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ABSTRACT | Networked control systems (NCSs) are spatially

distributed systems for which the communication between

sensors, actuators, and controllers is supported by a shared

communication network. We review several recent results on

estimation, analysis, and controller synthesis for NCSs. The

results surveyed address channel limitations in terms of

packet-rates, sampling, network delay, and packet dropouts.

The results are presented in a tutorial fashion, comparing

alternative methodologies.
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I . INTRODUCTION

Network control systems (NCSs) are spatially distributed

systems in which the communication between sensors,

actuators, and controllers occurs through a shared band-

limited digital communication network, as shown in

Fig. 1.
The use of a multipurpose shared network to connect

spatially distributed elements results in flexible architec-

tures and generally reduces installation and maintenance

costs. Consequently, NCSs have been finding application

in a broad range of areas such as mobile sensor networks

[52], remote surgery [33], haptics collaboration over the

Internet [17], [19], [59], and automated highway systems

and unmanned aerial vehicles [57], [58]. However, the use
of a shared networkVin contrast to using several

dedicated independent connectionsVintroduces new
challenges, and Murray et al. [39] identify control over
networks as one of the key future directions for control.

NCSs lie at the intersection of control and communi-

cation theories. Traditionally, control theory focuses on

the study of interconnected dynamical systems linked

through Bideal channels,[ whereas communication theory

studies the transmission of information over Bimperfect

channels.[ A combination of these two frameworks is
needed to model NCSs. This survey is primarily written

from a controls perspective and attempts to systematically

address several key issues that make NCSs distinct from

other control systems.

a) Band-Limited Channels: Any communication net-

work can only carry a finite amount of information per unit

of time. In many applications, this limitation poses

significant constraints on the operation of NCSs. Examples
of NCSs that are afflicted by severe communication

limitations include unmanned air vehicles (UAVs), due

to stealth requirements, power-starved vehicles such as

planetary rovers, long-endurance energy-limited systems

such as sensor networks, underwater vehicles, and large

arrays of micro-actuators and sensors.

Inspired by Shannon’s results on the maximum bit
rate that a communication channel can carry reliably,

Fig. 1. General NCS architecture.
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a significant research effort has been devoted to the
problem of determining the minimum bit rate that is

needed to stabilize a linear system through feedback

over a finite capacity channel [4], [9], [18], [41], [66],

[71] (c.f., the survey [67] in this Special Issue). Recently,

some progress has also been made in solving the finite-

capacity stabilization problem for nonlinear systems

[24], [42] and for linear systems with unknown

parameters [64]. In [56], stability conditions are derived
based on anytime information, which quantifies the

Btime value[ of data bits. Performance limitations of

feedback over finite capacity memory-less channels are

addressed in [31], which obtains a general extension of

Bode’s integral inequality.

Most of the results discussed in this survey are

motivated by the observation that, in most digital net-

works, data is transmitted in atomic units called packets
and sending a single bit or several hundred bits consumes

the same amount of network resources. For example, every

fixed-size asynchronous transfer mode (ATM) cell consists

of a 40-bit header and a 384-bit data field, an Ethernet

IEEE 802.3 frame has a 112- or 176-bit header and a data

field that must be at least 368-bit long, and each Bluetooth

time slot carries 625 bits leaving at least 499 bits for data

payload [54], [62]. This observation leads to an alternative
view of band-limited channels, in which a channel can

transmit a finite number of packets per unit of time

(packet rate), but each packet can carry a large number of

bits (possibly infinitely many). Although from Shannon’s

point of view these channels have infinite capacity, the

closed-loop system stability and performance is still

limited by the network. This perspective is prevalent in

most of the results that we discuss in this survey, which
generally neglect the quantization effects imposed by

digital networks.

b) Sampling and Delay: To transmit a continuous-

time signal over a network, the signal must be sampled,

encoded in a digital format, transmitted over the network,

and finally the data must be decoded at the receiver side.

This process is significantly different from the usual

periodic sampling in digital control. The overall delay
between sampling and eventual decoding at the receiver

can be highly variable because both the network access

delays (i.e., the time it takes for a shared network to

accept data) and the transmission delays (i.e., the time

during which data are in transit inside the network)

depend on highly variable network conditions such as

congestion and channel quality. In some NCSs, the data

transmitted are time stamped, which means that the
receiver may have an estimate of the delay’s duration and

take appropriate corrective action. A significant number

of results have attempted to characterize a maximum

upper bound on the sampling interval for which stability

can be guaranteed. These results implicitly attempt to

minimize the packet rate that is needed to stabilize a

system through feedback.

c) Packet Dropout: Another significant difference

between NCSs and standard digital control is the

possibility that data may be lost while in transit through

the network. Typically, packet dropouts result from
transmission errors in physical network links (which is

far more common in wireless than in wired networks) or

from buffer overflows due to congestion. Long transmis-

sion delays sometimes result in packet reordering, which

essentially amounts to a packet dropout if the receiver

discards Boutdated[ arrivals. Reliable transmission proto-

cols, such as TCP, guarantee the eventual delivery of

packets. However, these protocols are not appropriate for
NCSs since the retransmission of old data is generally not

very useful.

d) Systems Architecture: Fig. 1 shows the general

architecture of an NCS. In this figure, encoder blocks map

measurements into streams of Bsymbols[ that can be

transmitted across the network. Encoders serve two pur-

poses: they decide when to sample a continuous-time signal

for transmission and what to send through the network.
Conversely, decoder blocks perform the task of mapping

the streams of symbols received from the network into

continuous actuation signals. One could also include in

Fig. 1 encoding/decoding blocks to mediate the controllers’

access to the network. We do not explicitly represent these

blocks because the boundaries between a digital controller

and encoder/decoder blocks are often blurry.

Most of the research on NCSs considers structures
simpler than the general one depicted in Fig. 1. For ex-

ample, some controllers may be collocated (and therefore

can communicate directly) with the corresponding actu-

ators. It is also often common to consider a single feedback

loop as in Fig. 2. Although considerably simpler than the

system shown in Fig. 1, this architecture still captures

many important characteristics of NCSs such as bandwidth

limitations, variable communication delays, and packet
dropouts.

Paper Organization: Section II addresses the problem of

state estimation over imperfect communication channels.

Fig. 2. Single-loop NCS.
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Section III reviews a collection of results to determine the
closed-loop stability of NCSs in the presence of network

sampling, delays, and packet dropouts. Section IV ad-

dresses control synthesis methods for NCSs. To provide a

unified view, we formulate all the results surveyed with

consistent terminology and notation. Consequently, the

statements of the theorems found in this survey often

differ from the ones in the original papers. In some cases,

we also combine results from multiple papers into single
theorems.

Notation and Basic Definitions: Throughout the paper,

R stands for real numbers and N for nonnegative inte-

gers. For a given matrix A 2 Rn�n and vector x 2 Rn,

kxk :¼
ffiffiffiffiffiffi
x0x

p
denotes the Euclidean norm of x, kAk the

corresponding induced matrix norm, and �ðAÞ the set of

eigenvalues of A. Random variables are generally denoted
in boldface. For a random variable y, E½y
 stands for the

expectation of y [53]. For deterministic systems we use

standard notions of stability, e.g., from [21]. General

stability notions for stochastic systems can be found in

[22], and our definitions are compatible with [10]. We say

that a random process xk, k 2 N is almost surely stable if

Prðsupk2N kxkk G 1Þ ¼ 1; that it is stable in the mth
moment if supk2N Ekxkkm G 1; that it is asymptotically
stable in the mth moment if limk!1 Ekxkkm ¼ 0; and that it

is exponentially stable in the mth moment if there exist

constants �, � 9 0 such that Ekxkkm G �Ekx0kme�k,

8k 2 N. When m ¼ 2, we simply say that the random

process is (asymptotically/exponentially) mean-square
stable.

II . ESTIMATION OVER LOSSY
NETWORKS

This section addresses the problem of estimating the state

of a remote plant based on measurements carried through a

lossy network. State estimation over networks is important

in applications such as remote sensing, space exploration,

and sensor networks. It is also a crucial component of

certainty equivalence NCS controllers that construct
control signals based on state estimates of a remote plant.

In several NCS scenarios, certainty equivalence controllers

are not optimal but are still of a great practical interest due
to the difficulty in designing optimal controllers.

In this and the subsequent sections, we assume that the

network can be viewed as a channel that can carry real

numbers without distortion but that some of the messages

can be lost. This is appropriate when the number of bits in

each data packet is sufficiently large so that quantization

effects can be ignored, but packet dropouts cannot.

We consider two scenarios for state estimation over
networks. In the one depicted in Fig. 3(a), every raw

sensor measurement yk is sent to the remote estimator via

the network, but may not arrive there if there is a packet

dropout [32], [60], [61]. Alternatively, in the scenario

shown in Fig. 3(b), the raw sensor measurements may be

processed locally and at each time instant a decision is

made on whether or not it is worth it to send data to the

remote estimator [72], [74], [75]. This option is motivated
by the desire to reduce network traffic and to make the

estimate robust with respect to packet dropouts.

We restrict out attention to linear time-invariant

(LTI) plants with Gaussian measurement noise and

disturbance

xkþ1 ¼ Axkþwk;

yk ¼ Cxkþvk; 8k2N;xk;wk 2Rn;yk;vk2Rp (1)

where the initial state x0 is zero-mean Gaussian with

covariance matrix �, and the zero-mean Gaussian white

noises wk and vk are mutually independent with covari-

ance matrices Rw � 0 and Rv 9 0, respectively. It is

assumed that ðC; AÞ is detectable, and ðA; RwÞ is stabilizable.

A. Optimal Estimation for Bernoulli Dropouts
Consider the architecture in Fig. 3(a) and a lossy

channel modeled by a stochastic process Qk 2 f0; 1g,

8k 2 N with the understanding that Qk ¼ 1 signifies that

the measurement yk sent at time k reaches its destination

and that Qk ¼ 0 when it does not. It is generally assumed

that the dropout process Qk is statistically independent of

x0, wk, and vk.

Fig. 3. Scenarios for state estimation over a network. (a) Raw sensor measurements are sent to a remote estimator. (b) Measurements are

processed locally before transmission.
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The optimal estimate of xk, k 2 N given all the data
fQ‘; 8‘ � k  1g [ fy‘ : Q‘ ¼ 1; 8‘ � k  1g that is known

to the remote estimator at time k is given by

x̂kjk1 ¼ E½xkjQ‘; 8‘ � k  1;

y‘; 8‘ � k  1 s:t: Q‘ ¼ 1
: (2)

This estimate can be computed recursively using the

following time-varying Kalman filter (TVKF) [20]:

x̂0j1 ¼ 0 (3a)

x̂kjk ¼ x̂kjk1þQkFkðykCx̂kjk1Þ; 8k 2 N (3b)

x̂kþ1jk ¼ Ax̂kjk (3c)

with the gain matrix Fk calculated recursively as follows:

P0 ¼�

Fk ¼ PkC0ðCPkC0 þ RvÞ1; 8k 2 N

Pkþ1 ¼ APkA0 þ Rw  AFkðCPkC0 þ RvÞF0
kA0:

Each Pk corresponds to the estimation error covariance

matrix

Pk ¼ E ðxk  x̂kjk1Þðxk  x̂kjk1Þ0
� �

; 8k 2 N:

Sinopoli et al. [60] study the performance of this Kalman

filter when Qk is a Bernoulli process with probability of

dropout ðQk ¼ 0Þ equal to p 2 ½0; 1Þ. They show the

existence of a critical value pc for the dropout rate p, above

which the estimation error covariance becomes unbounded.

Theorem 1 [60]: Assume that the dropout process

Qk 2 f0; 1g is Bernoulli with dropout probability

p :¼ Pr½Qk ¼ 0
 2 ½0; 1Þ; 8k 2 N:

There exists a critical value pc 2 ð0; 1
 with the property

that:

1) for every p � pc, there is some P0 � 0 for which
E½Pk
, k 2 N is unbounded along solutions to the

TVKF (3);

2) for every p G pc and every P0 � 0, E½Pk
, k 2 N

remains uniformly bounded along solutions to the

TVKF (3).

Furthermore, the critical value pc satisfies p � pc � �p,
where the upper bound is given by

�p ¼ 1

max �ðAÞj jf gð Þ2 (4)

and the lower bound is given by the solution to the
following (quasi-convex) optimization problem:

p¼max p � 0 : �pðY; ZÞ 9 0; 0 � Y � I for some Y; Z
� �

where

�pðY; ZÞ

¼
Y

ffiffiffiffiffiffiffiffiffi
1p

p ðYAþZCÞ ffiffiffi
p

p
YAffiffiffiffiffiffiffiffiffi

1p
p ðA0YþC0Z0Þ Y 0ffiffiffi

p
p

A0Y 0 Y

2
64

3
75;

8Y; Z 2 Rn�n:

h
In some special cases (such as when the matrix C is

invertible), the upper bound in (4) is tight in the sense that

pc ¼ �p, but in general this may not be the case.

Liu and Goldsmith [29] consider a setting similar to
that of [60] but extend the results to allow partial obs-

ervation losses. In [29], each yk is split into two elements

that are encoded separately and sent over different

(wireless) channels in which packets may be dropped

independently.

B. Multisensor Plants
Several variations of the problem formulated previous-

ly have been considered. Matveev and Savkin [32] consider

N sensors, each independently sending its measurements

to the estimator with some delay. In practice, this

corresponds to the following plant model:

xkþ1 ¼ Axk þwk;

y�;k ¼ C�xk þ v�;k; � 2 f1; � � � ;Ng; 8k 2 N (5)

where y�;k denotes the measurement collected by sensor �
at time k. Assuming that the measurement y�;‘ suffers a

random delay of T�ð‘Þ, the optimal estimate of xk that the

receiver can construct at time k is given by

x̂k ¼ E xkjQ�;‘; 8‘ � k  T�ð‘Þ;
�

y�;‘; 8‘ � k  T�ð‘Þ s:t: Q�;‘ ¼ 1
�
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where Q�;‘ ¼ 1 if y�;‘ reaches its destination, and Q�;‘ ¼ 0
otherwise. Matveev and Savkin [32] derive a recursive

Kalman filter and provide conditions under which the

estimation error process is almost surely stable. These

conditions are given in terms of the observability of xk for

specific realizations of the process Qk.

Gupta et al. [14] also consider the state estimation of

the plant (5), but they impose the constraint that only one

sensor can use the channel at each time step. They develop
a stochastic sensor selection algorithm that decides how to

schedule the sensors’ access to the network to minimize

the error covariance. They also compute upper and lower

bounds on the achievable error covariance matrices.

C. Reduced-Computation Estimation
Even though the plant (1) is time invariant, the matrix

gain Fk and the covariance matrix Pk of the optimal TVKF
(2) do not converge to steady-state values as k ! 1.

Moreover, these matrices cannot be computed offline

because they depend on the whole dropout history

fQ0; Q1; . . . ; Qkg. Smith and Seiler [61] avoid this difficulty

by precomputing a finite set of gains to be selected

according to the dropout history in the last � time steps.

The resulting estimator is called a finite loss history

estimator (FLHE) and has the following form:

x̂0j1 ¼ 0

x̂kjk ¼ x̂kjk1 þ FHk
ðyk  Cx̂kjk1Þ; 8k 2 N

x̂kþ1jk ¼ Ax̂kjk

where Hk is an integer from 1 to 2� that encodes the

dropout history fQk; Qk1; . . . ; Qk�þ1g in the last � time

steps and F1; F2; . . . ; F2� are appropriately selected matrix

gains with F	k
¼ 0 whenever Qk ¼ 0. Smith and Seiler

[61] model the evolution of Hk as a Markov chain, which

allows them to consider correlated (bursty) dropouts and

is an improvement over the Bernoulli drop model. For

this model, they provide an optimal synthesis method for
the gains F1; F2; . . . ; F2� and conditions for stability of the

error process in terms of the convergence of a Riccati

iteration. Although the FLHE is not optimal, simulations

show that the variance of the estimation error is

comparable to that of the optimal TVKF when � is

sufficiently large.

D. Estimation With Local Computation
The encoder-estimator scheme in Fig. 3(b) is moti-

vated by the growing number of smart sensors with

embedded processing units that are capable of local

computation. In this context, Xu and Hespanha [74]

investigate the benefits of preprocessing the measure-

ments before transmission to the network. For the LTI

plant (1), the smart sensor computes locally an optimal

state estimate ~xkjk ¼ E½xkjy‘; ‘ � k
 using the following
stationary Kalman filter:

~x0j0 ¼ 0;

~xkþ1jkþ1 ¼ A~xkjk þ Fðykþ1  CA~xkjkÞ; 8k 2 N (6)

where F :¼ PC0ðCPC0 þ RvÞ1 and P 9 0 is the solution to

the discrete-time Algebraic Riccati equation

P ¼ APA0 þ Rw  APC0ðCPC0 þ RvÞ1
CPA0:

The smart sensor then transmits the local estimates ~xkjk
(instead of the raw measurements yk), which are used

by the remote estimator to compute the optimal esti-

mate x̂kjk1 of xk, k 2 N given all the data fQ‘; 8‘ �
k  1g [ f~x‘j‘ : Q‘ ¼ 1; 8‘ � k  1g successfully received

up to time k

x̂kjk1 ¼ E½xkjQ‘; 8‘ � k  1; ~x‘j‘; 8‘ � k  1 s:t: Q‘ ¼ 1
:

This remote estimate can be computed recursively by

x̂0j1 ¼ 0 (7a)

x̂kjk ¼ð1  QkÞx̂kjk1 þ Qk~xkjk; k 2 N (7b)

x̂kþ1jk ¼ Ax̂kjk: (7c)

The main advantage of this solution is that each message
~xkjk that successfully reaches the remote estimator encodes

all the relevant information that can be extracted from
every raw measurement collected up to time k. In general,

this permits the stability of the error process for larger

drop rates p than those permitted by the architecture in

Fig. 3(a), in which the raw measurements are sent over the

network.

Theorem 2 [74]: Assume that Qk is a Bernoulli process

with probability of dropout p 2 ½0; 1Þ. For every m � 2 and

p G
1

max �ðAÞj jf gð Þm (8)

the (remote) estimation error ek :¼ xk  x̂kjk1 computed

by (7) is stable in the mth moment. h
The bound in (8) is tight in the sense that the

estimation error is not stable in the mth moment for every

p 9 1=ðmaxfj�ðAÞjgÞm
. The critical value in (8) for mean-

square stability ðm ¼ 2Þ matches the upper bound in (4)

that is only known to be tight when the matrix C is
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invertible. Theorem 2 shows that this critical value can be
achieved even when C is not full rank, as long as one uses

the architecture in Fig. 3(b). This is obtained at the

expense of shifting some computation to the smart sensor,

which now needs an embedded processor. Moreover, each

network packet now carries ~xkjk instead of the raw

measurement yk, which will generally require larger

packets.

E. Estimation With Controlled Communication
To actively reduce network traffic, sensor measure-

ments may not be sent to the remote estimator at every

time step. This is known as controlled communication and

has been investigated by Yook et al. [75] and Xu and

Hespanha [73], [74] to explore the tradeoff between

communication and estimation performance. It is also

related to the concept of Lebesgue sampling introduced by
Åström and Bernhardsson [1]. Controlled communication

requires local processing at the sensor so we will focus our

attention on the architecture in Fig. 3(b).

Yook et al. [75] and Xu and Hespanha [73], [74]

construct within the smart sensor the stationary Kalman

filter (6) as well as a copy of the remote estimator (7). This

implicitly assumes an erasure channel for which the smart

sensor receives immediate feedback regarding the success
of the transmission, which is required to be able to use Qk

in implementing (7). To decide whether or not the local

estimate ~xkjk should be sent to the network, the smart

sensor compares ~xkjk with the (local copy) of the remote

estimate x̂kjk1. Xu and Hespanha [74] make this decision

stochastically, by selecting

Qk ¼
1; with prob. 	kð~ekÞ
0; with prob. 1  	kð~ekÞ

�
(9)

where the random variable Qk is now determined by a

random draw inside the smart sensor and specifies whether

or not ~xkjk is sent to the remote estimator. Its distribution

is a function 	kð�Þ 2 ½0; 1
 of the difference ~ek :¼ ~xkjk
x̂kjk1 between the local and the remote estimators. The

function 	kð�Þ should be chosen so that it takes values

close to one when the error ~ek is large because this is an

indication that the remote state estimate can be signifi-

cantly improved by sending ~xkjk.

When the network introduces dropouts with probabil-

ity p 2 ½0; 1Þ, independent of the plant state, one should

replace (9) by

Qk ¼
1; with prob. ð1  pÞ	kð~ekÞ
0; with prob. 1  ð1  pÞ	kð~ekÞ

�
(10)

to account for the fact that a message only reaches the

remote estimator if: 1) the smart sensor decides to send it

[which occurs with probability 	kð~ekÞ] and 2) the packet
that carries the message is not dropped by the network,

which happens with probability 1  p.

Unlike the Buncontrolled[ Bernoulli dropout process

discussed in the previous sections, neither the controlled

process Qk in (9) nor the mixed controlled/uncontrolled

process Qk in (10) is independent of the plant’s state xk. In

fact, combining (1), (6), (7), and (10), we conclude that

the difference ~ek :¼ ~xkjk  x̂kjk1 between the local and
the remote estimators evolves according to

~ekþ1 ¼
dk; with prob. ð1  pÞ	kð~ekÞ
A~ek þ dk; with prob. 1  ð1  pÞ	kð~ekÞ

�

where dk :¼ FCAðxk  ~xkjkÞ þ Fwk þ vkþ1 is a zero-mean

Gaussian process. The following discrete-time result is

adapted from those in [74] for continuous-time processes.

Theorem 3: Assume that Qk is generated by (10) with
	kðeÞ ! 1 as kek ! 1. For every m � 2 and drop

probability p satisfying (8), the (remote) estimation error

ek :¼ xk  x̂kjk1 computed by (7) is stable in the mth

moment. h
Xu and Hespanha [73] consider the problem of optimal

controlled communication for a network without packet

dropouts. They make the simplifying assumption that the

smart sensor can measure the whole state xk; therefore, it
does not need to build a local estimate ~xkjk. The objective is

to find the optimal Bcommunication policy[ that mini-

mizes the following long-term average cost:

J :¼ lim
K!1

1

K
E
XK1

k¼0

kekþ1k2 þ �Qk

" #
� 9 0 (11)

which penalizes a linear combination of the remote

estimation error variance E½kekþ1k2
 and the average

packet sending rate E½Qk
. In this context, a communication
policy should be understood as a rule that selects a

distribution for the Qk based on all the measurements

x1;x2; . . . ;xk available to the smart sensor, i.e., a family of

functions �	kð�Þ for which

Qk ¼ 1; with prob. �	kðx1;x2; . . . ;xkÞ
0; with prob. �	kðx1;x2; . . . ;xkÞ:

�

Finding the optimal �	kð�Þ that minimize (11) can be

done using dynamic programming and value iteration.

The optimal policy turns out to be stationary and it

depends on the measurements only through the local
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estimation error ~ek. In particular, it can be expressed as
in (9), but with

	kðeÞ ¼ 0 e 2 

1 otherwise,

�
8k 2 N; e 2 Rn

for an appropriately chosen set 
 � Rn, which contains
the origin. This corresponds to a deterministic controlled

communication scheme, in which data communication is

inhibited while ~ek remains inside 
 and is triggered when

the error exits this set. Xu and Hespanha [73] consider a

more general case of networks that introduce a � -step

delay, but this does not significantly change the nature of

the results.

III . STABILITY OF NCS S WITH
SAMPLING, DELAY, AND
PACKET DROPOUTS

This section addresses the stability of feedback loops that

are closed over a network. This problem is motivated by

scenarios in which sensors, controllers, and actuators are

not colocated and use a shared network to communicate.
As before, we ignore quantization and focus our attention

on the effects of data sampling, network delay, and packet

dropouts on the stability of the resulting closed-loop

NCSs.

A. Sampling and Delay
The one-channel feedback NCS in Fig. 4 has been

commonly used to investigate the effects of sampling and
delay in the stability of NCSs. The LTI system encapsulates

a linear time-invariant plant/controller pair modeled by

the following continuous-time system:

_x ¼ Ax þ Bŷ; y ¼ Cx: (12)

This one-channel feedback NCS can capture several NCS

configurations. The signal y can be regarded as a vector of

sensor measurements and ŷ as the input to a continuous-

time controller collocated with the actuators, as in
Fig. 5(a) [36], [57]. Alternatively, ŷ can be viewed as the

input to the actuators and y as the desired control signal

computed by a controller collocated with the sensors, as in

Fig. 5(b). In either case, x would include the states of the

plant and the controller. The block diagram in Fig. 4 also

captures the case of a static controller that is not collocated

with the sensors nor with the actuators as in Fig. 5(c),

because a memoryless controller could be moved next to
the actuators, without affecting the stability of the closed

loop [3], [81].

In the one-channel feedback NCS in Fig. 4, the signal

yðtÞ is sampled at times ftk : k 2 Ng and the samples

yk :¼ yðtkÞ, 8k 2 N are sent through the network. In a

lossless network, we have

ŷk ¼ yk; 8k 2 N (13)

but the samples only arrive at the destination after a

(possibly variable) delay of �k � 0. At these times ŷðtÞ is

updated, leading to

ŷðtÞ ¼ ŷk1; t 2 ½tk; tk þ �kÞ
ŷk; t 2 ½tk þ �k; tkþ1Þ

�
(14)

where we assume that the network delays are always

smaller than one sampling interval, i.e., that tk þ �k G
tkþ1, 8k 2 N (cf., Fig. 6).

Defining xk :¼ xðtkÞ, 8k 2 N and applying the

variation of constants formula to (12) and (14) we con-

clude that

xkþ1 ¼ eAðtkþ1tkÞxk þ eAðtkþ1tk�kÞ�ð�kÞBŷk1

þ �ðtkþ1  tk  �kÞBŷk (15)

where �ðsÞ :¼
R s

0
eAzdz, 8s 2 R. To analyze this NCS, one

can def ine an augmented discrete- t ime state

z0k :¼ ½xðtkÞ0 ŷ0k1
, 8k 2 N and conclude from (13) and
(15) that it evolves according to

zkþ1 ¼ ðtkþ1  tk; �kÞzk; 8k 2 N (16)

where

ða; bÞ :¼ eAa þ �ða  bÞBC eAðabÞ�ðbÞB
C 0

� �
; 8a; b2R:

Fig. 4. One-channel feedback NCS with LTI plant/controller.
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In the absence of delay (i.e., when �k ¼ 0, 8k 2 N), the

state zk does not need to include ŷk1; therefore, the

function ð�Þ in (16) can simply be defined by

ða; 0Þ :¼ eAa þ �ðaÞBC; 8a 9 0: (17)

When the plant (12) is open-loop unstable, (16) will

generally be unstable if the interval between sampling

times becomes very large. In view of this, significant work
has been devoted to finding upper bounds on tkþ1  tk,

8k 2 N for which stability can be guaranteed. These upper

bounds are sometimes called the maximum allowable
transfer interval (MATI) [69].

Delays longer than one sampling interval may result in

more than one ŷk (or none) arriving during a single

sampling interval, making the derivation of recursive

formulas like (16) difficult. All results reviewed in this
section are based on a reduction of the NCS to some form

of discrete-time system such as (16); for simplicity, we

will therefore implicitly assume delays smaller than one

sampling interval. This restriction will be lifted in

Section III-C.

Periodic Sampling and Constant Delay: When yðtÞ is

sampled periodically and the delay is constant, the

discrete-time system (16) is time invariant and it is

straightforward to establish its stability.

Theorem 4 [3]: Assuming that there exist constants
h 9 � � 0 such that

tkþ1  tk ¼ h; �k ¼ �; 8k 2 N

the NCS (12)–(14) in Fig. 4 is exponentially stable if and

only if ðh; �Þ is Schur (i.e., all its eigenvalues have
magnitude strictly less than one). h

Remark 1: Defining the alternative augmented state

�z0k :¼ ½xðtk þ �kÞ0 xðtkÞ0
, 8k 2 N we obtain

�zkþ1 ¼ �ðtkþ1  tk  �k; �kþ1Þ�zk; 8k 2 N;

�ða; bÞ :¼ eAðaþbÞ �ða þ bÞBC

eAa �ðaÞBC

" #
; 8a; b 2 R (18)

from which stability of the NCS can also be deduced.

Zhang et al. [81] use results from [2] on the stability of

nonlinear hybrid systems to conclude that Schurness of
�ðh; �Þ is a sufficient condition for stability of the NCS in

the time-invariant case. From (18), one can see that this

condition is also necessary. h
While some network protocols guarantee constant

delay, such as the Controller Area Network (CAN)
protocol [23], most protocols introduce delays that can

vary significantly from message to message. Variable

delays can be equalized by introducing a buffer at the

receiver, where data packets can be held so that all packets

appear to have the same delay from the perspective of the

NCS [30]. However, the downside of delay equalization is

that all packets will appear to have a delay as large as the

worst case delay that the network can introduce.

Periodic Sampling and Variable Delay: Suppose that the

sampling intervals are constant and equal to h and the

Fig. 5. NCS control architectures captured by one-channel feedback NCS in Fig. 4.

Fig. 6. Piecewise constant signal ŷðtÞ defined by (14).
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delay takes values equal to �h=N where � 2 0; 1; � � � ;Dmax

and Dmax � N 2 N. This situation happens when compu-

tation and transmission delays are negligible and access

delays serve as the main source of delays in NCS [25]–[27].

Under these assumptions the closed-loop system (16) can

be written as a discrete-time switched system with

Dmax þ 1 modes as follows:

zkþ1 ¼ A�k
zk; 8k 2 N

where the switching signal �k takes values from

f0; 1; � � �Dmaxg at each time step and, when �k ¼ �,

A� :¼  h; �
h

N

� �
� 2 f0; 1; � � �Dmaxg:

Lin et al. [26] assume that for the case of no delay or

small delays ð� � N0Þ, the corresponding state matrix A�
is Schur stable, while for the case of large delay ð� 9 N0Þ,
A� is not Schur stable. Using average dwell time results for

discrete switched systems [79] provides conditions such

that NCS stability is guaranteed. Also, the authors

consider robust disturbance attenuation analysis for this

class of NCSs.

Remark 2: One packet dropout can be modeled as an
extra mode where � ¼ N. The authors extended the results

for the case of consecutive packet dropouts in [25].

Variable Sampling and Delay: When the network delay is

not constant or when the signal yðtÞ is sampled in a

nonperiodic fashion, (16) is not time invariant and one

needs a Lyapunov-based argument to prove its stability.

The following result is adapted from [80]1 and expresses a
sufficient condition for VðzÞ :¼ z0Pz to be a Lyapunov

function for (16), from which stability of the NCS can be

deduced.

Theorem 5: Assume that there exist constants hmin, hmax,

�min, �max such that

0 � hmin � tkþ1  tk � hmax;

0 � �min � �k � �max; 8k 2 R:

The NCS (12)–(14) in Fig. 4 is exponentially stable if

there exists a symmetric matrix P such that

P 9 0; ðh; �Þ0Pðh; �Þ  P G 0;

8h 2 ½hmin; hmax
; � 2 ½�min; �max
: (19)

h
From a numerical perspective, it is generally not

simple to find a matrix P that satisfies (19) for all values of

h and � in the given intervals. However, testing the

existence of a matrix P that satisfies (19) for values of h
and � on a finite grid leads to a finite set of linear matrix

inequalities (LMIs) that is easy to solve. Zhang and

Branicky [80] propose a randomized algorithm to find the

largest value of hmax for which stability can be guaranteed
when hmin ¼ �min ¼ �max ¼ 0.

Model-Based Controller: Montestruque and Antsaklis

[34]–[38] consider the model-based one-channel feedback

NCS in Fig. 7, in which the signal y transmitted across the

network is the state of an LTI plant

_xP ¼ APxP þ BPu; y ¼ xP (20)

whose input u is generated by an estimator-based

controller collocated with the actuators. In general, an

exact model of the plant is not available and therefore the

controller must construct an estimate x̂P of xP based on the

following approximate plant model:

x̂P ¼ ÂPx̂P þ B̂Pu (21)

which is instantaneously updated at the sampling times

ftk : k 2 Ng using the true value of xP coming from the

network. The key difference between the NCSs in Figs. 4

and 7 is that in the former the data coming from the

network is held constant between sampling times;

whereas, in the latter this data is used to instantaneously

update the state of the controller. Assuming that the

1A special case of Theorem 5 with hmin ¼ �min ¼ �max ¼ 0 and the
matrix ð�Þ given by (17) can be found in [80].

Fig. 7. State feedback model-based NCS.
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network delay is negligible, the controller updates its state
estimate according to

x̂PðtkÞ ¼ yðtkÞ ¼ xPðtkÞ; 8k 2 N: (22)

It then uses a certainty equivalence control law of the form

u ¼ Kx̂P (23)

with the matrix K chosen so that ÂP þ B̂PK is Hurwitz

(i.e., all its eigenvalues have strictly negative real part).

Note that the matrices in the plant model (20) and the
estimator model (21) generally do not match due to

parametric uncertainty.

Because of (22), we conclude that the state estimation

error e :¼ xP  x̂P is reset to zero at sampling times and

therefore its dynamics are defined by

_e ¼ ð~AP þ ~BPKÞxP þ ðÂP  ~BPKÞe; eðtkÞ ¼ 0

where the matrices ~A :¼ AP  ÂP and ~BP :¼ BP  B̂P

represent the difference between the actual plant and

the model used to build the estimator. Defining

z0 :¼ ½x0P e0
, we conclude that the overall closed loop

evolves according to the following impulsive system:

_z ¼ 	z; zðtkÞ0 ¼ x0P tk
� �

0
� �

(24)

where xPðtk Þ denotes the limit from below of xPð�Þ as

� " tk and

	 :¼ AP þ BPK BPK
~AP þ ~BPK AP  ~BPK

� �
: (25)

Defining the discrete-time state zk :¼ zðtkÞ, 8k 2 N, we

obtain the following model for its evolution:

zkþ1 ¼Mðtkþ1  tkÞzk; 8k 2 N;

MðaÞ :¼
I 0

0 0

� �
e	a I 0

0 0

� �
; 8a 9 0:

The following result is adapted from [36] and follows

from standard results on the stability of discrete-time

systems.

Theorem 6: The following two results hold for the NCS
(20)–(23) in Fig. 7.

1) When there exists a constant h such that

tkþ1  tk ¼ h, 8k 2 N, the NCS is globally expo-

nentially stable if and only if MðhÞ is Schur.

2) When there exist constants hmin and hmax such that

0 � hmin � tkþ1  tk � hmax, 8k 2 N, the NCS is

exponentially stable if there exists a symmetric

matrix P such that

P 9 0; MðhÞPMðhÞ  P G 0;
8h 2 ½hmin; hmax
:

h
For periodic sampling, Montestruque and Antsaklis

[34]–[36] use a similar approach to determine the max-

imum value of h :¼ tk  tk1, 8k 2 N for which the NCS

is stable, both under state and output feedback. The same

authors [37], [38] also consider (nonconstant) stochastic2

sampling intervals hk :¼ tk  tk1, 8k 2 N. The follow-

ing result addresses the case of independent identically

distributed (i.i.d.) hk.

Theorem 7 [38]: Assume that the sampling intervals

hk :¼ tk  tk1, 8k 2 N are i.i.d. random variables and

that the following two conditions hold:

E e2�maxð	Þhk  1
� �1=2
� �

G 1;

E �max MðhkÞð Þ½ 
 G 1; 8k 2 N;

where the matrix 	 is defined by (25) and �maxð	Þ
denotes its largest singular value. Then, the NCS (20)–

(23) in Fig. 7 is almost surely stable in the sense that for
every initial condition zðt0Þ to (24) and for every  9 0, we

have that

lim
��!1

Pr sup
k���

Ztkþ1

tk

zð�Þk k2d�

0
@

1
A

1=2

9 

8><
>:

9>=
>; ¼ 0:

h
Montestruque and Antsaklis [38] further generalize

these results to sampling intervals driven by Markov

chains, which can be used to model correlated intersam-

pling intervals hk.

2To emphasize the fact that the sampling times are now random
variables, we represent them in boldface type.
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General Nonlinear Case: Consider a nonlinear plant and
remote controller with exogenous disturbances of the

following form:

_xP ¼ fPðxP; û;wÞ; y ¼ gPðxPÞ (26a)

_xC ¼ fCðxC; ŷ;wÞ; u ¼ gCðxCÞ (26b)

where xP and xC are the states of the plant and the

controller, û and y the plant’s input and output, ŷ and u
are the controller’s input and output, and w is an

exogenous disturbance. The plant and the controller are

connected through a two-channel feedback NCS as in Fig. 2.

Ignoring network delay, between the sampling times

ftk : k 2 Ng both û and ŷ are held constant

ûðtÞ ¼ û tþk
� �

; ŷðtÞ ¼ ŷ tþk
� �

;
8t 2 ðtk; tkþ1
; k 2 N

(27)

where uðtþk Þ and yðtþk Þ denote the limit from above of uð�Þ
and yð�Þ, respectively, as � # tk. The signals uðtÞ and yðtÞ
are not necessarily both sampled and sent to the network

at every sampling time and therefore

û tþk
� �

¼
uðtkÞ; u sampled at time tk

ûðtkÞ; u not sampled at time tk

�

ŷ tþk
� �

¼
yðtkÞ; y sampled at time tk

ŷðtkÞ; y not sampled at time tk

�
8k 2 N: (28)

The sampling model (28) can be written compactly as

û tþk
� �

¼ uðtkÞ þ hu k; eðtkÞð Þ
ŷ tþk
� �

¼ yðtkÞ þ hy k; eðtkÞð Þ; 8k 2 N (29)

where

e ¼ ey

eu

� �
:¼ ŷ  y

û  u

� �
2 Rne

and

huðk; eÞ :¼
0; u sampled at time tk

eu; u not sampled at time tk

�

hyðk; eÞ :¼
0; y sampled at time tk

ey; y not sampled at time tk

�
8k 2 N; e 2 Rne :

These definitions allow us to write the following Breset
map[ for the error e at the sampling times

e tþk
� �

¼
ŷ tþk
� �

 yðtkÞ
û tþk
� �

 uðtkÞ

" #
¼ huðk; eÞ

hyðk; eÞ

� �
(30)

where we used (29) and the fact that both y and u are

continuous functions of time. The fact that the neither the
state of the process nor the state of the controller appear

in (30) will be very convenient for the analysis. It is also

interesting to observe that the error reset map in (30)

does not depend on the process/controller dynamics but

only on the Bprotocol[ used to decide which variables

should be sampled at each sampling time.

Walsh et al. [70] and Nesic and Teel [43] actually

consider a sampling model more general than (28), as they
allow for only some entries of u and y to be transmitted

through the network at each sampling time. In practice,

this means that only some entries of huð�Þ and hyð�Þ may be

equal to zero at each sampling time. To capture this, Nesic

and Teel [43] generalize (30) to

e tþk
� �

¼ h k; eðtkÞð Þ; 8t 2 ðtk; tkþ1
; k 2 N (31)

where hðk; �Þ specifies which entries of the error are reset

to zero at the kth sampling time. This function can be

regarded as implementing a network access protocol that

decides which input/output signals should be sampled at

each time tk, k 2 N. When this decision is based on the

current mismatches between u and û and/or between y
and ŷ, we have a dynamic protocol, such as the Try-Once-

Discard protocol in [43], [70]. Otherwise, we have a static
protocol, such as the Round-Robin protocol in [43], [70],

and [81]. Since the current mismatches may not always be

available, Tabbara et al. [63] propose an alternative

formulation in which the decision to sample a signal is

based on an estimate of the mismatch for that signal.

Defining x :¼ ½x0P x0C

0
, the NCS described by (26),

(27), and (31) can be modeled by an impulsive system of

the form

_x ¼ fðx; e;wÞ; 8t � 0; x 2 Rnx ;w 2 Rnw (32a)

_e ¼ gðx; e;wÞ; 8t 2 ðtk; tkþ1
; e 2 Rne (32b)

e tþk
� �

¼ h k; eðtkÞð Þ; 8k 2 N (32c)

where eðtþk Þ denotes the limit from above of eð�Þ as � # tk

and all limits from below of eðtÞ, t � 0 coincide with the

value of the function at the same time. This is a

generalization of the NCS model in (24), in which signals
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were assumed continuous from above instead of contin-
uous from below.

The following result is adapted from [43] and can be

used to establish the stability of (32).

Theorem 8: Suppose that the following conditions hold.

1) There exists a function W : N� Rne ! ½0;1Þ
and constants � 2 ½0; 1Þ, a1, a2 9 0 such that

a1kek � Wðk; eÞ � a2kek;
W k þ 1; hðk; eÞð Þ � �Wðk; eÞ; 8k 2 N; e 2 Rne :

2) There exists a function H : Rnx ! ½0;1Þ and a

constant L such that

@Wðk; eÞ
@e

� gðx; e;wÞ � LWðk; eÞ þ HðxÞ þ kwk;

8k 2 N; x 2 Rnx ; e 2 Rne ;w 2 Rnw :

3) There exists a class KL function3 �1 and a positive

constant �1 9 0 such that

H xðtÞð Þ � �1 xðt0Þk k; t  t0ð Þ
þ �1 ess sup

�2ðt0;tÞ
eð�Þk k þ wð�Þk kð Þ; 8t � t0 � 0

along solutions to (32a).

4) There exists a class KL function �2 and a class K
function �2 such that

xðtÞk k � �2 xðt0Þk k; t  t0ð Þ
þ ess sup

�2ðt0;tÞ
�2 H xð�Þð Þ þ eð�Þk k þ wð�Þk kð Þ; 8t � t0 � 0

along solutions of (32a).

5) There exists a positive constant � [called the

maximum allowable transfer interval (MATI)] such

that

0 G tkþ1  tk � � G
1

L
ln

L þ �1

�L þ �1

� �
; 8k 2 N:

Then, the NCS modeled by (32) is input-to-state stable
from the disturbance input w to its state ðx; eÞ. h

Condition 1 should be viewed as a requirement on the

network access protocol specified by the function hð�Þ. In

practice, this condition requires the protocol to define an

exponentially stable auxiliary discrete-time system

zkþ1 ¼ hðk; zkÞ

with a decay rate of � G 1. In view of this, Nesic and Teel

[43] introduce the terminology Buniformly exponentially

stable protocol[ to denote any protocol that satisfies

condition 1.

For linear systems, the remaining assumptions of

Theorem 8 are fairly mild. They basically require a growth
for the error dynamics no faster than exponential and

appropriate disturbance rejection properties of the

Bclosed-loop[ system (32), with respect to the inputs e
and w. However, for nonlinear systems these assumptions

may be difficult to verify. In either case, Nesic and Teel

[43]–[45] show that the MATI condition 5 in Theorem 8 is

less conservative than the ones in [68]–[70].

B. Packet Dropouts
Packet dropouts can be modeled either as stochastic or

deterministic phenomena. The simplest stochastic model

assumes that dropouts are realizations of a Bernoulli

process [60], [65]. Finite-state Markov chains can be used

to model correlated dropouts [61] and Poisson processes

can be used to model stochastic dropouts in continuous

time [74]. Deterministic models for dropouts have also
been proposed, either specified in terms of time averages

[81] or in terms of worst case bounds on the number of

consecutive dropouts [40], [78]. We defer the study of

worst case dropout models to Section III-C.

Consider again the one-channel feedback NCS in

Fig. 4, with a plant/controller pair (12), for which the

signal y is sampled at times ftk : k 2 Ng and the samples

yk :¼ yðtkÞ are sent through the network. When packets
are dropped, the network model in (13) must be changed.

It is often assumed that when the packet containing the

sample yk is dropped, the NCS utilizes the previous value

of ŷk [57], [81]. This corresponds to replacing the lossless

network model (13) by

ŷk ¼ �kyk þ ð1  �kÞŷk1

¼
yk; �k ¼1 (no packet dropout)

ŷk1; �k ¼0 (packet dropout)

�
8k2N (33)

where �k ¼ 0 when there is a packet dropout at time k
and �k ¼ 1 otherwise. Hadjicostis and Touri [15] assume
instead that ŷk is set to zero when the packet containing yk

is dropped, i.e., ŷk ¼ �kyk, 8k 2 N.

3Recall that a function � : ½0;1Þ ! ½0;1Þ is said to be of class K if
it is continuous, strictly increasing, and �ð0Þ ¼ 0. A function
� : ½0;1Þ � ½0;1Þ ! ½0;1Þ is said to be of class KL if �ð�; tÞ is of
class K for each fixed t � 0 and �ðr; tÞ decreases to zero as t ! 1 for
each fixed r � 0.
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Assuming that the delay4 �k experienced by the kth
packet is smaller than the corresponding sampling

interval, the continuous-time signal ŷðtÞ is still updated

according to (14). For simplicity, we assume periodic

sampling and constant network delay, i.e., tkþ1  tk ¼ h,

�k ¼ � , 8k 2 N. To analyze this NCS, once again we define

an augmented discrete-time state z0k :¼ ½xðtkÞ0 ŷ0k1
. From

(15) and (33), we now conclude that

zkþ1 ¼ �k
zk (34)

where

� :¼
eAh þ ��ðh  �ÞBC eAðh�Þ�ð�ÞB

þ ð1  �Þ�ðh  �ÞB
�C ð1  �ÞI

2
64

3
75;

8� 2 f0; 1g: (35)

Deterministic Dropouts: Zhang et al. [81] consider a

deterministic dropout model, with packet dropouts occur-

ring at an asymptotic rate defined by the following time

average:

r :¼ lim
T!1

1

T

Xk0þT1

k¼k0

ð1  �kÞ; 8k0 2 N (36)

which implicitly assumes that the limit exists. Under this

dropout model, the system (34) falls under the class of
asynchronous dynamical systems (ADSs). These are hybrid

systems whose continuous dynamics are governed by

differential or difference equations and the discrete

dynamics are governed by finite automata. In ADSs, the

finite automata are driven asynchronously by external

events that occur at prespecified rates. The ADSs of

interest to us are defined by a difference equation such as

(34), where �k takes values in some index set
f0; 1; . . . ;Ng and the rate at which the event �k ¼ j
occurs is defined by the following time average:

rj :¼ lim
T!1

1

T

Xk0þT1

k¼k0

�j�k
;

8k0 2 N; j 2 f0; 1; . . . ;Ng
(37)

where �j�k
¼ 1 when �k ¼ j and zero otherwise. When all

the limits exist, we have
PN

j¼0 rj ¼ 1. The following

result is adapted from Hassibi et al. [16] and uses a
quadratic Lyapunov function of the form VðzÞ :¼ z0Pz to
establish the asymptotic stability of the ADS system (34)
with rates (37).

Theorem 9 [16]: Assume that there exist a symmetric
matrix P 9 0 and scalars �; �0; �1; . . . ; �N such that

�r0

0 �
r1
1 � � ��rN

N 9 � 9 1; 0
jPj � �2

j P;

8j 2 f0; 1; . . . ;Ng

then, the ADS (34) is exponentially stable in the sense
that limk!1 �kkzkk ¼ 0 for every sequence �j�k

for which
(37) holds. h

The following result is obtained by applying Theorem 9
to our NCS with constant sampling interval h and constant
delay � .

Corollary 10: Assuming that there exist a symmetric

matrix P 9 0 and scalars �; �0; �1 such that

�r
0�

1r
1 9 � 9 1; 0ðh; �Þ0P0ðh; �Þ � �2

0 P;

1ðh; �Þ0P1ðh; �Þ � �2
1 P (38)

then, the NCS (34) is exponentially stable in the sense
that limk!1 �kkzkk ¼ 0 for every sequence �k for which
(36) holds. h

The main difficulty in applying this result is that the set
of matrix inequalities that appears in (38) is bilinear in the
unknowns P, �j and therefore generally nonconvex.
However, one can use a Bline-search[ procedure over the
two scalars �0; �1 to determine the feasibility of (38).

Remark 3: One can also express (33) as ŷk ¼ Cx̂k,

8k 2 N, with x̂k defined by

x̂k :¼ �kxk þ ð1  �kÞx̂k1

¼
xk �k ¼ 1 (no packet dropout)

x̂k1 �k ¼ 0 (packet dropout)

�
8k 2 N:

When � ¼ 0, one can analyze the system’s stability using
the discrete-time state �z0k :¼ ½x0k x̂0k
, which evolves
according to

�zkþ1 ¼ ��kþ1
�zk;

�� :¼
eAh �ðhÞBC

�eAh ��ðhÞBC þ ð1  �ÞI

� �
; 8k 2 N:

In their work, Zhang et al. [81] considered this discrete-
time system instead of (34). h

4When the kth packet is dropped the value of �k is of no consequence
and can be assumed zero.
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Stochastic Dropouts: Seiler and Sengupta [57], [58]
consider stochastic losses. In their formulation, Qk is a

Bernoulli process5 with probability of dropout (i.e.,

Qk ¼ 0) equal to p 2 ½0; 1Þ. Under this dropout model,

the system (34) is a special case of a discrete-time

Markovian jump linear system (MJLS). In general MJLSs,

the index Qk in (34) would be the state of a discrete-time

Markov chain with a finite number of states and a given

transition probability matrix. For Bernoulli drops, the
Markov chain only has two states, and the transition

probability from any state to the dropout state Qk ¼ 0 is

equal to p and the transition probability from any state to

the state Qk ¼ 1 is equal to 1  p, as shown in Fig. 8.

The stability of discrete-time MJLSs can be established

using results from [5] (cf., [6] for continuous-time MJLs),

leading to the following theorem.

Theorem 11 [57]: The NCS (34) with dropout probability

p (Bernoulli) is exponentially mean-square stable if there

exists a symmetric matrix Z 9 0 such that6

Z
ffiffiffi
p

p ð0ZÞ0 ffiffiffiffiffiffiffiffiffiffi
1  p

p ð1ZÞ0
� Z 0

� � Z

2
4

3
5 9 0: (39)

h
When the controller is collocated with the actuators,

Seiler and Sengupta [57], [58] suggest that the control law

can adapt to the occurrence of dropouts by allowing the
controller to use different gains at different time instants

k, based on the value of �k 2 f0; 1g. In this case, the

matrices A; B; C in (35) depend on �, but one still gets a

system of the form (34) and one can use similar tools to

analyze its stability. We will return to this issue in

Section IV when we discuss the design of NCS controllers.

Fading Networks: Elia [8] models NCSs with LTI plants
and controllers as deterministic Bnominal[ discrete-time

systems connected to zero-mean stochastic structured

uncertainty as in Fig. 9(a). To see how this can be done,

consider the one-channel feedback NCS in Fig. 4, with a

SISO plant/controller pair (12) with periodic sampling at

times tk :¼ kh, 8k 2 N and constant delay � G h. We have

seen that if the previous value of ŷk is used when the packet

containing the sample yk is dropped, this NCS can be
modeled by the discrete-time system (34), (35), where

Qk 2 f0; 1g is a Bernoulli process with probability of

dropout ðQk ¼ 0Þ equal to p 2 ½0; 1Þ. Defining

#k :¼
Qk

1  p
 1; 8k 2 N (40)

this variable can be viewed as a (SISO) stochastic

perturbation with zero mean and variance

�2 :¼ E #2
k

� �
¼ p

1  p
:

The corresponding nominal system is obtained using the
fact that Qk ¼ ð1  pÞð1 þ#kÞ to rewrite (34), (35) as in

Fig. 9(a)

zkþ1 ¼ �Azk þ �Bv̂k

vk ¼ �Czk

�
v̂k ¼ #kvk (41)

where

�A :¼
eAh þ ð1  pÞ�ðh  �ÞBC eAðh�Þ�ð�ÞB

þ p�ðh  �ÞB

ð1  pÞC pI

2
64

3
75

�B :¼
ð1  pÞ�ðh  �ÞB

ð1  pÞI

� �
; �C :¼ ½C  I
:

Much more general NCSs can be modeled in this

fashion. Fig. 9(b) depicts a general model for NCSs in this

framework. In this figure, PðzÞ denotes a discretized model

of the plant(s) with associated sample and hold blocks and

KðzÞ a discrete-time model of the controller(s). These two

blocks are interconnected through a fading network
denoted by FðzÞ, which is depicted inside the dashed

box. This network consists of a deterministic discrete-time

model NðzÞ called the mean network and a zero-mean

stochastic block-diagonal multiplicative block # called the

stochastic perturbation. In the example, the fading network

essentially corresponds to (33), which can be rewritten as

follows in terms of the stochastic perturbation (40):

ŷk ¼ pŷk1 þ ð1  pÞyk þ ð1  pÞv̂k

vk ¼ yk  ŷk1

�
v̂k ¼ #kvk

5To emphasize the fact that now the Qk, k 2 N are random variables,
we denote them in boldface type.

6Matrix entries denotes by B�[ are implicitly defined by the fact that
the matrix is symmetric.

Fig. 8. Bernoulli drops with probability p modeled as two-state

discrete-time Markov chain.
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with the mean network on the left-hand side and the

stochastic perturbation on the right-hand side. Fig. 9(b)

can be viewed as a special case of Fig. 9(a) by associating
the system inside the dashed-dotted box in Fig. 9(b) with

GðzÞ in Fig. 9(a).

To study the stability of the NCSs in Fig. 9, Elia [8]

considers the interconnection of a discrete-time LTI

system with a transfer function GðzÞ and a stabilizable

and detectable realization7

xkþ1 ¼ Axk þ Bv̂k;

vk ¼ Cxk; k 2 N;xk 2 Rn;vk; v̂k 2 Rm (42)

in feedback with a multiplicative stochastic perturbation

of the form

v̂k ¼

#1
k 0 � � � 0

0 #2
k � � � 0

..

. . .
. ..

.

0 0 � � � #m
k

2
6664

3
7775vk; 8k 2 N (43)

where all the #i
k are i.i.d. random variables with zero

mean and the same variance �2 :¼ E½ð#i
kÞ

2
, 8i; k. It turns

out that the stability of this interconnection is indepen-

dent of the distribution of the #i
k and only depends on

their variance �2. The following theorem characterizes the
stability of the interconnection in terms of LMIs.

Theorem 12 [8]: Suppose that the matrix A is Schur and

that the initial state x0 has finite variance and is

independent of the #i
k. The system (42) and (43) is

mean-square stable if and only if there exists a symmetric

matrix Q 9 0 and scalars �1; . . . ; �m 9 0 such that

AQA0 þ
Xm

j¼1

bj�jb
0
k G Q; �2ciQc0i G �i; 8i 2 f1; . . . ;mg

where bj denotes the jth column of B and ci the ith row

of C. h
We leave to the reader the formulation of a necessary

and sufficient condition for the stability of the NCS (41) in

Fig. 4 based on Theorem 12.

The mean-square structured norm of (42) and (43) is

defined to be

�MSðG;#Þ¼ 1

sup �2 : ð42Þð43Þ is meansquare stablef g:

The quantity 1=�MSðG;#Þ can be viewed as a stability

margin that measures how much (structured) stochastic

uncertainty the system G can tolerate, since it is the
largest value of �2 for which the interconnection is mean-

square stable. The following result relates the mean-

square structured norm of a system with the mean-square

norm of its transfer function. We recall that the mean-
square norm of the transfer function TðsÞ is given by

TðsÞk kMS:¼ max
i2f1;...;mg

Xm

j¼1

TijðsÞ
&& &&2

2

 !1
2

TijðsÞ
&& &&2

2
:¼ 1

2�

Z1
1

Tijðj!Þ
)) ))2d!:

Theorem 13 [8]: Under the assumptions of Theorem 12,

�MSðG;#Þ ¼ inf
D 9 0;D diagonal

D1GðzÞD
&& &&

MS

where the infimum is taken over all positive definite

m � m diagonal matrices. h
This result is used in Section IV for NCSs controller

synthesis.

7Elia [8] actually considers more general LTI systems, which can have
a strictly triangular direct feedthrough term.

Fig. 9. Fading networks. (a) Nominal deterministic system with a stochastic perturbation. (b) Fading network representation of general NCS.
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C. NCSs as Delayed Differential Equations
(Sampling, Delays, and Dropouts)

Once again, we go back to the one-channel feedback

NCS in Fig. 4, with a plant/controller pair (12), for which

the signal yðtÞ is sampled at times ftk : k 2 Ng. In a

lossless network, all the samples ŷk ¼ yk ¼ CxðtkÞ arrive at

the destination with a (possibly variable) delay of �k � 0,

which leads to

ŷðtÞ ¼ CxðtkÞ; 8t 2 ½tk þ �k; tkþ1 þ �kþ1Þ; k 2 N: (44)

In the previous sections, we proceeded by deriving

discrete-time models for the evolution of the state of the

NCS at sampling times. Instead, Yu et al. [76] propose to

regard (44) as a delayed equation

ŷðtÞ ¼ Cx t  �ðtÞð Þ; 8t � 0 (45)

in which the delay �ðtÞ is time varying and evolves

according to

�ðtÞ ¼ t  tk; 8t 2 ½tk þ �k; tkþ1 þ �kþ1Þ; k 2 N:

Fig. 10(a) shows the evolution of the time-varying delay

�ðtÞ in (45) for the case of periodic sampling with period

h ¼ tkþ1  tk, 8k 2 N and constant network delay
�0 ¼ �k, 8k 2 N.

In view of (45), this approach regards the overall NCS

as a continuous-time delayed differential equation (DDE)

of the form

_xðtÞ ¼ AxðtÞ þ BCx t  �ðtÞð Þ; 8t � 0 (46)

where the time-varying delay �ðtÞ satisfies

�ðtÞ 2 ½�min; �maxÞ; _� ¼ 1; 8t � 0; a:e: (47)

where

�min :¼ min
k2N

f�kg; �max :¼ max
k2N

ftkþ1  tk þ �kþ1g: (48)

An important advantage of characterizing an NCS as in

(46)–(48) is that these equations are valid even when the
delay exceeds the sampling interval. So, in this section,

we shall not restrict our attention to delays smaller than

one sampling interval.

As illustrated in Fig. 10(b), we can also view packet

dropouts as a delay �ðtÞ that grows beyond the maximum

in (48). This means that an NCS with a maximum number

of consecutive dropouts equal to m is still a DDE like (46),

(47), but with

�min :¼ min
k2N

f�kg; �max :¼ max
k2N

ftkþ1þm  tk þ �kþ1þmg:

The Lyapunov–Krasovskii and the Razumikhin theorems

[11], [13], [55] are the two main tools available to study

the stability of DDEs of the form of (46) and (47).
However, the Lyapunov–Krasovskii theorem generally

leads to less conservative results. To formulate this

theorem we need following notation. Given a constant

�max 9 0, a continuous signal x : ð�max;1Þ ! Rn, and

some time t 2 R, we denote by xt : ½�max; 0
 ! Rn the

restriction of x to the interval ½t  �max; t
 translated to

½�max; 0
, i.e., xtðsÞ ¼ xðt þ sÞ, 8s 2 ½�max; 0
. The

function xt is an element of the Banach space
Cð½�max; 0
;RnÞ of continuous functions from ½�max; 0

to Rn.

Theorem 14 Lyapunov–Krasovskii [13]: The DDE

_xðtÞ ¼ AxðtÞ þ Adx t  �ðtÞð Þ; 8t � 0

with �ðtÞ 2 ½0; �max
, 8t � 0 and initial condition xðtÞ ¼
 ðtÞ, 8t 2 ½�max; 0
 is asymptotically stable if there exists

Fig. 10. Variable delay in NCS for constant network delay �k ¼ �0, 8k 2 N and periodic sampling with period tkþ1  tk ¼ h, 8k 2 N for:

(a) no packet dropout and (b) one packet dropout.
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a bounded quadratic Lyapunov–Krasovskii functional
V : Cð½�max; 0
;RnÞ ! R and a positive constant  for

which

Vð�Þ �  �ð0Þk k2;

dVðxtÞ
dt

))))
xt¼�

�  �ð0Þk k2; 8� 2 C ½�max; 0
;Rnð Þ

where the (total) derivative is taken along solutions

to (46). h
To study the stability of (46), Yue et al. [78] use the

following Lyapunov–Krasovskii functional:

VðxtÞ ¼ xðtÞ0PxðtÞ þ
Z t

t�max

Z t

s

_xðvÞ0T _xðvÞdvds

with symmetric matrices P 9 0 and T 9 0. They show that

the derivative of VðxtÞ is negative along solutions to (46)

if we have (49), as shown at the bottom of the page,

where Ni;Mi, i 2 f1; 2; 3g are slack matrix variables. This

leads to the following result.

Theorem 15 [78]: For a given scalar �max 9 0, suppose

that there exist square matrices Ni;Mi, i 2 f1; 2; 3g and

symmetric matrices P; T 9 0 such that (49) holds. Then,

the NCS (46), (47) in Fig. 4 is asymptotically stable as

long as

tkþ1þm  tk þ �kþ1þm � �max; 8k 2 N

where m denotes the maximum number of consecutive

dropouts. h
Yu et al. [76] also model one-channel feedback NCSs as

DDEs, but they study their stability using the Razumikhin
theorem, which generally leads to more conservative

results.

Naghshtabrizi and Hespanha [40] consider the two-

channel feedback NCS in Fig. 11, in which a known plant

_xP ¼ APxP þ BPû; y ¼ CPxP (50)

is controlled by a remote observer-based controller that
receives sensor data through a sensor channel and sends

control signals to the actuators through an actuation
channel. The output signal yðtÞ is sampled at times ts

k,

k 2 N and the samples yk :¼ yðts
kÞ, k 2 N are sent through

the sensor channel suffering a (possibly variable) delay of

Fig. 11. Two-channel feedback NCS with observer-based controller.

N1 þ N0
1  M1A  A0M0

1 N0
2  N1  A0M0

2  M1BK N0
3  A0M0

3 þ M1 þ P �maxN1

� N2  N0
2  M2BK  K0B0M0

2 N0
3 þ M2  K0B0M0

3 �maxN2

� � M3 þ M0
3 þ �maxT �maxN3

� � � �maxT

2
664

3
775 G 0 (49)
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� s
k � 0. In a lossless network, ŷðtÞ is therefore updated

according to

ŷðtÞ¼yk¼CPxP ts
k

� �
; 8t 2 ts

k þ � s
k; ts

kþ1 þ � s
kþ1

� �
; k 2 N

and if ms 9 0 sensor channel packets are dropped after
the kth packet, the previous equation holds 8t 2 ½ts

k þ � s
k;

ts
kþ1þms þ � s

kþ1þmsÞ.
Two alternative observer-based controllers are pro-

posed: nonanticipative and anticipative. Nonanticipative
controllers construct an estimate x̂P of the plant’ state xP

using

_̂xPðtÞ ¼ APx̂PðtÞ þ BPûðtÞ þ L ŷðtÞ  CPx̂P ts
k

� �� �
;

8t 2 ts
k þ � s

k; ts
kþ1 þ � s

kþ1

� �
; k 2 N (51)

for which the innovation term ŷ  CPx̂Pðts
kÞ was chosen

so that it is equal to zero whenever xPðts
kÞ ¼ x̂Pðts

kÞ.
Control updates u‘ :¼ Kx̂Pðta

‘Þ are sent through the

actuation channel to the actuators at times ta
‘, ‘ 2 N

suffering a (possibly variable) delay of �a
‘ � 0. In a

lossless network, the control signal ûðtÞ is therefore up-

dated according to

ûðtÞ¼u‘¼Kx̂P ta
‘

� �
; 8t 2 ta

‘ þ � a
‘ ; ta

‘þ1 þ � a
‘þ1

� �
; ‘ 2 N

which would hold over a longer interval if actuation

channels packets were dropped.

Anticipative controllers attempt to compensate the

sampling and delay introduced by the actuation channel.

For simplicity, we assume that the actuation channel is

sampled with period ha ¼ ta
‘þ1  ta

‘ , 8‘ 2 N and that its

delay is constant and equal to � a ¼ �a
‘ , 8‘ 2 N. At each

sampling time ta
‘ ¼ ‘ha, ‘ 2 N the controller sends a time-

varying control signal u‘ð�Þ that should be used from the

time ‘ha þ � a at which it arrives until the time

ð‘þ 1Þha þ � a at which the next control update will

arrive. This leads to

ûðtÞ ¼ u‘ðtÞ; 8t 2 ‘ha þ � a; ð‘þ 1Þha þ � a½ Þ; ‘ 2 N:

To stabilize (50), u‘ðtÞ should be equal to Kx̂PðtÞ, where

x̂PðtÞ is an estimate of xPðtÞ. However, the estimates x̂Pð�Þ
needed in the interval ½‘ha þ � a; ð‘þ 1Þha þ � aÞ must be

available at the transmission time ‘ha, which requires the

control unit to estimate the plant’ state up to ha þ � a time

units into the future. In this case, the estimator (51) is of
no use. Instead, an estimate zðtÞ of xPðt þ ha þ � aÞ is

constructed as follows:

_zðtÞ ¼ APzðtÞ þ BPûðt þ ha þ � aÞ

þ L ŷðtÞ  CPz ts
k  ha  � a
� �� �

;

8t 2 ts
k þ � s

k; ts
kþ1 þ � s

kþ1

� �
; k 2 N

for which the innovation term ŷ  CPzðts
k  ha  � aÞ was

chosen so that it is equal to zero whenever xPðts
kÞ ¼

zðts
k  ha  �aÞ. The signal u‘ð�Þ sent at time ‘ha [and to

be used during the interval ½‘ha þ � a; ð‘þ 1Þha þ � aÞ] is
then given by

u‘ðtÞ ¼ Kzðt  ha  � aÞ;
8t 2 ‘ha þ �a; ð‘þ 1Þha þ �a½ Þ; ‘ 2 N

which only requires knowledge of zð�Þ in ½ð‘ 1Þha; ‘haÞ
and is therefore available at the transmission time ‘ha.
For anticipative controllers to be able to compensate for

packet dropouts in the actuation channel, z would have to

estimate xP further into the future. Anticipative control-

lers send through the actuation channel actuation signals

to be used during time intervals of duration ha; therefore,

for these controllers the sample and hold blocks in Fig. 11

should be understood in a broad sense. In practice, the

sample block would send over the network some param-
etric form of the control signal u‘ð�Þ (e.g., the coefficients

of a polynomial approximation to this signal).

Naghshtabrizi and Hespanha [40] write the closed-loop

NCSs as DDEs for both the anticipative and the

nonanticipative controllers. For an anticipative controller

with no dropouts, this leads to

_xðtÞ ¼
AP  BPK 0

0 AP

� �
xðtÞ

þ
0 LCP

0 LCP

� �
xðt  �Þ; 8t � 0 (52)

where x0ðtÞ :¼ ½zðtÞ xPðt þ ha þ � aÞ  zðtÞ
, 8t � 0 and

�ðtÞ :¼ t  ts
k þ ha þ � a;

8t 2 ts
k þ � s

k; ts
kþ1þm þ � s

kþ1þm

� �
; k 2 N:

Moreover, if ms 9 0 sensor channel packets are dropped
after the kth packet, this equation holds over the interval

½ts
k þ � s

k; ts
kþ1þms þ � s

kþ1þmsÞ.
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The Btriangular[ structure of (52) is unique to the
anticipate controller. With this type of controller, if we
choose K so that AP  BPK is Hurwitz, asymptotic
stability of the NCS is equivalent to the asymptotic
stability of the (decoupled) dynamics of the error
eðtÞ :¼ xPðt þ ha þ � aÞ  zðtÞ, 8t � 0, which is given by
the following DDE:

_eðtÞ ¼ APeðtÞ  LCPe t  �ðtÞð Þ; t � 0

with �ðtÞ 2 ½�min; �maxÞ, _� ¼ 1, 8t � 0, a.e., where

�min :¼ min
k2N

� s
k þ ha þ �a

� �
�max :¼ max

k2N
ts
kþ1þms  ts

k þ � s
kþ1þms þ ha þ � a

� �

where ms denotes the maximum number of consecutive
packet dropouts in the sensor channel. Naghshtabrizi and
Hespanha [40] use the following Lyapunov–Krasovskii
functional to analyze this system

VðetÞ ¼ eðtÞ0P1eðtÞ þ
Z t

t�max

Z t

s

_e0ðvÞR _eðvÞdvds

þ
Z t

t�min

e0ðsÞSeðsÞds

where P1 9 0, R 9 0, S 9 0. This leads to the following
result.

Theorem 16 [40]: Suppose that there exist symmetric
matrices P1; S; R 9 0, square matrices P2; P3; Z1; Z2, and a
(nonsquare) matrix T such that

� P0
0

LCP

� �
 T0

� S

2
4

3
5 G 0;

R 0  ðLCPÞ0
� �

P

� Z2

" #
9 0;

R T

� Z1

� �
9 0 (53)

where

P :¼
P1 0

P2 P3

� �

� :¼ P0
0 I

AP I

� �
þ

0 I

AP I

� �0
P þ

S 0

0 �maxRi

� �

þ �minZ1 þ ð�max  �minÞZ2 þ
T

0

� �
þ

T

0

� �0
: (54)

Then, the NCS with the anticipative controller (52), (47)
is asymptotically stable as long as there are no dropouts in
the actuation channel and

� s
k þ ha þ �a � �min

ts
kþ1þms  ts

k þ � s
kþ1þms þ ha þ �a � �max; 8k 2 N

where ms denotes the maximum number of consecutive
dropouts in the sensor channel. h

The reader is referred to [40] for an analogous result
with a nonanticipative controller.

IV. CONTROLLER SYNTHESIS

In this section, we discuss the design of feedback

controllers for NCSs. Some of these results stem directly

from the analysis methods presented in Section III.

A. Sampling and Delay
Nilsson et al. [46]–[51] consider the two-channel

feedback NCS in Fig. 12. The plant is an LTI system with

the following state-space model:

_x ¼ Axþ Bûþw; y ¼ Cxþ v (55)

where v and w are zero-mean uncorrelated white noise
processes. The output signal yðtÞ is sampled periodically

at times tk :¼ kh, 8k 2 N and the samples yk :¼ yðtkÞ,
8k 2 N are sent through the network. After a (possibly

varying) delay of Ts
k � 0, these samples reach a remote

controller that immediately computes control updates uk

and sends them to the network. These updates reach the

actuators after a (possibly varying) delay of Ta
k � 0.

Assuming that there are no packet dropouts in either of
the network channels, this leads to

ûðtÞ ¼
uk1; t 2 tk; tk þ Ts

k þ Ta
k

� �
uk; t 2 tk þ Ts

k þ Ta
k; tkþ1

� �
(

(56)

Fig. 12. Two-channel feedback NCS considered by Nilsson [46].

Hespanha et al.: Survey of Recent Results in Networked Control Systems

156 Proceedings of the IEEE | Vol. 95, No. 1, January 2007



where we assumed that the total delay is smaller than one
sampling interval, i.e., that Ts

k þ Ta
k G h, 8k 2 N. Any

computation time needed by the remote controller can be

incorporated in the network delay Ta
k.

The delays Ts
k and Ta

k are assumed to be independent

random variables with known probability distributions.

Moreover, it is assumed that all data sent through the

network is time stamped, which means that the controller

knows the value of the delay Ts
k when the kth measurement

ŷk arrives.

Defining xk :¼ xðtkÞ, 8k 2 N and applying the varia-

tion of constants formula to (55), (56), we conclude that

xkþ1 ¼ eAhxk þ eA hTs
kTa

kð Þ� Ts
k þ Ta

k

� �
Buk1

þ � h  Ts
k  Ta

k

� �
Buk þ vk;

yk ¼ Cxk þwk

where �ðsÞ :¼
R s

0
eAzdz, 8s 2 R and vk, wk are uncorre-

lated zero-mean white noise processes.

Assuming state feedback (i.e., yk ¼ xk, 8k 2 N),

Nilsson et al. [49], [51] show that the optimal control uk

that minimizes

Jk ¼ E x0
NQNxN þ

XN1

j¼k

xj

uj

� �0
Q

xj

uj

� �( )

with

QN � 0; Q :¼ Q11 Q12

� Q22

� �
� 0; Q22 9 0

is of the form

uk ¼ Lk Ts
k

� � xk

uk1

� �
; 8k 2 N: (57)

Hence, the optimal controller with full state information is

a linear but Ts
k-dependent function of the current state and

previous control signal. The computation of the matrix

gain LkðTs
kÞ requires the solution of a backwards-in-time

Riccati equation that involves the computation of expecta-

tions with respect to the random variables Ts
k and Ta

k.

In practice, the delays Ts
k, Ta

k, 8k 2 N are often

correlated because they depend on the network load,

which typically varies at time scales slower than the

sampling interval h. To account for this, Nilsson and
Bernhardsson [48] consider three alternative distributions

for the delay and model the transitions between the

distributions using a three-state Markov chain. Each state

of the Markov chain would correspond to a particular

network load (low, medium, or high). In this case, the

optimal control strategy is of the form

uk ¼ Lk Ts
k; rk

� � xk

uk1

� �
(58)

where now the matrix gain LkðTs
k; rkÞ depends both on the

delay Ts
k and the current state rk of the Markov chain. To

implement this control law, the remote controller must

know the current value of rk.
The main difficulty in using the optimal controllers

(57), (58) is the computation of the matrix gains Lkð�Þ.
However, when stationary values for these gains exist, they

can be computed offline and stored in a table, which is

indexed in real time by the current value of the delay Ts
k

and network state rk. Nilsson et al. [49], [51] also propose

to use suboptimal controllers that are more attractive from

a computational perspective. The same authors [48], [49],
[51] extended this work for the output feedback case. They

showed that the separation principle holds and that the

optimal control can be obtained by replacing xk in (57) and

(58) by an estimate x̂ computed using a time-varying

Kalman filter.

Nilsson et al. [50] further extended this work by

considering nonperiodic sampling, timeouts on the period

during which a controller waits for new measurements
before sending a new control command, and asynchronous

loops in which the clocks used for time stamping are not

synchronized and run at different speeds. Lincoln and

Bernhardsson [28] also extended these results to situations

in which the sum of the delays exceeds one sampling

interval but remains bounded.

B. Packet Dropout

Deterministic Dropout Rates: Yu et al. [77] consider the

one-channel feedback NCS shown in Fig. 13 with an LTI

plant

_x ¼ Ax þ Bu; y ¼ Cx

Fig. 13. One-channel feedback NCS with switching controller.
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whose output is sampled periodically at times

ftk :¼ kh : k 2 Ng and the samples yk :¼ yðtkÞ are sent
through the network. It is assumed that the delay

introduced by the network is negligible but packets may

be dropped. The network output ŷk is kept equal to its

previous value when the packet containing the sample yk is

dropped as in (33). Denoting by �j, j 2 N the indexes of

the packets that are not dropped, ŷk remains equal to yk

from k ¼ �j until k ¼ �jþ1  1, i.e.,

ŷk ¼ y�j
; 8k 2 f�j; �j þ 1; . . . ; �jþ1  1g:

Yu et al. [77] use a static output-feedback controller,

whose gain changes depending on whether or not a packet

is dropped. More precisely, they use

uk¼Kk�j
ŷk ¼Kk�j

y�j
; 8k2f�j; �jþ1; . . . ; �jþ11g

where the matrix gain K0 is used when the sample yk has

not been dropped, K1 is used when yk has been dropped

but yk1 has not, K2 is used when yk and yk1 have been

dropped but yk2 has not, and so on. The control signal

uðtÞ is kept constant between samples

uðtÞ ¼ uk; t 2 ½tk; tkþ1Þ; 8k 2 N:

Defining zj :¼ xðt�j
Þ, 8j 2 N and using the variation of

constants formula, we conclude that

zjþ1 ¼ A�jþ1�j1zj;

Ad :¼ eAhðdþ1Þ þ
Xd

i¼0

eAhðdiÞ�ðhÞBKiC; 8d 2 N (59)

where �ðsÞ :¼
R s

0
eAzdz, 8s 2 R. Assuming that the max-

imum number of consecutive dropouts is equal to m, we

have 0 � �jþ1  �j  1 � m, 8j 2 N and we can view (59)
as a linear system that switches among the matrices

A0; . . . ; Am. The stability of such a system can be estab-

lished using a common quadratic Lyapunov function

VðzÞ :¼ z0S1z, leading to the following theorem.

Theorem 17 [77]: Suppose that there exist matrices M,

Yi, i 2 f0; 1; . . . ;mg and a symmetric matrix S 9 0 such

that8 MC ¼ CS and

S �
eAhðdþ1ÞS þ

Pd
i¼0 eAhðdiÞ�ðhÞBYiC S

� �
G 0;

8d 2 f0; 1; . . . ;mg:

Then, the NCS (59) in Fig. 13 is exponentially stable for

the controller gain Ki ¼ YiM
1, 8i 2 f0; 1; . . . ;mg. h

Stochastic (Markovian) Dropouts: Seiler and Sengupta

[57] consider the design of a switching controller for the

one-channel feedback NCSs in Fig. 14. The plant and the

controller are modeled by discrete-time LTI systems of

the form

xkþ1 ¼ Axk þ Buk; yk ¼ Cxk (60a)

�xkþ1 ¼ AQk
�xk þ BQk

ŷk; uk ¼ CQk
x̂k (60b)

where yk and ŷk are the input and the output of the

network. These variables are related by (33), where Qk is a

Bernoulli process with probability of dropout (i.e.,

Qk ¼ 0) equal to p 2 ½0; 1Þ. They allow the controller
state-space model to adapt to the occurrence of dropouts,

hence its matrix gains depend on the value of Qk 2 f0; 1g.

Defining z0k :¼ ½x0k �x0k u0k
, the system can be written

in compact form as (34), with

� :¼
A BC� 0

B�C A� ð1  �ÞB�
�C 0 ð1  �ÞI

2
4

3
5; 8� 2 f0; 1g:

Since this system is an MJLS, the inequality (39) in
Theorem 11 provides a necessary and sufficient condition

for the exponentially mean-square stability of the NCS.

For given controller matrices A�; B�; C�, � 2 f0; 1g, the

inequality (39) is a (convex) LMI on the unknown Z.

However, if the controller matrices are also taken as

unknowns we have a bilinear matrix inequality (BMI),

leading to a feasibility problem that is generally not

convex and therefore not numerically tractable. However,

8In the state feedback case, C is the identity matrix and we simply
have M ¼ S.

Fig. 14. One-channel feedback NCS with discrete-time plant

and controller.
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it is possible to obtain an equivalent LMI that leads to a
tractable feasibility problem.

Theorem 18 [57]: Suppose that there exist matrices

L�; F�;W�, � 2 f0; 1g, Y ¼ Y 0, X ¼ X0 such that we have

the equation shown at the bottom of the page, where

�A� :¼
A 0

�C ð1  �ÞI

� �
; �B� :¼

B

0

� �
�C� :¼ �C ð1  �ÞI½ 
; 8� 2 f0; 1g:

Then, the NCS (60) in Fig. 14 is exponentially mean-

square stable for the following controller realizations:

A�¼Y1ðY �A�XþY �B�F�þL� �C�XW�ÞðY1XÞ1;

B�¼Y1L�;

C�¼F�ðY1  XÞ1; 8� 2 f0; 1g:

h
Seiler and Sengupta [58] further extended these

results to the synthesis of an H1 controller that rejects

plant disturbances. De Farias et al. [6] consider mixed

H1=H2 synthesis for MJLSs in a continuous-time

setting.

Fading Networks: Within the fading networks formula-

tion, Elia [8] proposes to design controllers for NCSs that

minimize the mean-square structured norm of the nominal

system GðzÞ in Fig. 9(b). Such controllers would maximize

the NCS’s tolerance with respect to packet dropouts.

Elia [8] shows that minimum achievable mean-square

structure norm is the solution to either of the following

optimizations:

��MS ¼ inf
K

inf
D 9 0;D diagonal

D1GðP;KÞD
&& &&2

MS
(61a)

¼ inf
D 9 0;D diagonal

inf
K

D1GðP;KÞD
&& &&2

MS
(61b)

where the infimum over K is taken over the set of LTI

stabilizing controllers; the infimum over � is taken over all

positive diagonal matrices; and GðP;KÞ denotes the
interconnection of the plant P, the controller K, and the

mean network N shown in Fig. 9(b). As in many

structured robust control problems, the search for the

optimal controller that minimizes (61a) is not convex on

the diagonal matrix D. However, for every fixed D, the

controller optimization in (61b) is convex and can be

reduced to an LMI [8, Th. 6.6]. Heuristic methods such as

the D-K iteration can explore this to find suboptimal
solutions to (61a) [7].

C. NCSs as Delay Differential Equations (Sampling,
Delays, and Dropouts)

In Section III-C, we presented matrix inequalities from

which one could conclude stability for NCSs modeled as

delay differential equations. For given controllers gains K
and L, the inequalities (49) and (53) in Theorems 15 and
16, respectively, are linear on all the matrices that do not

depend on the (known) plant model. The stability of the

NCS can therefore be verified by studying the feasibility of

a (convex) LMI. However, if the controllers gains are also

taken as unknowns, we obtain a BMI and therefore these

matrix inequalities are not directly suitable for controller

synthesis.

Yue et al. [78] utilize Theorem 15 as the basis for a
numerically tractable controller synthesis procedure. They

require the matrices M1, M2, M3 in (49) to further satisfy

M1 ¼ M0
1 9 0; M2 ¼ �2M1; M3 ¼ �3M1 (62)

for some constants �2; �3 2 R. They then make the
(bijective) change of variables

X :¼M1; Y :¼ KX0; ~P :¼ XPX0; ~T :¼ XTX0

~Ni :¼XNiX
0; ~Mi :¼ XMiX

0; 8i 2 f1; 2; 3g:

Pre- and post-multiplying (49) by diagðX X X XÞ and its
transpose, respectively, yields the equation shown at

the bottom of the next page, which is an LMI on the

unknowns X; Y; ~P; ~T and ~Ni, i 2 f1; 2; 3g. Moreover, the

controller gain can be recovered using K ¼ YX1. This

procedure introduces some conservativeness because it

Y I
I X

� � ffiffiffi
p

p YA0 þ L0C0 W0

A0 A0X þ BF0

� �0 ffiffiffiffiffiffiffiffiffiffi
1  p

p YA1 þ L1C1 W1

A1 A1X þ BF1

� �0
� Y I

I X

� �
0 0
0 0

� �

� � Y I
I X

� �

2
6666664

3
7777775
9 0
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will not find controller gains K for which (49) holds for
matrices M2 and M3 that are not scalar multiples of M1,

as in (62).

A simple but conservative way to make the matrix

inequalities in Theorem 16 suitable for controller synthesis

consists of requiring that

P2 9 0; P3 ¼ �P2

for some positive constant � 9 0 and making the

(bijective) change of variables Y ¼ P2L, which transforms

(53) into

� 
YCP

�YCP

� �
 T0

� S

2
4

3
5 G 0

R  C0
PY 0 �C0

PY 0� �
� Z2

� �
9 0;

R T

� Z1

� �
9 0

with � given by (54). This inequality is linear in the

unknowns P1; P2; S;R; Z1; Z2; T; Y and can therefore be

solved using efficient numerical algorithms. The observer

gain is found using L ¼ P1
2 Y. This procedure introduces

some conservativeness because it restricts P3 to be a scalar

multiple of P2. Naghshtabrizi and Hespanha [40] use the
linear cone complementarity algorithm introduced by

Ghaoui et al. [12] to design the controller gains L and K
for the anticipative or nonanticipative controllers in

Section III-C. The use of the cone complementarity algo-

rithm avoids introducing additional conservativeness in

going from a matrix inequality that is only appropriate for

analysis to another matrix inequality that is appropriate

for controller synthesis.

V. CONCLUSION AND FUTURE
DIRECTION OF RESEARCH

We presented several recent results on estimation,

analysis, and controller synthesis for NCSs. The materials

surveyed address different aspects of the limitations

imposed by the use of communication channels to connect
elements of NCSs. We focused on limitations in terms of

packet-rate, sampling, network delay, and packet dropout.

In Section II, we addressed the state estimation of a remote

plant over a channel in which some of the packets are lost
in a random fashion. We considered both single and

multiple sensors. Section III covered a collection of results

to determine the closed-loop stability of NCSs in the

presence of network sampling, delays, and packet drop-

outs. We considered a variety of assumptions on the plant

and network effects, which led to closed-loop models

represented by Markovian jump linear systems (MJLSs),

linear time-varying systems, switched systems, nonlinear
systems with resets, asynchronous dynamical systems

(ADSs), linear time-invariant systems with stochastic

structured uncertainty, and linear systems with delayed

inputs. Many of the results presented rely on Lyapunov-

based techniques and only provide sufficient conditions for

stability of the NCS. For linear systems, these results

usually translate into linear matrix inequalities (LMIs),

which generally become bilinear matrix inequalities
(BMIs) in design problems for which the controller needs

to be viewed as an unknown (cf., Section IV).

This survey did not address a few important issues in

NCSs, such as bit rate and quantization. The problem of

determining the minimum bit rate needed for stabilization

has been solved exactly for linear plants, but only

conservative results have been obtained for nonlinear

plants. Quantization becomes especially important for
networks designed to carry very small packets with little

overhead, because for such networks one can save

bandwidth by encoding measurements or actuation signals

with a small number of bits.

NCS have been attracting significant interest in the

past few years and will continue to do so for the years to

come. With the advent of cheap, small, and low-power

processors with communication capabilities, it has become
possible to endow sensor and actuators with processing

power and the ability to communicate with remove

controllers through multi-purpose networks. In view of

this, we conjecture that in the near future NCSs will

become the norm, replacing the current fixed-rate digital

control systems that rely on dedicated connections

between sensors, controllers, and actuators.

Results are still lacking to overcome several of the
challenges raised by NCSs. Among these we highlight the

following. There has been significant work on NCSs with

variable sampling rate, but most results investigate the

stability for a given worst case interval between consec-

utive sampling times. This generally leads to conservative

results that could be improved by taking into account a

stochastic characterization for the intersampling times.

~
N1 þ ~

N
0
1  AX0  XA0 ~

N
0
2 

~
N1  �2XA0  BY

~
N
0
3  �3XA0 þ X0 þ ~

P �max
~
N1

� ~
N2  ~

N
0
2  �2BY  �2Y 0B0 ~

N
0
3 þ �2X0  �3Y 0B0 �max

~
N2

� � �3X þ �3X0 þ �max
~
T �max

~
N3

� � � �max
~
T

2
664

3
775 G 0
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Most work has been devoted to determining the stability of
NCSs, whereas issues related to performance have been

somewhat neglected. The design of controllers for NCSs

has also been overlooked, as many researchers start with a

controller that has been designed, ignoring the challenges
introduced by NCSs and then investigating to what extent

such controllers can guarantee stability in spite of the

network. h
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