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Abstract. XML is a pervasive technology for representing and accessing
semi-structured data. XPath is the standard language for navigational
queries on XML documents and there is a growing demand for its efficient
processing.
In order to increase the efficiency in executing four navigational XML
query primitives, namely descendants, ancestors, children and parent,
we introduce a new paradigm where traditional approaches based on
the efficient traversing of nodes and edges to reconstruct the requested
subtrees are replaced by a brand new one based on basic set operations
which allow us to directly return the desired subtree, avoiding to create
it passing through nodes and edges.
Our solution stems from the NEsted SeTs for Object hieRarchies (NESTOR)
formal model, which makes use of set-inclusion relations for representing
and providing access to hierarchical data. We define in-memory efficient
data structures to implement NESTOR, we develop algorithms to per-
form the descendants, ancestors, children and parent query primitives
and we study their computational complexity.

1 Introduction

The eXtensible Markup Language (XML) is the standard technology for semi-
structured data representation, processing, and exchange and it has been widely
used and studied in several fields of computer science, such as databases, infor-
mation retrieval, digital libraries, and the Web.

An XML document is a hierarchy which contains elements nested one inside
another and it is naturally modeled as a tree, where elements are nodes and
parent-child relations are edges among them. When it comes to process and
access XML, fundamental operations rely on the retrieval of a subset of the
XML nodes or the data contained in them by satisfying path constraints which
are typically expressed in the XML Path Language (XPath) [6].

In this paper we propose a paradigm shift for XPath querying by departing
from the above mentioned navigational-like approaches and introducing a brand
new one, relying on basic set operations. Instead of using edges between nodes or
adjacency matrices for representing a tree, we represent a hierarchy as a family
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of nested sets where the inclusion relationship among sets allows us to express
parent/child relations and each set contains the elements belonging to a specific
sub-hierarchy. In this way, rather than navigating in a tree and reconstructing
sub-hierarchies by traversing nodes and edges, we answer queries by serving
the correct subset(s) which already contain all the requested elements (sub-
hierarchy) just in one shot or may request minimal intersection/union operations
to obtain the desired elements, thus avoiding the need to collect them one-by-
one as it happens in the other approaches. This method provides a sizeable
improvement in the time requested for answering a navigational query and it is
competitive in terms of space occupation and pre-processing time.

More in detail, the proposed solution is based on the NEsted SeTs for Object
hieRarchies (NESTOR) formal model [4] which is an alternative way, based on
the notion of set-inclusion, for representing and dealing with hierarchical data,
as XML is. Since XPath supports a number of powerful modalities and many
applications do not need to use the full language but exploit only some fragments,
we focused this work only on those XPath fragments which, according to [2]: (i)
support both downward and upward navigation; (ii) are recursive, thus allowing
navigation also along the ancestor and descendant axes and not only parent and
child axes; and (iii) are non-qualified, i.e. without predicates testing properties of
another expression. Therefore, we focus on efficient in-memory execution of four
kinds of navigational queries over hierarchical data – descendants, ancestors,
children, and parent of a given element – which represent a basic means for
accessing and retrieving data from XML.

We present three alternative in-memory dictionary-based data structures in-
stantiating the NESTOR model: Direct Data Structure (DDS), Inverse Data
Structure (IDS), and Hybrid Data Structure (HDS). For each query primitive
we have two different modalities: the set-wise modality where we access the
structure of the XML tree and the element-wise modality where we access the
content of the XML tree. These data structures are defined with no assumption
on document characteristics and underlying physical storage and they could be
employed by any existing solutions for speeding-up XPath primitives execution.
For each data structure and modality, we define algorithms for performing the
descendants, ancestors, children, and parent operations and we study their com-
putational complexity.

We compare the four target query primitives against state-of-the-art in-
memory implementations of XPath – three java-based solutions (i.e., Xalan,
Jaxen and JXPath) based on in-memory DOM navigation and a highly-efficient
native XML database management system based on node labeling (i.e., BaseX)–
in order to assess the benefits in terms of faster execution times.

The experimental findings show that the NESTOR-based data structures
and query primitives consistently outperform state-of-the-art XPath solutions
at query time and are competitive also from the pre-processing time and main
memory occupation viewpoints. From the results achieved the set-based ap-
proach proves to be highly efficient and can represent a valid alternative to tree
navigation for fast XML querying.



2 Background

The NESTOR model is defined by two set-based data models: The Nested Set
Model (NS-M) and the Inverse Set Data Model (INS-M). These models are
defined in the context of set theory as a collection of subsets, their properties
are formally proved as well as their equivalence to the tree in terms of expressive
power [3,4,1].

The most intuitive way to understand how these models work is to relate
them to the tree. In Figure 1b we can see how a sample XML snippet can be
represented through a tree and how this tree can be mapped into the NS-M
and the INS-M. The XML elements are represented by nodes in the tree and
by sets in the NS-M and the INS-M; the text data within each XML node are
represented as lists of elements within each tree node and as elements belonging
to sets in the NS-M and the INS-M.

In the NS-M each node of the tree is mapped into a set, where child nodes
become proper subsets of the set created from the parent node. Every set is
subset of at least of one set; the set corresponding to the tree root is the only set
without any supersets and every set in the hierarchy is subset of the root set.
The external nodes are sets with no subsets. The tree structure is maintained
thanks to the nested organization and the relationships between the sets are
expressed by the set inclusion order. Even the disjunction between two sets
brings information; indeed, the disjunction of two sets means that these belong
to two different branches of the same tree.

The second data model is the INS-M and we can see that each node of the
tree is mapped into a set, where each parent node becomes a subset of the
sets created from its children. The set created from the tree’s root is the only
set with no subsets and the root set is a proper subset of all the sets in the
hierarchy. The leaves are the sets with no supersets and they are sets containing
all the sets created from the nodes composing tree path from a leaf to the root.
An important aspect of INS-M is that the intersection of every couple of sets
obtained from two nodes is always a set representing a node in the tree. The
intersection of all the sets in the INS-M is the set mapped from the root of the
tree.

3 Data Structures and Primitives for Fast XML Access

Let us consider a collection of subsets C which can be defined according to the
NS-M as well as the INS-M – refer to Figure 1 for a graphical example. The
data structures for producing C have to take into account the structural and the
content components of such a collection of subsets. From the structural point-of-
view, the information that has to be stored regards the inclusion dependencies
between the sets; whereas, from the content point-of-view, we need to store the
materialization of the sets (i.e. the elements belonging to each set).

For a collection of subsets C we consider the following three main dictionaries:
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Fig. 1. (a) A sample XML representation; (b) Tree representation of the XML; (c)
NS-M representation; (d) INS-M representation.

– Materialized Dictionary (MD), containing the materialization of the sets
in C.

– Direct-Subsets Dictionary (DD), containing the direct subsets of each set
in C.

– Supersets Dictionary (SD), containing the supersets of each set in C.

These three dictionaries are employed in all the three proposed data struc-
tures – i.e. Direct Data Structure (DDS), Inverse Data Structure (IDS) and
Hybrid Data Structure (HDS). DDS is a structure built around the constraints
defined by the NS-M as depicted in Figure 2a. If we consider the tree shown in
Figure 1a and modeled with the NS-M reported in Figure 1b, we can see that the
materialized sets (MD) report the integer values corresponding to all the elements
belonging to each set; we know that in the NS-M the set corresponding to the
root of the tree contains all the elements of the tree. Indeed, we can see in Figure
2a that A contains all the elements in the collection. Furthermore, for each set,
DD contains all its direct subsets – e.g. set C contains the sets D, E, F which are
its direct subsets as shown in Figure 1b. SD contains the supersets of each set –
e.g. D contains the sets C, A.

IDS is a structure built around the constraints of INS-M as reported in Figure
2b. In this case we can see that the materialized sets MD contain the elements
belonging to the sets. As we can see in the DDS the set cardinality in MD decreases
while going from the top – i.e. set A – to the bottom – i.e. sets G, H, I, L – whereas
in IDS the cardinality increases. Furthermore, for each entry in DD there is just
one set; indeed, in the INS-M each set has at most one direct subset with the
sole exception of the set representing the root of the tree which has no subsets.
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Fig. 2. NESTOR data structure instances of the tree shown in Figure 1.

SD reports for each set all its supersets – e.g. F contains G, H, I, L which are its
supersets as shown in Figure 1c.

HDS can be seen as a mixture between DDS and IDS; indeed, its DD corre-
sponds to the DD dictionary of DDS and its SD corresponds to the DD of IDS.
Each set in MD is the result of the set difference between a set and its direct
superset in the MD of IDS – e.g. in the MD of IDS the set A = [1] is the direct
superset of C = [1, 2, 3], thus in the MD of HDS it is C = [2, 3].

3.1 NESTOR Primitives

When we deal with a collection of sets defined by the NESTOR model, we can
distinguish between set-wise and element-wise primitives. As above, let us con-
sider a general collection of sets C with a total number of m ∈ N sets, n ∈ N
elements and where H is a set in the collection; then in the NESTOR model we
define five set-wise primitives, and six element-wise primitives. In the following
we add the suffix DDS, IDS or HDS to the name of the primitives when we
refer to a specific data structure implementation of that primitive – e.g. the de-
scendant primitive is indicated as Descendants-DDS when we refer to its DDS



Table 1. Set-wise primitives and their computational complexities where m is the total
number of sets in the collection of subsets.

Set-wise Primitive Algorithms
DDS IDS HDS
Cost Cost Cost

Descendants(H) O(m) O(1) O(m)
Ancestors(H) O(1) O(m) O(m)
Children(H) O(1) O(m) O(1)
Parent(H) O(1) O(1) O(1)

Table 2. Element-wise primitives and their computational complexities where m is the
total number of sets and n is the total number of elements in the collection of subsets.

Element-wise Primitive Algorithms
DDS IDS HDS
Cost Cost Cost

Elements(H) O(1) O(1) O(1)
Descendants(H) O(1) O(m + n) O(m + n)
Ancestors(H) O(m + n) O(1) O(m + n)
Childrens(H) O(n) O(m + n) O(n)
Parent(H) O(n) O(n) O(1)

implementation, as Descendants-IDS when we refer to its IDS implementation
and as Descendants-HDS when we refer to its HDS implementation.

In Table 1 we present the computational complexity of the algorithms im-
plementing the set-wise primitives in the three data structures.

In Table 2 we present the references to the algorithms implementing the
element-wise primitives in the DDS, IDS and HDS along with their computa-
tional complexities.

4 Experiments

NESTOR query primitives on the three proposed in-memory data structures
have been implemented in the Java programming language1. As anticipated in
Section 2, we compare NESTOR against the Xalan 2.7.1, Jaxen 1.1.6, and JX-
path 1.3 libraries and the BaseX 7.9 in-memory XML database. The analysis
was conducted by choosing the worst possible input set for each primitive, thus
if a query performs well in this case it is guaranteed that it performs in the same
way or better in the other cases.

Table 3 reports the statistics about the two synthetic datasets we selected
for the experiments.

In Figure 3 we report the evaluation times for the XPath operations we are
analysing.

As a summary, as general trends we see that NESTOR data structures always
outperform the other solutions, even if the specific data structure – DDS, IDS,
HDS – may change from case to case. The second best approach is almost always
BaseX followed by either Jaxen or JXPath, depending on the cases.

1 http://nestor.dei.unipd.it
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Fig. 3. Evaluation time for the XPath operations under evaluation.



Table 3. Statistics of the twelve selected XMark synthetic files.

Size max average
(MB) # nodes depth fan-out fan-out

XMark-01 0.581 8,518 12 127 3.69
XMark-02 1.182 17,132 12 255 3.70
XMark-03 2.385 33,140 12 510 3.60
XMark-04 4.840 67,902 12 1,020 3.65
XMark-05 9.595 134,831 12 2,040 3.65
XMark-06 18.855 265,975 12 4,080 3.66
XMark-07 38.145 533,750 12 8,160 3.66
XMark-08 76.016 1,066,768 12 16,320 3.66
XMark-08 152.350 2,140,644 12 32,640 3.66
XMark-10 305.191 4,276,108 12 65,280 3.67
XMark-11 610.043 8,554,409 12 130,560 3.67
XMark-12 1,221.750 17,107,471 12 261,120 3.66

5 Final Remarks

In this paper we presented a brand new approach to address XML query prim-
itives relying on basic set operations. This represents a paradigm shift with
respect to the navigational-like approaches widely studied and employed in the
past. In particular, we have experimentally shown that NESTOR data structures
allow us to outperform state-of-the-art solutions. The evaluation conducted on
the XMark dataset allows us to pinpoint that NESTOR primitives scale up well
when the size, the depth, the max fan-out and the total number of nodes of an
XML document grow.

As future work we plan to explore the efficiency of NESTOR data structures
with respect to the full set of XPath operations, such as XPath predicates, in
order to address the whole classification of XPath fragments of [2]. Furthermore,
we will study how NESTOR can be used with different levels of memory and
extended to disk-oriented XML querying.
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