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One-Day Bayesian Cloning of Type 1 Diabetes
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Abstract—Objective: The UVA/Padova Type 1 Diabetes (T1DM)
Simulator has been shown to be representative of a T1DM popu-
lation observed in a clinical trial, but has not yet been identified
on T1DM data. Moreover, the current version of the simulator is
“single meal” while making it “single-day centric,” i.e., by describ-
ing intraday variability, would be a step forward to create more
realistic in silico scenarios. Here, we propose a Bayesian method
for the identification of the model from plasma glucose and insulin
concentrations only, by exploiting the prior model parameter dis-
tribution. Methods: The database consists of 47 T1DM subjects,
who received dinner, breakfast, and lunch (respectively, 80, 50,
and 60 CHO grams) in three 23-h occasions (one open- and one
closed-loop). The model is identified using the Bayesian Maximum
a Posteriori technique, where the prior parameter distribution is
that of the simulator. Diurnal variability of glucose absorption and
insulin sensitivity is allowed. Results: The model well describes glu-
cose traces (coefficient of determination R2 = 0.962 ± 0.027)
and the posterior parameter distribution is similar to that included
in the simulator. Absorption parameters at breakfast are signifi-
cantly different from those at lunch and dinner, reflecting more
rapid dynamics of glucose absorption. Insulin sensitivity varies in
each individual but without a specific pattern. Conclusion: The in-
corporation of glucose absorption and insulin sensitivity diurnal
variability into the simulator makes it more realistic. Significance:
The proposed method, applied to the increasing number of long-
term artificial pancreas studies, will allow to describe week/month
variability, thus further refining the simulator.

Index Terms—Artificial pancreas, circadian variability, closed-
loop control, compartmental modeling, in silico.

I. INTRODUCTION

S IMULATION models of the glucose–insulin system are
extremely useful for studying type 1 diabetes (T1DM)

treatments and in particular for the design, testing, and valida-
tion of closed-loop control algorithms for artificial pancreas.
In fact, it is widely accepted that preclinical testing using
computer simulation accelerates the development of control
algorithms, since a number of different experimental scenarios
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can be easily investigated, allowing relevant time- and cost
saving, and avoiding the need of animal testing [1].

A T1DM computer simulator is made up of a mathematical
model describing glucose dynamics, a set of in silico subjects,
i.e., model parameter vectors, summarizing the intersubject vari-
ability of the glucose response to a given external perturbation
(usually a meal), and an interface that allows the user to set
up simulation scenarios, running the simulations, displaying
and saving the results. Several simulation tools have been de-
veloped (see [1] and [2]–[5] for a review), each one based on a
comprehensive mathematical model and equipped with an in sil-
ico population. In particular, the University of Virginia (UVA)
and Padova T1DM Simulator has been accepted by FDA as
a substitute for preclinical trials of certain insulin treatments,
including closed-loop algorithms [2], [5].

A clinical validation of the UVA/Padova T1DM simulator has
been reported [6], where it has been shown that the virtual adult
population of the simulator is representative of a T1DM pop-
ulation observed in a clinical trial by comparing 96 measured
postprandial glucose profiles with those simulated in 100 in
silico subjects using well-accepted outcome metrics of diabetes
control [6]. Recently, two richer datasets in T1DM have become
available, one where the diurnal pattern of insulin sensitivity in
19 T1DM subjects was investigated with the triple tracer meal
method with frequent plasma glucose and insulin concentration
measurements [7], and one where 47 T1DM subjects in six clin-
ical centers underwent three-randomized 23-h admissions (one
open-loop and two closed-loop) with frequent plasma glucose
and insulin concentration measurements [8]. With these infor-
mative glucose and insulin datasets, we can now attempt to fit,
for the first time, the simulator to a T1DM subject. Since in
[7], three identical meals (50 g of carbohydrate) were given in
order to eliminate confounding effects on the diurnal pattern of
insulin sensitivity in the 19 T1DM subjects, we prefer to fo-
cus here on the dataset of [8] where the three meals resemble
real life breakfast, lunch, and dinner and a much larger number,
i.e., 141, of daily traces of glucose and insulin concentrations is
available (see Fig. 1).

To do that, Bayesian parameter estimation techniques are
very helpful. Different strategies can be adopted. For instance,
recently, Haidar et al. proposed a Bayesian method, called
stochastic e-cloning [9], based on Markov Chain Monte Carlo
and regularization, and used it for the in silico cloning of
12 young T1DM subjects from plasma glucose and insulin
concentration data. Model structure was that incorporated in
the T1DM simulator proposed by the same group [3]. However,
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Fig. 1. Mean± standard deviation of plasma glucose (upper panel) and insulin
(lower panel) concentrations in T1DM subjects (N = 141).

new multiplicative and additive fluxes, not included in the orig-
inal model, had to be introduced to obtain a good fit of glucose
and insulin data. The method was then tested on a T1DM pop-
ulation of 12 subjects, and the computational time required to
get a virtual clone is quite long (about 5 days with a standard
PC) likely due to the use of Markov Chain Monte Carlo, made
necessary by the lack of a priori information available on model
parameter distribution.

The aim of this study is thus threefold: 1) propose a method
to identify the model included into the latest version of the
UVA/Padova T1DM simulator [5] from the 141 daily profiles
of T1DM plasma glucose and insulin concentrations measured
in [8]; 2) move from a single meal to a breakfast/lunch/dinner
meal data scenario, thus accommodating intrasubject variability
of glucose absorption and insulin sensitivity; and 3) compare
the intersubject parameter variability of the in silico population
with that estimated from the data, thus possibly improving the
in silico population included into the simulator.

To achieve the first objective, at variance with [9], we re-
sort to a Maximum a Posteriori Bayesian approach, which ex-
ploits both the information provided by the experimental data
and the a priori knowledge on model parameters represented
by the joint parameter distribution incorporated in the T1DM
simulator. Plasma insulin concentration will be used as model
forcing function (i.e., assumed to be known without error) and
the identification of the UVA/Padova simulator on a specific
T1DM subject will provide an in silico clone, compatible with
the simulator. Therefore, the possibility to clone a large num-
ber of T1DM individuals will allow us to improve the in silico

population included into the simulator in two respects: we will
move from a single meal to a breakfast/lunch/dinner meal sce-
nario accommodating intrasubject variability (aim 2), and will
better describe intersubject variability (aim 3).

II. DATABASE AND PROTOCOL

Forty-seven T1DM subjects (Age = 42.0 ± 10.1 years, BW
= 77.5 ± 13.4 kg, BMI = 24.4 ± 0.1 kg/m2) were recruited
in six clinical centers [Academic Medical Center Amsterdam,
NL (N = 7); CHRU Montpellier, FR (N = 8); Medical Univer-
sity Graz, AT (N = 8); Profil Institute for Metabolic Research
GmbH, GER (N = 8); University of Cambridge, U.K. (N = 8);
University of Padova, IT (N = 8)], within the AP@home FP7-
EU project, in which subjects underwent three randomized 23-h
admissions: one open-loop and two closed- loop sessions. Dur-
ing the open-loop visit, subjects had their usual insulin therapy
through an insulin pump, while the insulin infusions were man-
aged by a control algorithm during the closed-loop admissions.
For each admission, subjects received dinner D (19:00, day1),
breakfast B (08:00, day2), and lunch L (12:00, day2), respec-
tively, containing 80, 50, and 60 g of carbohydrates (CHO), and
did a moderate physical activity session (15:00, day2). Through-
out the admissions, venous blood samples were collected for
measurements of plasma glucose and insulin concentrations ev-
ery 15 min in the first 2 h after each meal, every 1 h at night and
every 30 min elsewhere (average measures of plasma glucose
and insulin are reported in Fig. 1). Plasma glucose was measured
using YSI 2300 STAT Plus Analyzer (YSI incorporated, Yellow
Springs, OH, USA) and plasma insulin was measured using
an insulin chemiluminescence assay (Invitron Ltd., Monmouth,
U.K.) (The Institute of Life Sciences, Swansea University, S.
Luzio). For a detailed description of the clinical protocol, we
refer to [8].

III. MODEL

The model included into the T1DM simulator is shown in
Fig. 2. Briefly, this model consists of glucose, insulin, and
glucagon subsystems, and puts in relation the measured plasma
concentrations, i.e., glucose G, insulin I, and glucagon H, with
the glucose fluxes (meal rate of appearance Rameal , endogenous
production EGP, utilization U, renal extraction E), the insulin
fluxes (rate of appearance of subcutaneous insulin RaI , degrada-
tion DI ), and the glucagon fluxes (secretion SRH , degradation
DH ). The model consists of 18 differential equations and 39
parameters. For sake of clarity, we report model equations in
the Appendix section, but we refer to [5] for a more detailed
description.

IV. BAYESIAN MODEL IDENTIFICATION

A. Fundamentals

Given the complexity of the model, the sole availability of
plasma glucose and insulin data makes impossible to reliably
identify the model by using nonlinear least squares or maximum
likelihood identification techniques. In fact, one can obtain a
good description of plasma glucose and insulin data with many
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Fig. 2. Scheme of the T1DM simulator.

different descriptions of Rameal , EGP, and U, i.e., a good model
fit can be achieved with several combinations of model param-
eters. To overcome this limitation, here, we adopt a Bayesian
approach, i.e., the estimation of the parameter vector p takes
into account both the information provided by the data vector
z, i.e., the a posteriori information, and the knowledge on the
a priori joint distribution of p, assumed independent form z.
In particular, the Maximum a Posteriori (MAP) Bayesian es-
timator provides a point estimate p so that, once fixed z, the a
posteriori probability density of p is maximum.

p̂MAP = argmax
p

f(p |z ) (p|z) (1)

where

f(p |z ) (p|z) =
f(z |p) (z|p) fp (p)

fz (z)
(2)

with fp(p) denoting the a priori probability density of p, con-
sidered random, fz (z) the a priori probability density of z, and
f(z |p)(z|p) the a posteriori probability density of z. Assuming
that z is affected by measurement error v, Gaussian, with zero
mean and covariance

∑
v , and p is extracted from a Gaussian

distribution with mean μp and covariance
∑

p , (1) can be rewrit-

ten as

p̂MAP = argmin
p

{
[z − G (p)]T Σ−1

v [z − G (p)]

+ [p − μp ]
T Σ−1

p [p − μp ]
}

(3)

with G(p) denoting the model prediction. In other words, the
first term in (3) is the model fit, while the second term repre-
sents the distance of the estimated parameters from their joint
distribution.

In addition, to guarantee the nonnegativity of model parame-
ters, parameter distributions are assumed to be lognormal

s = log (p) . (4)

Therefore, the estimated parameter vector can be expressed
as

p̂ = exp (ŝ) (5)

where

ŝ = argmin
s

{
[z − G (exp (p))]T Σ−1

v [z − G (exp (p))]

+ [s − μs ]
T Σ−1

s [s − μs ]
}

(6)
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with μs and
∑

s denoting the mean and the covariance matrix
in logarithmic form. For more details on MAP estimation, we
refer to [10].

B. Model Identification

The T1DM simulator does not yet account for the effect of
physical activity on glucose dynamics. Thus, the model iden-
tification was performed excluding data on physical exercise
sessions, which however occurred at the end of the experiment.
Hence, the model was identified on 20-h plasma glucose data
using the MAP estimator implemented in MATLAB R2013b
[11]. In order to avoid local minima, the minimization of the
objective function was performed using a cascade of a direct
search method followed by a gradient-based algorithm. Mea-
surement error was assumed to be additive, Gaussian, with zero
mean and constant coefficient of variation (CV) of 2%. Plasma
insulin concentration was the model forcing function and was
assumed to be known without error. As it will be discussed in the
Conclusion section, the choice of using plasma insulin as model
input rather than the insulin pump delivery rate is motivated by
necessity to set up the methodology in a simpler context, i.e., in
this case only the glucose subsystem model parameters are es-
timated. Similarly, being glucagon measurements not available,
the average glucagon model parameters were used.

In addition, model identification provides an estimation of
the glucose fluxes, i.e., Rameal calculated from the model
(A3), and the net rate of disappearance, defined as Rdnet =
U + E − EGP . In particular, Rdnet is considered due to the
data information, i.e., no tracers are employed during the ex-
periment, therefore, it is difficult to distinguish U, E, and EGP
contributes.

The a priori information in (6) is the joint parameter distribu-
tion used to generate the adult in silico population included into
the T1DM simulator [5]. To account for the physiological intra-
subject parameter variations, diurnal variability of parameters
describing glucose absorption [kabs , kmax , and kmin in (A3) and
(A4)] and insulin sensitivity [kp3 and Vmx in (A5) and (A10)]
was permitted. In particular, gastric absorption parameters were
allowed to assume different values at B, L, and D, while insulin
sensitivity was allowed to be different at B with respect to L and
D, while L and D were similar. These assumptions are based
on the fact that different meal compositions have a different im-
pact on glucose absorption dynamics, and that T1DM subjects
exhibit an insulin sensitivity trend lower at B compared to L
and D [7]. The intraday variability was implemented for each
time-varying parameter as an almost step-wise-line signal that
varies three times a day (i.e., before each meal).

C. Model Assessment

In order to assess the goodness of the model fit, the distri-
bution of some performance metrics were analyzed, such as
the coefficient of determination (R2) and the performance index
(FIT) defined as

FIT = 1 −
√∑N

k=1 (Gmeas (tk ) − Gpred (tk ))2

∑N
k=1 (Gmeas (tk ) − Gmean)2 (7)

where Gmeas is the measured and Gpred is the simulated glucose
concentration, Gmean is the average measured glucose, and N is
the number of samples. The precision of parameter estimates is
expressed by the coefficient of variation (CV, defined as the ratio
between the standard deviation of the estimated parameter and
the parameter value), which is related to how much a variation of
a specific parameter influences the model prediction (the lower
the CV, the higher the sensitivity of model prediction to the
parameter).

D. Assessment of a Priori Parameter Distribution

The Bayesian MAP estimation technique is a very powerful
tool to identify models whenever the available data are scarce
in comparison to model complexity. However, the choice of the
prior distribution is critical and influence the final parameter
estimates. If the prior is too informative (small variance) the
risk is that parameter estimates collapse into the prior and the
model does not fit the data well. On the other hand, if the prior is
not enough informative (large variance) the parameter estimates
may be imprecise. Ideally, the a priori information and the a
posteriori information should be well balanced. This is reason-
ably achieved if the fit of the data is good and the parameter
estimates are precise. However, this performance does not guar-
antee that the a priori parameter distribution is representative
of our type 1 diabetic population. To investigate the agreement
of the prior with the posterior and the stability of the solution,
the distributions are compared by a statistical test (see Statis-
tical Analysis) and the iterative two-stage method. Briefly, for
sake of convenience, let us call: Stage1 the model identification
performed using the prior included into the simulator, Stage2
the model identification performed using the posterior obtained
from Stage1 as new prior, and so on. We compared the posteriors
with the priors after each iteration, i.e., Stage2 versus Stage1,
Stage3 versus Stage2, etc. In particular, we calculated, for each
subject, the absolute relative difference δpj :

δpj = [δp1,j , . . . , δp25,j ] , j ≥ 2 (8)

with

δpi,j =
∣
∣
∣
pi , j −pi , j −1

pi , j −1

∣
∣
∣ , i ∈ [1, . . . , 25] (9)

where pi,j is the value of ith parameter estimated at the jth stage.
The lower the δpi,j the better the agreement between prior and
posterior.

E. Statistical Analysis

Results are presented as median and interquartile range (IQR),
if not differently stated. Two sample comparisons were done
by Wilcoxon Signed Rank test, with significance level set at
P = 0.05.

V. RESULTS

A. Fit, Parameters, and Fluxes

The model was identified in all the available 141 glucose
traces, and well fitted the glucose data, as proved by the average
weighted residuals time course, shown in Fig. 3. The analysis
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Fig. 3. Average weighted residuals [vertical bars represent standard deviation
(SD)] of model fit on plasma glucose data (N = 141).

Fig. 4. Model prediction versus plasma glucose concentration (upper panel)
and the corresponding glucose fluxes, i.e., Ram eal (middle panel) and Rdnet
(lower panel), provided by the model in an illustrative subject. Data are indicated
with dots, while model prediction and fluxes are shown with continuous lines.
B, L, D, and HT, respectively, indicate breakfast (50 CHO grams), lunch (60
CHO grams), dinner (80 CHO grams), and hypoglycemia treatment (10 CHO
grams).

of performance metrics supported the quality of model fit: mean
± SD (min – max) of R2 and FIT were 0.962 ± 0.027 (0.854 –
0.996) and 0.812 ± 0.066 (0.615 – 0.934), respectively.

An example of the glucose model fit in a representative sub-
ject is shown in Fig. 4, upper panel. In addition, we provide
the model-derived time courses of Rameal and net rate of dis-
appearance Rdnet (see Fig. 4 middle and bottom panels).

As expected, having resorted to a Bayesian approach, model
parameters are estimated with good precision (CV = 1.3% ±
0.2%), despite the complexity of the model with respect to
available data.

B. Intra- and Intersubject Variability

The a posteriori distribution of model parameters is generally
in agreement with that included in the UVA/Padova simulator.
However, some differences occur. In particular, glucose gastric
emptying parameters at B are significantly different from those
at L and D (see Fig. 5 left panel), reflecting a more rapid glucose
dynamics at B, possibly due to the different meal compositions
of the B versus L and D. On the other hand, insulin sensitiv-
ity varies during the day in a subject-specific fashion, without
showing a consistent pattern in the population (see Fig. 5 right
panel), in agreement with what already reported in [7]. The
complete lists of glucose absorption and insulin sensitivity pa-
rameter estimates are reported in Table I.

The comparison among parameter distributions included in
the simulator and those obtained at B, L, and D in this study are
shown in Fig. 6, for one of the glucose absorption parameters
(kmax ) and insulin sensitivity (Vmx ). In particular, the distribu-
tions of kmax (left panel) have the same shape, but the mean for
L and D are significantly lower than those of B and the sim-
ulator (P < 0.0001 when comparing L&D against both B and
the simulator prior). On the other hand, distributions of insulin
sensitivity at B, L, D, and the simulator (right panel) are statis-
tically identical (P > 0.05 when comparing L&D against both
B and the simulator prior).

C. Iterative Two Stage

After the first iteration, the posteriors obtained at Stage1 and
Stage2 were statistically the same except for kabs at breakfast
(P = 0.03). As concerns the relative difference, we found that
δp2 was 0.059 ± 0.044 (mean ± SD), δp3 = 0.045 ± 0.035 and
δp4 = 0.034 ± 0.028.

VI. DISCUSSION

The UVA/Padova T1DM Simulator [5] has recently under-
gone a clinical validation by proving that the virtual subjects are
representative of the T1DM population observed in a clinical
trial [6], but, given the complexity of its model, it has never
been identified in T1DM individuals so far. The objective of
this study was thus threefold: 1) propose a method to identify
the model included into the simulator from plasma glucose and
insulin concentration data; 2) move from a single meal to a
breakfast/lunch/dinner meal data scenario, thus accommodat-
ing intrasubject variability of glucose absorption and insulin
sensitivity; and 3) compare data versus in silico intersubject
variability, and, if necessary, improving the in silico population
included into the simulator.

To address point 1), the method was based on a Bayesian
approach, which is able to cope with the identification of a
model having a large number of parameters, by using the a
priori knowledge on model parameter distributions. The natural
choice was to use, as a priori information, the joint parameter
distributions included into the UVA/ Padova simulator.

In order to tackle points 2) and 3), concerning the intra-/
intersubject variability, we employed an appropriate dataset,
consisting of 47 T1DM subjects, each studied three times with
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Fig. 5. Absorption parameter, km ax , (left panel), and insulin sensitivity, Vm x , (right panel), estimated at breakfast B, lunch L, and dinner D [vertical bars
represent standard error (SE)]. ∗P<0.05 with respect to B, from Wilcoxon Signed Rank Test.

TABLE I
A) GLUCOSE ABSORPTION (kabs , km ax , km in ) AND B) INSULIN SENSITIVITY (Vm x , kp3 ) PARAMETER ESTIMATES

A: Glucose Absorption Parameters

Parameter B L D

ka b s (min−1) 0.130 [0.092–0.174] 0.130 [0.076–0.216] (NS) 0.147 [0.098–0.209] (NS)

km a x (min−1) 0.040 [0.027–0.059] 0.028 [0.021–0.041] (<0.0001) 0.030 [0.021–0.043] (<0.0001)

km in (min−1) 0.015 [0.009–0.019] 0.010 [0.005–0.015] (<0.0001) 0.008 [0.005–0.011] (<0.0001)

B: Insulin Sensitivity Parameters

Parameter B L&D

Vm x (mg/kg/min per pmol/L) 0.051 [0.034–0.090] 0.058 [0.037–0.080] (NS)

kp 3 (mg/kg/min per pmol/L) 0.015 [0.006–0.025] 0.014 [0.008–0.033] (NS)

Values are reported as median [IQR] (P value with respect to B, from Wilcoxon Signed Rank Test). NS, not significant
(P > 0.05).

Fig. 6. Distribution of km ax , (left panel), and Vm x , (right panel), at breakfast B (red squares), lunch L (green triangles), and dinner D (blue circles) compared
to the prior (gray region).
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a 23-h admissions, in which meals times were scheduled and
CHO contents were determined with precision. In particular,
the length of the experiment allows us to evaluate the variability
of some relevant parameters during the day, i.e., meal glucose
absorption and insulin sensitivity, while the large number of
data analyzed (N = 141) permits to reliably infer about the
intersubject variability.

The glucose time courses were well predicted and the esti-
mated postprandial glucose fluxes, e.g., meal rate of appearance
and net rate of disappearance, were also calculated (see Fig. 4).
Model parameters were estimated with precision and their pos-
terior distribution was in agreement with that included in the
current simulator. In order to evaluate the adequacy of the prior
distribution, we tested the method using an iterative two-stage
approach. Results show that the relative differences in model
parameters were modest, getting smaller, and smaller with the
iterations. Paralleling, the posterior distributions were statisti-
cally identical except for some of the absorption parameters.
This result is reassuring, since these parameters were expected
to vary more than the others, since the meal composition in this
dataset (solid meal) is different from that used for generating
the prior (liquid meal [12]).

Taken together, these results confirm that the choice of the
prior is key. Here, we used the parameter distribution included
into the UVA/Padova T1DM Simulator, which was derived from
multiple tracer data [12], [13]. In principle, other distributions
can be used, and it is likely that different a priori parameter dis-
tributions would lead to different parameter estimates, and thus,
to different a posteriori distributions. We believe that the power
of the proposed method resides in the availability of a good prior
(the one of the simulator), which provides repeatable parameter
solutions: in fact, we demonstrated that the distribution of con-
stant parameters remains the same among the iterations, and, at
the same time, the fitting procedure is sensitive enough to cap-
ture the variation of the important parameters, e.g., those related
to the meal composition and insulin sensitivity. In this regard, it
is important to point out that the significant differences observed
in distributions of glucose absorption parameter (see Fig. 6 left
panel) were expected: in fact, the parameter distributions of the
simulator were obtained from subjects who received a mixed
meal containing rapidly absorbed carbohydrates. Hence, it is
reasonable that the posterior distribution estimated at B is vir-
tually superimposable to the prior, since, usually breakfast con-
tains fast carbs, while the posterior distributions estimated at
L and D are statistically different from the original ones, since
usually those meals are characterized by a slower absorption.
This, again, supports the notion that the information content in
the data is rich enough to observe this important variation in
model parameters and that the prior is not too constraining, so
that model parameters are allowed to move away from it, if data
say so.

This is an important step forward with respect to [14], where
a model of intraday variability of insulin sensitivity only was
introduced into the T1DM simulator: the novelty here is the
additional incorporation into the simulator of the concomi-
tant diurnal variation of meal glucose absorption parameters by

distinguishing the breakfast CHO absorption versus lunch and
dinner.

Our findings confirmed what has been found by Haidar and
coworkers [9], i.e., that the use of time-varying model parame-
ters helps to better describe the intraday variability. However, at
variance with [9], the introduction of intraday variation of some
model parameters (three describing meal glucose absorption and
two representing insulin sensitivity) allowed us to improve the
model fit, but still retaining the physiological plausibility of the
model structure, parameters, and model-derived variables. In
particular, we found that insulin sensitivity was lower, on aver-
age, at breakfast (B) compared to lunch (L) and dinner (D), but
not significantly, i.e., it varied during the day in a subject-specific
fashion, without showing a consistent pattern in the population
(see Fig. 5 right panel), as already reported in Hinshaw et al.
[7] and Visentin et al. [14]. These variations in insulin sensitiv-
ity could implicitly include the effect of dawn phenomenon, in
agreement with what observed in T1DM subjects [15], i.e., an
increase of insulin requirement from 2–3AM to 9–10AM, likely
due to a decrease in insulin sensitivity.

Finally, our method proved to be also very efficient from
a computational point of view: model identification of a sin-
gle subject required about 3 h on average, using a 2.6-GHz
computer.

This contribution is a first step in developing a method to
provide a virtual clone of a specific T1DM subject. As with
all modeling studies, there are limitations that will hopefully
be tackled in future work. To set up the methodology, we have
started from plasma glucose and insulin data and used plasma
insulin as a forcing function, thus this method currently provides
only a partial clone of a T1DM subject, since the model identi-
fication is conducted on the sole glucose subsystem, while the
insulin subsystem is bypassed by using plasma insulin data as
forcing function. However, plasma insulin is only measured in
inpatient clinical studies and this limits the wider applicability
of the method. This also precludes the use of the method for pre-
diction and control personalization, which require the capability
of “cloning” the subject from glucose sensor and insulin pump
data. Therefore, the next step will definitely be the inclusion of
the insulin subsystem and using the insulin pump delivery rate as
a forcing input. This will also open up much larger databases on
T1DM subjects using a sensor-augmented pump insulin therapy.
Another refinement will consists in moving form plasma glu-
cose measurements to subcutaneous glucose sensor data. This
will permit to exploit the important information provided by the
large and increasing number of long-term outpatient studies.
This will clearly require some appropriate signal preprocessing,
e.g., retrospective fitting [16], which proved to be a valid tool to
obtain a reliable estimate of the original blood glucose signal,
thus improving the accuracy of sensor measurements. In moving
to weekly/monthly scenarios (longer than a single day), some
refinements of the method will be considered, for example, the
model identification could focus on a subset of model param-
eters, i.e., the “highly sensitive” parameters that are expected
to play a key role in mid-/long-term variability, such as insulin
sensitivity and glucose absorption parameters.
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VII. CONCLUSION

In conclusion, here, we presented a Bayesian method to
identify the model of the recent version of the UVA/Padova
T1DM simulator [5]. This method exploits the a priori joint
parameter distribution used for the generation of the virtual
subjects included into the simulator. The method proved to be
robust, having been successfully applied on a large population of
T1DM subjects. Moreover, the a posteriori parameter distribu-
tion agreed with that included into the simulator, thus proving the
validity of the prior itself. The incorporation of glucose absorp-
tion and insulin sensitivity diurnal variability into the simulator
allowed us to improve the real life resembling of the simulator,
by extending the simulation environment from a “single-meal”
to a more realistic “single-day” scenario. The method, applied to
the increasing number of long-term artificial pancreas studies,
will allow to describe the week/month variability, thus further
refining the simulator.

APPENDIX

A. Model Equations

1) Glucose Subsystem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ġp (t) = EGP (t) + Rameal (t) − Uii (t) − E (t)
−k1 · Gp (t) + k2 · Gt (t)

Gp (0) = Gpb

Ġt (t) = −Uid (t) + k1 · Gp (t) − k2 · Gt (t)
Gt (0) = Gtb

G (t) = Gp (t) /VG

G (0) = Gb.

(A1)

Insulin subsystem (not considered in this study due to the use
of plasma insulin as forcing function):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

İp (t) = − (m2 + m4) · Ip (t) + m1 · Il (t) + RaI (t)
Ip (0) = Ipb

İl (t) = − (m1 + m3) · Il (t) + m2 · Ip (t)
Il (0) = Ilb

I (t) = Ip (t) /VI

I (0) = Ib .
(A2)

Glucose rate of appearance:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qsto (0) = Qsto1 (t) + Qsto2 (t)
Qsto (0) = 0

Q̇sto1 (t) = −kmax · Qsto1 (t) + Dose · δ (t)
Qsto1 (0) = 0

Q̇sto2 (t) = −kempt (Qsto) · Qsto2 (t) + kmax · Qsto1 (t)
Qsto2 (0) = 0

Q̇gut (t) = −kabs · Qgut (t) + kempt (Qsto) · Qsto2 (t)
Qgut (0) = 0

Rameal (t) = f ·ka b s ·Q g u t (t)
BW

Rameal (0) = 0
(A3)

with

kempt (Qsto) = kmin +
kmax − kmin

2
· {tanh [α (Qsto − β

·Dose)] − tanh [β (Qsto − c · Dose)] + 2} . (A4)

Endogenous glucose production:

EGP (t) = kp1 − kp2 · Gp (t) − kp3 · XL (t)

+ ξ · XH (t) (A5)

ẊL (t) = −ki ·
[
XL (t) − I ′ (t)

]
XL (0) = Ib (A6)

İ ′ (t) = −ki · [I ′ (t) − I (t)] I ′ (0) = Ib (A7)

ẊH (t) = −kH · XH (t) + kH · max [(H (t) − Hb) , 0]

XH (0) = 0 (A8)

Glucose utilization:

Uii (t) = Fcns (A9)

Uid (t) =
[Vm0 + Vmx · X (t) · (1 + r1 · risk)] · G (t)

Km0 + Gt (t)
(A10)

with

Ẋ (t) = −p2U · X (t) + p2U · [I (t) − Ib ] X (0) = 0 (A11)

risk =

⎧
⎪⎪⎨

⎪⎪⎩

0, if G ≥ Gb

10 · [f (G)]2 , s if Gth ≤ G < Gb

10 · [f (Gth)]2 , if G < Gth

(A12)

f (G) = log
(

G

Gb

)r2

. (A13)

Renal excretion:

E (t) =

{
ke1 · [Gp (t) − ke2 ] , if Gp (t) > ke2

0, if Gp (t) ≤ ke2 .
(A14)

Glucagon kinetics and secretion (average model considered
in this study):

Ḣ (t) = −n · H (t) + SRH (t) + RaH (t) H (0) = Hb

(A15)
with

SRH (t) = SRs
H (t) + SRd

H (t) (A16)

ṠRs
H (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ρ · [SRs
H (t) − max (σ2 · [Gth − G (t)]

+SRb
H , 0

)]
if G (t) ≥ Gb

−ρ ·
[
SRs

H (t) − max
(

σ ·[G t h −G(t)]
I (t)+1

+SRb
H , 0

)]
if G (t) < Gb

(A17)

SRd
H (t) = δ · max

(

−dG (t)
dt

, 0
)

. (A18)
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TABLE II
LIST OF MODEL PARAMETERS

Glucose Kinetics
Vg distribution volume of glucose (dL/kg)
k1, k2 rate parameters (min−1)

Rate of Appearance
ka b s rate constant of intestinal absorption (min−1)
km a x ,
km in

maximum and minimum levels of gastric emptying rate (min−1)

b, d fraction of dose corresponding to the flexes of gastric emptying curve
(dimensionless)

f fraction of intestinal absorption appearing in plasma (dimensionless)

Endogenous Production

ki rate parameter accounting for delay between insulin Signal and Insulin
Action (min−1)

kp 1 extrapolated EGP at zero glucose and insulin (mg/kg/min)
kp 2 hepatic glucose effectiveness (min−1)
kp 3 hepatic insulin sensitivity (min−1)
ξ hepatic responsivity to glucagon (mg/kg/min per ng/L)

Utilization
Fc n s insulin-independent glucose utilization (mg/kg/min)
Vm x insulin sensitivity on glucose utilization (mg/kg/min per pmol/L)
Km 0 glucose mass appearing in Michaelis–Menten relation (mg/kg)
p2 u rate constant of insulin action on the peripheral glucose utilization

(min−1)
r1, r2 parameters of risk function (dimensionless)

Renal Excretion
ke 1 glomerular filtration rate (min−1)
ke 2 renal threshold of glucose (mg/dL)

Insulin Kinetics
VI distribution volume of insulin (L/kg)
m 1 ,
m 2

rate parameters (min−1)

m 3 liver degradation rate (min−1)
m 4 peripheral degradation rate (min·kg/pmol)
RaI appearance rate of external insulin (pmol/kg/min)

Glucagon Kinetics
n glucagon clearance rate (min−1)

Glucagon Secretion
ρ rate parameter accounting for the delay between static glucagon

secretion and plasma glucose (min−1)
σ , σ2 alpha-cell responsivities to glucose level (ng/L/min per mg/dL·L/pmol)
δ alpha-cell responsivity to glucose rate of change (ng/L·mg/dL)

REFERENCES

[1] C. Cobelli et al., “Diabetes: Models, signals, and control,” IEEE Rev.
Biomed. Eng., vol. 2, pp. 54–96, Jan. 2009.

[2] B. P. Kovatchev et al., “In silico preclinical trials: A proof of concept in
closed-loop control of type 1 diabetes,” J. Diabetes Sci. Technol., vol. 3,
pp. 44–55, Jan. 2009.

[3] M. E. Wilinska et al., “Simulation environment to evaluate closed-loop
insulin delivery systems in type 1 diabetes,” J. Diabetes Sci. Technol.,
vol. 4, pp. 132–144, Jan. 2010.

[4] S. S. Kanderian et al., “Identification of intraday metabolic profiles dur-
ing closed-loop glucose control in individuals with type 1 diabetes,” J.
Diabetes Sci. Technol., vol. 3, pp. 1047–1057, Sep. 2009.

[5] C. Dalla Man et al., “The UVA/PADOVA type 1 diabetes simulator: New
features,” J. Diabetes Sci. Technol., vol. 8, pp. 26–34, Jan. 2014.

[6] R. Visentin et al., “The university of Virginia/Padova type 1 diabetes
simulator matches the glucose traces of a clinical trial,” Diabetes Technol.
Ther., vol. 16, no. 7, pp. 428–434, Jul. 2014.

[7] L. Hinshaw et al., “Diurnal pattern of insulin action in type 1 diabetes:
implications for a closed-loop system,” Diabetes, vol. 62, pp. 2223–2229,
Jul. 2013.

[8] Y. M. Luijf et al., “Day and night closed-loop control in adults with type 1
diabetes: A comparison of two closed-loop algorithms driving continuous
subcutaneous insulin infusion versus patient self-management,” Diabetes
Care, vol. 36, pp. 3882–3887, Dec. 2013.

[9] A. Haidar et al., “Stochastic virtual population of subjects with type 1
diabetes for the assessment of closed loop glucose controllers,” IEEE
Trans. Biomed. Eng., vol. 60, no. 12, pp. 3524–3533, Dec. 2013.

[10] C. Cobelli and E. Carson, Introduction to Modeling in Physiology and
Medicine. New York, NY, USA: Academic, 2008.

[11] MATLAB, version 8.2.0.29 (R2013b), The Math-Works Inc., Natick, MA,
USA, 2013.

[12] R. Basu et al., “Effects of age and sex on postprandial glucose metabolism:
Differences in glucose turnover, insulin secretion, insulin action, and hep-
atic insulin extraction,” Diabetes, vol. 55, no. 7, pp. 2001–2014, Jul. 2006.

[13] C. Dalla Man et al., “Meal simulation model of the glucose-insulin sys-
tem,” IEEE Trans. Biomed. Eng., vol. 54, no. 10, pp. 1740–1749, Oct.
2007.

[14] R. Visentin et al., “Circadian variability of insulin sensitivity: physiolog-
ical input for an in silico artificial pancreas,” Diabetes Technol. Ther.,
vol. 17, no. 1, pp. 1–7, Jan. 2015.

[15] G. Scheiner and B. A. Boyer, “Characteristics of basal insulin requirements
by age and gender in Type-1 diabetes patients using insulin pump therapy,”
Diabetes Res. Clin. Pract., vol. 69, no. 1, pp. 14–21, Jul. 2005.

[16] S. Del Favero et al., “Improving accuracy and precision of glucose sensor
profiles: Retrospective fitting by constrained deconvolution,” IEEE Trans.
Biomed. Eng., vol. 61, no. 4, pp. 1044–1053, Apr. 2014.

Authors’ photographs and biographies not available at the time of publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


