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Abstract: In the last years, Model Predictive Control (MPC) proved to be one of the most
promising approaches for an Artificial Pancreas (AP), a device for closed-loop blood glucose
control in subjects affected by Type 1 Diabetes (T1D). MPC performance is highly influenced by
the quality of the model used for prediction. Moreover, the inter-patient variability characterising
subjects with T1D increases the need of patient-tailored models. Recently, promising results
have been obtained in silico using the UVA/Padova simulator in Soru et al. (2012) and Messori
et al. (2016) where different individualization techniques have been studied and compared to
the “average” model of the UVA/Padova adult population showing significant improvements in
term of prediction ability. The aim of this paper is to verify the applicability of the technique
described in Soru et al. (2012) and extend it to be used on free-living data collected without
ad hoc clinical protocols. Data were collected during a 1 month trial in free-living conditions
(Renard et al. (2016)). In this proof-of-concept case study, individualized models obtained with
different identification parameters are compared with the “average” model that was used to
synthetize the MPC controller used during that trial. The individualized models show superior
prediction performance and prove robustness to non-optimal algorithm initialization in a selected
test-case.
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1. INTRODUCTION

Type 1 Diabetes (T1D) is an autoimmune disease char-
acterized by the destruction of pancreatic β-cells that are
responsible for the production of insulin. As a consequence,
T1D results in high Blood Glucose (BG) level, BG > 180
mg/dl, known as hyperglycemia. Subjects with T1D need
exogenous insulin administration to maintain the BG level
in the acceptable range [70-180 mg/dl]; their goal is to
minimize diabetes complications related to hyperglycemia
and simultaneously avoid hypoglycemia (BG < 70 mg/dl).
In the last 10 years, the availability of pump for continuous
subcutaneous insulin infusion (CSII) and the increased ac-
curacy of Continuous Glucose Monitor (CGM) sensors, to-
gether with the large effort to improve control algorithms,
brought to reality the long dreamed of Artificial Pancreas
(AP), a device for automatic glycemic regulation (Cobelli
et al., 2011; Thabit and Hovorka, 2016). In particular,
in the last two years a number of clinical studies have
shown the efficacy of AP prototypes when used in free-
living conditions lasting 1-6 months (Thabit et al., 2015;
Kropff et al., 2015; Renard et al., 2016; Anderson et al.,
2016; Bergenstal et al., 2016). Model Predictive Control
(MPC), one of the most promising control techniques for
an AP, is based on a glucose-insulin model to predict the
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glycemic trend and react in advance to its changes, so that
patient BG can be kept in the safe range. Therefore, the
control performance is highly influenced by the quality of
the model and the inter-patient variability characterizing
subjects with T1D enhances the need of patient-tailored
models. Recently, new identification techniques have been
investigated to this purpose, but this remains an open
problem. For reasons of space a comprehensive literature
review can not be given here. We refer the interested reader
to Zarkogianni et al. (2015).

Promising results have been obtained on this topic by
our group in silico, i.e. using the UVA/Padova simulator
(Kovatchev et al. (2009); Dalla Man et al. (2014)) to ac-
count for the inter-patient variability, the simulator offers
100 vectors of model parameters, the so called “virtual
patients”. The average parameters vector describes the so
called “average patient”. In Messori et al. (2016) different
individualization techniques have been studied in silico
and compared to the linearization of the average virtual
patient. In silico data were collected during closed-loop
simulations of clinical protocols designed to produce a
sufficient input-output excitation without compromising
the patient safety. One of the methods proposed in Messori
et al. (2016), the non-parametric technique, was tested
in Del Favero et al. (2011) on real data collected during
controlled trials on hospitalized patients. Despite the short
duration of the dataset (less than 24h), the results were
promising and outperforming traditional system identifica-
tion strategies such as Prediction Error Methods. Further-
more we proposed the Impulse-Response (IR) technique



(Soru et al. (2012)) that showed very interesting results in
closed-loop in in silico subjects.

In this paper, we consider the last method and extend
its use to the closed-loop in free-living conditions (Renard
et al., 2016), described in section 3.1. This set-up is par-
ticularly challenging because the identification of reliable
models on real-data is more difficult than on simulated
data. Moreover free-living conditions are much more chal-
lenging than the highly controlled experimental conditions
of in-hospital studies, due to the many confounding factors
affecting blood glucose in real-life, such as physical ex-
ercise and differences in daily activities. Technical issues
affecting the AP prototype and human errors on patient-
provided information further complicate this set-up.

In this proof-of-concept case study, we consider a single
patient and show the improved prediction capabilities of
the patient-tailored model with respect to the average
model, currently used in the MPC controller during the
recent trials. First, we focus on a short (1 day) “clean” data
portion, manually selected by visual inspection among
those free from technical issues of the AP system including
infusion set failures and possible errors on patient pro-
vided information. Then, we face the challenge of assess-
ing model prediction on the entire trial data (1 month)
without any manual ad-hoc exclusion.

2. MODEL IDENTIFICATION:
THE MODIFIED IMPULSE RESPONSE METHOD

The measurable inputs of the patient model are the
injected insulin, i(t), and the assumed carbohydrates con-
tent, m(t). The model output is the glucose concentration
measured by the CGM sensor, CGM(t). Denoting with
I(s), M(s) and CGM(s) the Laplace transformations of
inputs and output, the model has the following structure:

CGM(s)=Gi(s)I(s)+Gm(s)M(s)+E(s)
where Gi(s) and Gm(s) are transfer functions to be es-
timated from the data and E(s) is the Laplace trans-
formation of the residual error e(t). Besides insulin and
meal, a number of other unmeasurable factors affect blood
glucose concentration, first and foremost physical exercise,
but also stress, illness, menstrual cycle, etc. The effect of
these unmeasured factors and other unmodeled dynamics
is partially accounted for by assuming e(t) to be a coloured
noise, i.e. assuming that e(t) is correlated with the past er-
rors e(t−1),e(t−2),... . Also the spectral characterization
of the error has to be estimated from the data.

2.1 Model Identification: Input-Output relation

Due to the impossibility of performing extensive and
potentially dangerous experiments on subjects, the identi-
fication technique described in Soru et al. (2012) exploits
the simulator for a preliminary analysis in order to identify
the Gi(s) and Gm(s) of the average in silico patient (Av)
of the UVA/Padova simulator (Dalla Man et al. (2014)).
Consequently, they are adapted to the specific patient by
minimizing the sum of squares of the difference between
actual CGM and the simulated one.
In particular, the transfer functions were determined by
impulse response experiments on the Av patient by start-
ing from basal conditions. They can be defined as

Gi(s)=
µi

(1+sTi1)(1+sTi2)(1+sTi3)(1+sTi4)

Gm(s)= µm

(1+sTm1)(1+sTm2)(1+sTm3)
(1)

since a fourth-order all-pole transfer function Gi(s) gave a
flexible, yet parsimonious, description of the observed in-
sulin impulse response, while a third-order all-pole transfer

function Gm(s) was adequate for the meal response.
These transfer functions have to be tailored to the patient,
so the identification phase was performed by estimating
the vector θ of the individual parameter values:

θ=
[
θi
θm

]
,θi=


µi
Ti1
Ti2
Ti3
Ti4

,θm=

 µm
Tm1
Tm2
Tm3


The procedure tries to optimize the Sum of Squares Resid-
uals (SSR) computed as differences between the observed
CGM data (CGM) and the CGM obtained by running a
simulation using the model (ĈGM):

SSR(θ)=

N∑
t=1

CGM(t)−ĈGM(t,θ) (2)

The residuals are a non linear function of the model param-
eters, so an iterative non linear least squares algorithm is
needed and the adopted initialization affect the final result.
We explore two different initializations in order to obtain
the best performance: the first one, already described in
Soru et al. (2012), uses all the parameters estimated for
the Av patient (θAv) as initial values, while the second one
uses only the time constants of the Av patient and uses
some available clinical parameters to adapt the two gains
µi and µm in order to define the initialisation vector (θCp).
In particular, the Correction Factor (CF) is defined as the
ratio between the ∆G obtained by administrating I units
of insulin and the insulin amount I itself, so:

∆GI

I
=CF

and a natural initialization for µi is µi = CF . Given the
Carbohydrate Ratio (CR) defined as the ratio between the
meal amount (m) and the insulin bolus (b) to compensate
it,

m(t)

b(t)
=CR

it is easy to obtain that the meal gain can be initialized as
µm= CF

CR . In this work, both initializations are taken into
account.
Given the required computational load, the optimization
problem has been divided in two parts. The first one has
the goal to optimize the parameters θi by keeping fixed θm
to the one chosen as initialization value:

θ∗i1=arg min
θi

SSR(θi)

with θiniti ∈{θAv,θCp}. This is a reasonable choice because
the meal response is a reasonably reliable estimation of the
patient response in both cases, θAv

m and θCp
m . In the second

part, the insulin parameters are initialized to θ∗i1 and the
entire θ, meaning both θi and θm, is estimated in order to
obtain its most accurate estimation:

θ∗=arg min
θ

SSR(θ)

with θinit2i =θ∗i1, θinit2m ∈{θAv,θCp} and θ∗=[θ∗i2 θ∗m2]
′.

Moreover, it is well-known from physiology that the
insulin response is affected by absorption delays. This a
priori information has been introduced in the model as a
pure delay of τ minutes in Gi(s), so that

Gd
i (s)=e−τs ·Gi(s) (3)

Gd
i (s) represents the transfer function between CGM(t)

and i(t), while now Gi(s) represents the transfer function
between CGM(t) and i(t− τ). During the identification
phase, the optimization problem is then fed with the de-
layed insulin signal. In this work, models without and with
delays of different magnitudes are investigated.



2.2 Model identification: stochastic part

After the estimation of Gi(s) and Gm(s) for maximizing
the simulation accuracy, we identify the stochastic part of
the model by describing the residual error e(t) as an AR
process of order n:

e(t)=a1e(t−1)+···+ane(t−n)+ϵ(t)
with ϵ(t) a zero-mean mean white noise with variance λ.
The parameters a1, ... , an and λ are estimated from the
data by minimizing the 1 steps ahead prediction. The
complexity of the AR model is fixed a priori and chosen
by trial and error to n=5.

3. DATA

3.1 Experimental set-up

In 2015, 20 patients have been enrolled in a 1-month
trial aimed to test the day-and-night use of an AP sys-
tem in free-living conditions (Renard et al., 2016). The
patients worn the AP prototype consisting of an suitably
modified android smartphone (the DiAs platform, Keith-
Hynes et al. (2014)), communicating wirelessly with the
G4 Platinum CGM system, Dexcom Inc. and the Ac-
cuCheck Spirit Combo insulin pump, Roche Diagnostic.
The computational unit run the MPC controller described
in Toffanin et al. (2013). Carbohydrates ingested at meal
time or for snack and those used to treat hypoglycemic
episodes were manually entered by the patient into the
system. Capillary blood glucose measurements, obtained
by pricking patient’s finger (Self-Monitoring Blood Glu-
cose measurements, SMBG) were performed for CGM
calibration, at meal and to confirm hypo or hyperglycemia
detected by the CGM sensor.
In this proof-of-concept we consider 1 patient on the 20
involved in the trial.

It should be noted that this prototype was not specif-
ically designed to collect data for model identification,
posing a number of technical issues regarding device syn-
chronization, completeness of stored data and reliability of
patient’s provided information. Furthermore, a few mal-
functions occurred during the trial hampering the reli-
ability of the associated data portions. Hence, a careful
data selection phase has been performed before the model
identification.

3.2 Data Preprocessing

Current CGM sensors have to be calibrated two
times/day by using SMBG measurements to produce reli-
able glucose readings. Imperfect calibration induces a sys-
tematic distortion in CGM measurements as illustrated in
Figure 1 and modeled in Facchinetti et al. (2015). Denoting
with CGMb.p.(t) the CGM before preprocessing, a simpli-
fied version of the model in Facchinetti et al. (2015) is:

CGMb.p.(t)=αg(t)+β+γt+e(t)
where g(t) is the true glucose concentration e(t) is a
colored noise and α, β, γ are the “decalibration” model
parameters. These parameters abruptly change every time
a calibration is performed.

Apparently, this distortion can affect the estimate of
model coefficients and introduce spurious jumps and ad-
ditional dynamics. To mitigate these artifacts, we em-
ploy a pre-processing algorithm known as “retrofitting”
(Del Favero et al., 2014), that retrospectively corrects
this calibration-induced distortion by leveraging on the
other SMBG measurements collected during the trial. Here

we only illustrate the effect of the algorithm with Fig-
ure 1, while we refer the interested reader to the original
manuscript for more details.
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Fig. 1. Illustration of CGM data pre-processing performed
by the retrofitting algorithm, taken from Del Favero
et al. (to appear). Due errors and uncertainty in the
calibration process the CGM measurement (dashed
blue line) overestimates the true blood glucose
(gray diamond, not available in our dataset). The
retrofitting algorithm, leveraging on a few SMBG
measurements collected during the trial (red dots),
compensates for calibration error and the output
of the method (red solid line) is closer to the true
glucose concentration.

Let us remark that in this work CGM(t) always refers
to the CGM trace after the preprocessing by retrofitting.
Furthermore, it should be noted that the retrofitting al-
gorithm improves the accuracy of the CGM, but it does
not solve the issue of data reliability previously mentioned
(e.g. due to AP malfunctioning or human errors on patient-
provided data). As such, the extraction of a “clean” data
portion remains of interest even when this preprocessing
is performed.

Fig. 2. The training-set containing the data used for
identification. On the top panel the output signal, on
the bottom panel the input signals.

3.3 Final Datasets

The final datasets consists of 3 signals: CGM(t), the sys-
tem output, obtained by preprocessing the trace collected
by the sensor with the retrofitting algorithm described
above; the injected insulin i(t), recorded by the system;
the carbohydrates assumption m(t), inserted manually by
the patient.



Three datasets were selected: the training-set, con-
taining 30 hours of data picked up randomly among the
available ones; test-set A, a 1-day dataset, completely
disjoint the training-set and carefully selected in order to
contain only complete and reliable data; test-set B the
entire 1-month dataset containing all data from the trial
for the selected patient. It is important to note that the
test-set B is really challenging because it includes all the
problems experienced during the whole trial.

As an example, the training-set is depicted in Figure 2.

4. PERFORMANCE METRICS

To assess the efficacy of an identified model we compare
the model predictions of future CGM against its actual
values CGM(t) on the test-sets previously mentioned.
Various Prediction Horizon (PH) are considered.
In details, let us denote with ĈGM(t|t−PH) the PH-steps
ahead prediction of a model, i.e. the prediction obtained
by exploiting past glucose values up time t - PH, CGM(t−
PH), CGM(t−PH−1), ... and inputs up to time t, i(t),
i(t−1), ..., m(t), m(t−1), ... . Furthermore, let us denote
with PH = +∞ the glucose simulation, i.e. the output
of the model when fed with the inputs i(t), i(t− 1), ...,
m(t), m(t−1), ... without taking advantage of any of the
measure outputs.

The signal ĈGM(t|t− PH) and CGM are compared
using the metrics listed below. The starting point is Root
Mean Square Error (RMSE) defined as:

RMSE(PH)=
1

N
||CGM(t)−ĈGM(t|t−PH)||.

where we denote with ||x(t)|| the l2 norm of the signal x(t),
namely

√
ΣN

t=1x(t)
2, N being the length of the dataset.

RMSE assesses the variance of the prediction error: the
larger it is, the poorer is the prediction. Instead of pre-
senting this absolute quantity, we report two normalized
versions commonly used in system identification (Cescon
and Johansson, 2009; Finan et al., 2009).

Metric 1: FIT.
Defined as

FIT (PH)=100∗

(
1− ||ĈGM(t|t−PH)−CGM(t)||

||CGM(t)−CGM(t)||

)
where CGM(t) is the sample mean of the glucose signal.
FIT is equal to 100% if and only if CGM(t) = CGM(t)
∀t = 1,...,N (perfect prediction), and smaller than 100%
otherwise. Note that FIT can become negative if the
RMSE is larger than the sample variance of the signal.

Metric 2: Coefficient of Determination (COD).
Defined as

COD(PH)=100∗

(
1− ||ĈGM(t|t−PH)−CGM(t)||2

||CGM(t)−CGM(t)||2

)
Similarly to FIT, COD is equal to 100% for perfect pre-
dictions and smaller than 100% and possibly negative
otherwise.

Metric 3: Pearson’s correlation coefficient ρ.
Defined as

ρ(PH)=
tmax∑
t=PH

(CGM(t)−CGM)(ĈGM(t|t−PH)−ĈGM(t|t−PH))

||CGM(t)−CGM ||·||ĈGM(t|t−PH)−ĈGM(t|t−PH)||

with ĈGM(t|t−PH) being the sample mean of the pre-
dicted CGM.

All the metrics mentioned above are function of the
prediction horizon PH. Since we aim to use the identified
model in our MPC controller (Toffanin et al. (2013)), that
computes model predictions with sample time of Ts = 5
minutes up to 60 minutes (PH=12), we consider PH =
[Ts,2Ts...,12Ts,+∞] = [5,10,...,60,+∞] min. Furthermore,
the average value of each metric for the considered PHs
was used as main outcome to evaluate the models.

5. RESULTS

We identified 10 models using all the possible combina-
tions of the initialisations, θiniti ∈ {θAv,θCp}, and delays,
τ ∈{0,15,...,60} as reported in Table 1.
The performance metrics evaluating the identified models

Model Parameters
µ0
i µ0

m τ

M1 µAv
i µAv

m 0
M2 µAv

i µAv
m 15

M3 µAv
i µAv

m 30
M4 µAv

i µAv
m 45

M5 µAv
i µAv

m 60
M6 µId

i µId
m 0

M7 µId
i µId

m 15
M8 µId

i µId
m 30

M9 µId
i µId

m 45
M10 µId

i µId
m 60

Table 1. List of all considered models.

on test-set A and test-set B are reported in Table 2 and
in Table 3 respectively; in both tables the performance
of the average in silico model (Av) is also reported for
comparison with the patient-tailored models.

Model FIT COD ρ

M1 51.96 74.71 0.86
M2 52.65 75.25 0.87
M3 52.89 75.32 0.87
M4 55.01 76.6 0.87
M5 55.5 77.29 0.88
M6 52.25 74.8 0.86
M7 53.72 76.51 0.88
M8 52.67 74.67 0.87
M9 55.63 77.88 0.88
M10 54.96 77.05 0.88
Av 39.83 59.38 0.82

Table 2. Performance metrics of the identified
models for patient 1 on test-set A.

Model FIT COD ρ

M1 40.92 53.84 0.76
M2 33.37 41.88 0.7
M3 42.29 54.55 0.76
M4 38.72 49.61 0.74
M5 48.18 63.42 0.81
M6 39.16 51.27 0.74
M7 40.40 53.16 0.74
M8 36.48 46.98 0.72
M9 40.98 53.27 0.75
M10 44.88 59.77 0.78
Av 31.12 45.46 0.74

Table 3. Performance metrics of the identified
models for patient 1 on test-set B.

It is evident that the technique is robust to non-optimal
algorithm initialization and wrong insulin delay estima-
tion. The best patient-tailored model is M9 for test-set



A, that uses the clinical patient information as initial con-
dition and assumes the insulin delay τ =45 minutes. The
improvements of M9 respect to the Av model are of 40% in
term of FIT, 31% in term of COD and 7% in term of ρ. Fig-
ure 3 reports the performance metrics as a function of PH,
the predictions FIT (a), COD (b) and ρ (c), respectively,
for all the considered models with the test-set A. The
figure clearly shows that the performance of the individual-
ized models initially decreases as the Av model (see PH<
6), but afterwards reaches a stable value (e.g. around 40 for
the FIT) whereas of the Av model continues to decrease.

If the entire trial is considered (test-set B), the best
patient-tailored model is M5, which uses the clinical pa-
tient information for initializations and assumes an insulin
delay τ = 60 minutes. The improvements of M5 with
respect to the Av model are of 55% in term of FIT, 40%
in term of COD and 9% in term of ρ. Figure 4 reports the
performance metrics as a function of PH, the predictions
FIT (a), COD (b) and ρ (c), respectively, for all the con-
sidered models with test-set B. The improvements of the
individualized models is less evident, since the decreasing
trends are similar. This is probably due to the larger im-
pact of the many confounding factors and technical issues.
In general, both initializations show a good performance
with a preference for the clinical one that includes addi-
tional information about the patient; the introduction of
an a priori insulin delay τ seems to improve the prediction
ability of the model, particularly with a value between 45
and 60 minutes.

6. CONCLUSION

In this proof-of-concept case study, the technique de-
scribed in Soru et al. (2012) has been extended to be
used on free-living data collected without ad-hoc clinical
protocols. The data used in this work were collected during
a 1 month AP trial in free-living conditions (Renard et al.
(2016)). The individualized models are compared with the
“average” model used to synthetize the MPC controller
employed in the trial. The patient-tailored models show a
performance improvement and prove to be robust to non-
optimal algorithm initialization in two test-sets.

The main limitation of this contribution is that it fo-
cuses only on a single patient, but the good results ob-
tained by considering the entire month, where the patient
habits have widely changed, represent an important start-
ing point for future application.

Future works will include the evaluation of the individ-
ualization techniques on the entire dataset of 20 patients.
Furthermore we will work to the application of these
techniques to adapt the patient-tailored model so that the
model follows the patient response changes over time.
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