Some results on optimal estimation and control for lossy NCS

Luca Schenato

Networked Control Systems

Swarm robotics

Drive-by-wire systems

Wireless Sensor Networks

. Traffic Control: Internet and transportation

Smart structures: adaptive space telescope

Smart materials: sheets of MEMS sensors and actuators

NCSs: physically distributed dynamical systems interconnected by a communication network

UNIVERSITY OF PADOVA

COMMUNICATIONS ENGINEERING

•Comm. protocols for RT apps •Packet loss and random delay •Wireless Sensor Networks •Bit rate and Inf. Theory

NETWORKED CONTROL SYSTEMS

SOFTWARE ENGINEERING

Embedded software design
Middleware for NCS
RT Operating Systems
Layering abstraction for interoperability

COMPUTER SCIENCE

- •Graph theory
- Distributed computation
- •Complexity theory
- •Consensus algorithms

INFORMATION ENGINEERING

COMMUNICATIONS ENGINEERING

Comm. protocols for RT apps
Packet loss and random delay

- •Wireless Sensor Networks
- •Bit rate and Inf. Theory

NETWORKED CONTROL SYSTEMS

SOFTWARE ENGINEERING

Embedded software design
Middleware for NCS
RT Operating Systems
Layering abstraction for interoperability

COMPUTER SCIENCE

- •Graph theory
- Distributed computation
- Complexity theory
- •Consensus algorithms •

Martedi prossimo

Average TimeSync (ATS): a distributed consensus protocol for sensor networks clock synchronization

Motivating example: wireless sensor networks

Forest Temperature Monitoring (data-extraction application)

Wildfire detection & tracking (real-time application)

- Can we design optimal estimators that compensate for random delay and packet loss ?
- What is the performance if we have packet arrival statistics?
- How can we compare different communication/routing protocols in terms of estimation performance ?

$$\min_{u_1^c, \dots, u_T^c} J = \sum_{t=1}^T E[x_t^T W x_t + u_t^T U u_t], \quad T \to \infty$$

Sensors and actuators are co-located, i.e. no delay nor loss

- 1. Separation principle holds: Optimal controller = Optimal estimator design + Optimal state feedback design
- 2. Closed Loop system always stable (under standard cont/obs. hypotheses)
- 3. Gains K, L are constant solution of Algebraic Riccati Equations

$$\hat{x}_{t} = E[x_{t}|y_{t}, y_{t-1}, ..., y_{0}, u_{t-1}^{a}, ..., u_{1}^{a}]$$

= $f(y_{t}, y_{t-1}, ..., y_{0})$

if $(u_{t-1}^a, ..., u_1^a)$ known $\Longrightarrow e_t = x_t - \hat{x}_t = f(y_t, y_{\aleph 1}, .., \chi_1, y_0)$

DEPARTMENT OF INFORMATION ENGINEERING UNIVERSITY OF PADOVA UNIVERSITY OF PADOVA UNIVERSITY OF PADOVA

- (1) Quantization noise < < sensor noise
- (2) Packet-rate limited (bit-rate)
- (3) No transmission noise (data corrupted=dropped packet)
- (4) Packets are time-stamped

Random delay & Packet loss (=1) at receiver

Estimation modeling

DEPARTMENT OF INFORMATION ENGINEERING

 $\hat{x}_t = \mathbb{E}[x_t | \{y_k\} \text{ available at estimator at time } t]$

 $\gamma_k^t = \begin{cases} 1 & \text{ if } y_k \text{ arrived before or at time } t, \ t \ge k \\ 0 & \text{ otherwise} \end{cases}$

$$\tilde{y}_k = \gamma_k^t (Cx_k + v_k) = C_k^t x_k + u^t$$

 $\begin{array}{ll} \text{Kalman} \\ \text{time-varying} \\ \text{linear system} \end{array} & \widehat{x}_t = \mathbb{E}[x_t \,|\, \widetilde{y}_1, \dots, \widetilde{y}_t, \gamma_1^t, \dots, \gamma_t^t] \end{array}$

TMENT OF RMATION REERING ITY OF PADOVA

 \hat{x}_t

ESTIMATOR

 P_{\cap}

 $y_{t-h}||\bar{x}_0|$

- Optimal for any arrival process
- Stochastic time-varying gain $K_t = K(\gamma_1, ..., \gamma_t)$
- Possibly infinite memory buffer
- Inversion of up to t matrices at any time t

What about stability and performance?

Additional assumption on arrival sequence necessary: i.i.d. arrival with stationary distribution

 au_k : delay of packet y_k , $au_k = \infty$ if y_k never arrives

Optimal estimation with constant gains and buffer finite memory

 $\{K_h\}_{h=0}^{N-1}$, N static gains

$$\tilde{x}^+ = A\tilde{x} + \gamma_{t-h}^t K_h(\tilde{y}_{t-h}^t - CA\tilde{x}), \quad h = N-1, \dots, 0$$

- Does not require any matrix inversion
- Simple to implement
- Upper bound for optimal estimator: $P_t \leq \tilde{P}_{t|t} \Longrightarrow \mathbb{E}_{\gamma}[P_{t|t}] \leq \mathbb{E}_{\gamma}[\tilde{P}_{t|t}] = \overline{P}_{t|t}$
- N is design parameter

Fixed gains:

 $\mathcal{L}_{\lambda}(K,P) = \lambda A (I - KC) P (I - KC)^{T} A^{T} + (1 - \lambda) A P A^{T} + Q + \lambda A K R K^{T} A^{T}$

$$\overline{P} = \mathcal{L}_{\lambda_{N-1}}(K_{N-1}, \overline{P})$$

$$\overline{P}^+ = \mathcal{L}_{\lambda_k}(K_k, \overline{P}), \quad k = N-2, \dots, 0$$

$$\lim_{t \to \infty} \overline{P}_{t|t} = \overline{P}$$

Optimal fixed gains:

$$\Phi_{\lambda}(P) = APA^{T} + Q - \lambda APC^{T}(CPC^{T} + R)^{-1}CPA^{T}$$

Modified Algebraic Riccati Equation (MARE) (_1(P)=ARE)

$$\min_{K_0,\ldots,K_{N-1}} \overline{P} \longrightarrow \begin{array}{l} \overline{P}_{N-1} = \Phi_{\lambda_{N-1}}(\overline{P}_{N-1}) \\ \overline{P}_k = \Phi_{\lambda_k}(\overline{P}_{k+1}), \quad k = N-2,\ldots,0 \\ K_k = \overline{P}_k C^T (C\overline{P}_k C^T + R)^{-1} \\ \text{(off-line computation)} \end{array}$$

Discrete time linearized inverted pendulum:

MENT OF

$$A = \begin{bmatrix} 1.01 & 0.05 \\ 0.05 & 1.01 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad R = 1, \quad Q = \begin{bmatrix} 0.01 & 0.01 \\ 0.01 & 1 \end{bmatrix}$$

Time-varying arrival probability distribution

 $\hat{x}_{t} = E[x_{t}|y_{t}, y_{t-1}, ..., y_{0}, u_{t-1}^{a}, ..., u_{1}^{a}]$ if $u_{t-1}^{c} \neq u_{t-1}^{a} \Longrightarrow e_{t} = x_{t} - \hat{x}_{t} = f(y_{t}, ..., y_{0}, u_{t}^{c}, ..., u_{0}^{c}, u_{t}^{a}, ..., u_{0}^{a})$ $P_{t|t-1} = AP_{t-1|t-1}A^{T} + Q + B(u_{t-1}^{a} - u_{t-1}^{c})(u_{t-1}^{a} - u_{t-1}^{c})^{T}B^{T}$

Estimation error coupled with control action \rightarrow no separation principle

- Separation principle hold (I know exactly u^at-1)
- Bernoulli rand. var and independent of observation arrival process
- Static state feedback, L solution of dual MARE

- LQG problem still well defined: $\min_{u_t^c, \dots, u_1^c} E[\sum_{h=1}^t x_t^T W x_t + (u_t^a)^T U u_t^a]$
- No separation principle hold (u^a_{t-1} NOT known exactly)
- ... but still have some statistical information about u^at-1

- Bernoulli arrival process $P[\nu_t = 1] = \bar{\nu}, P[\gamma_t = 1] = \bar{\gamma}$
- $\overline{\nu}u_{t-1}^c = E[u_{t-1}^a]$
- Sub-optimal controller forced to be state estimator+state feedback
- Optimal choice of K,L is unique solution of 4 coupled Riccati-like equations

"Compensability and Optimal Compensation of systems with white parameters", De Koning, TAC'92

LQG as optimization problem

$$\begin{aligned} \operatorname{Min}_{K,L} & \operatorname{Trace} \left(\begin{bmatrix} W & 0 \\ 0 & \bar{\nu}L^{T}UL \end{bmatrix} P \right) & P \stackrel{\Delta}{=} \mathbb{E} \left[\begin{bmatrix} x \\ \hat{x} \end{bmatrix} \begin{bmatrix} x^{T} & \hat{x}^{T} \end{bmatrix} \right] = \begin{bmatrix} P_{11} & P_{12} \\ P_{12}^{T} & P_{22} \end{bmatrix} \\ s.t. & P = \mathbb{E} \left[\begin{bmatrix} A & -\nu_{k}BL \\ \gamma_{k}KC & A - \bar{\nu}BL - \gamma_{k}KC \end{bmatrix} P \begin{bmatrix} A & -\nu_{k}BL \\ \gamma_{k}KC & A - \bar{\nu}BL - \gamma_{k}KC \end{bmatrix} P \begin{bmatrix} A & -\nu_{k}BL \\ \gamma_{k}KC & A - \bar{\nu}BL - \gamma_{k}KC \end{bmatrix}^{T} \right] + \begin{bmatrix} Q & 0 \\ 0 & \bar{\gamma}KRK^{T} \end{bmatrix} \\ P \ge 0 \end{aligned}$$

- Non convex problem even for = =1, i.e. classic LQG
- Classic and TCP-based LQG become convex when exploiting optimality conditions like uncorralation between estimate and error estimate $\mathbb{E}[x(x \hat{x})^T] = 0$
- For UDP-like problem non convex but unique solution using Homotopy and Degree Theory (DeKoning, Athans, Bernstain) (maybe using Sum-of-Squares?)
- Stability on and is coupled v v UDP-stable v^* v^*

Kalman filter always gives smallest estimate error regardless of controller L
 If controller L L_{LQ}, then performance improves if my estimate is "bad" !

Numerical example: TCP vs UDP

1

···· OPTIMAL LQG CONTROLLER

DEPARTMENT OF

UNIVERSITY OF PADOVA

Most common strategy:

 $g(u_{t-1}^{a}) = 0$ zero-input strategy (mathematically appealing) $g(u_{t-1}^{a}) = u_{t-1}^{a}$ hold-input strategy (most natural)

To hold or to zero control input:

 $J_{z}^{*} = \min_{L_{z}} E[\sum_{t=1}^{\infty} x_{t}^{T} W x_{t} + (u_{t}^{a})^{T} U u_{t}^{a}] \qquad J_{h}^{*} = \min_{L_{h}} E[\sum_{t=1}^{\infty} x_{t}^{T} W x_{t} + (u_{t}^{a})^{T} U u_{t}^{a}]$

Using cost-to-go function (dynamic programming)

$$J_z^* = E[x_0^T S_z x_0] \qquad \qquad J_h^* = E[x_0^T S_h x_0]$$

$$S_z = \Phi_z(S_z) \longleftarrow \text{Riccati-like equation} \longrightarrow S_h = \Phi_h(S_h)$$

$$L_z^* = f_z(S_z) \qquad \qquad L_h^* = f_h(S_h)$$

RMATION

UNIVERSITY OF PADOVA EXAMPLE: UNSTABLE SCALAR SYSTEM

A=1.2, U=0 (fastest convergence)

A=1.2, U=10 (small input)

Conjecture:

- Separation principle hold
- Optimal function $g(u_{t-1}^a) = \rho u_{t-1}$
- Design parameter L, l, ρ obtained via LQ-like optimal state feedback

INFORMATION ■ Smart sensors & smart actuators $u_{t-\tau}^{c}$ u_t^a Actuators Plant Sensors y_t $u_{t}^{a} = ?$ $x_{t+1} = Ax_t + Bu_t^a + w_t$ $y_t = Cx_t + \overline{v_t}$ classic classic LQ contoller static kalman Time-varying kalman no input packet loss \widehat{x}_{t} $\hat{x}_{t-\tau}$ Random delay Packet loss t_{I} $0y_{6}0$ $y_3|y_4|$ u_t^c \widehat{x}_{6} \widehat{x} ว \widehat{x} ۸ controller $y_{t-\tau}$ *y*1*y*2*y*3*y*4*y*5*y*6 0 $\hat{x}_7 = E[x_t | y_6, y_5, ..., y_1] = E[x_7 | \hat{x}_6]$

> <u>"Optimal LQG control across a packet-dropping link", Gupta, Spa</u>nos, Murray, Submitted to Sys.Cont.Lett. 05 "Estimation under controlled and uncontrolled communications in networked control systems", Xu, Hespanha, CDC 05

- Input packet loss more dangerous than measurement packet loss
- TCP-like protocols help controller design as compared to UDP-like (but harder for communication designer)
- If you can, place controller near actuator
- If you can, send estimate rather than raw measurement
- Zero-input control seems to give smaller closed loop state error (||x_t||) than hold-input (but higher input)
- Trade-off in terms of performance, buffer length, computational resources (matrix inversion) when random delay
- Can help comparing different communication protocols from a real-time application performance

Future work

- Multiple sensors:
 - data fusion, i.e. y₁,...,y_m arrive at different times
 - distributed estimation & consensus $E[x|y_1, ..., y_N] \stackrel{?}{=} E[x|\hat{x}_{s_1}, \hat{x}_{s_N}]$
- Multiple actuators
 - trade-off between distributed control & centralized coordination