B L - \gamma_k K C \end{bmatrix} P \begin{bmatrix} A & -\nu_k B L \\ \gamma_k K C & A - \bar{\nu} B L - \gamma_k K C \end{bmatrix}^T \right] + \begin{bmatrix} Q & 0 \\ 0 & \bar{\gamma} K R K^T \end{bmatrix} \]

- Non convex problem even for \(\nu_k = 1 \), i.e. classic LQG
- Classic and TCP-based LQG become convex when exploiting optimality conditions like uncorrelation between estimate and error estimate \(\mathbb{E} [x(x - \hat{x})^T] = 0 \)
- For UDP-like problem non convex but unique solution using Homotopy and Degree Theory (DeKoning, Athans, Bernstein) (maybe using Sum-of-Squares?)
- Stability on \(\gamma \) and \(\nu \) is coupled
Side note: Kalman filter is not always optimal!

- Kalman filter always gives smallest estimate error regardless of controller L
- If controller $L \neq L_{LQ}$, then performance improves if my estimate is “bad”!
Numerical example: TCP vs UDP
To hold or to zero control input?

Most common strategy:

\[g(u_{t-1}^a) = 0 \]
zero-input strategy \((\text{mathematically appealing})\)

\[g(u_{t-1}^a) = u_{t-1}^a \]
hold-input strategy \((\text{most natural})\)
To hold or to zero control input: no noise (jump linear systems)

Zero-input Strategy

\[u_k^p = \nu_k u_k^c \]
\[x_{k+1} = Ax_k + Bu_k^p \]
\[u_k^c = L_z x_k \]

\[J_z^* = \min_{L_z} E[\sum_{t=1}^{\infty} x_t^T W x_t + (u_t^a)^T U u_t^a] \]

Hold-input Strategy

\[u_k^p = \nu_k u_k^c + (1 - \nu_k)u_{k-1}^p \]
\[x_{k+1} = Ax_k + Bu_k^p \]
\[u_k^d = L_h x_k \]

\[J_h^* = \min_{L_h} E[\sum_{t=1}^{\infty} x_t^T W x_t + (u_t^a)^T U u_t^a] \]

Using cost-to-go function (dynamic programming)

\[J_z^* = E[x_0^T S_z x_0] \]
\[J_h^* = E[x_0^T S_h x_0] \]

\[S_z = \Phi_z(S_z) \rightarrow \text{Riccati-like equation} \rightarrow S_h = \Phi_h(S_h) \]
\[L_z^* = f_z(S_z) \]
\[L_h^* = f_h(S_h) \]
Example: unstable scalar system

- $A=1.2, U=0$ (fastest convergence)
- $A=1.2, U=10$ (small input)
Conjecture:

- Separation principle hold
- Optimal function \(g(u_{t-1}^a) = \rho u_{t-1} \)
- Design parameter \(L, l, \rho \) obtained via LQ-like optimal state feedback
"Optimal LQG control across a packet-dropping link", Gupta, Spanos, Murray, Submitted to Sys.Cont.Lett. 05
"Estimation under controlled and uncontrolled communications in networked control systems", Xu, Hespanha, CDC 05

Smart sensors & smart actuators

Actuators

Plant

Sensors

\[u^a_t = ? \]

\[x_{t+1} = Ax_t + Bu^a_t + w_t \]

\[y_t = Cx_t + v_t \]

\[\hat{x}_t \]

\[\hat{x}_t = E[x_t|y_6, y_5, \ldots, y_1] = E[x_7|x_6] \]
Numerical example: remote vs co-located controller
Takeaway points

- Input packet loss more dangerous than measurement packet loss
- TCP-like protocols help controller design as compared to UDP-like (but harder for communication designer)
- If you can, place controller near actuator
- If you can, send estimate rather than raw measurement
- Zero-input control seems to give smaller closed loop state error ($||x_t||$) than hold-input (but higher input)
- Trade-off in terms of performance, buffer length, computational resources (matrix inversion) when random delay
- Can help comparing different communication protocols from a real-time application performance
Future work

- Multiple sensors:
 - data fusion, i.e. y_1, \ldots, y_m arrive at different times
 - distributed estimation & consensus $E[x|y_1, \ldots, y_N] = E[x|\hat{x}_{s_1}, \hat{x}_{s_N}]$
- Multiple actuators
 - trade-off between distributed control & centralized coordination