
Data Citation: a Computational Challenge

[Extended Abstract]

Susan B. Davidson
University of Pennsylvania

Philadelphia, PA
susan@cis.upenn.edu

Peter Buneman
University of Edinburgh

Edinburgh, UK
opb@inf.ed.ac.uk

Daniel Deutch
Tel Aviv University

Tel Aviv, Israel
danielde@post.tau.ac.il

Tova Milo
Tel Aviv University

Tel Aviv, Israel
milo@post.tau.ac.il

Gianmaria Silvello
University of Padua

Padua, Italy
silvello@dei.unipd.it

ABSTRACT
Data citation is an interesting computational challenge, whose
solution draws on several well-studied problems in database
theory: query answering using views, and provenance. We
describe the problem, suggest an approach to its solution,
and highlight several open research problems, both practical
and theoretical.

Keywords
Data citation; Data provenance; Query answering using views

1. THE PROBLEM
Citation is essential to traditional scholarship. It helps

identify the cited material so that it can be retrieved, gives
credit to the creator of the material, dates it, and so on.
In the context of printed materials, such as books and jour-
nals, citation is well understood. However, the world is now
digital, and an increasing amount of information is being col-
lected in structured and evolving curated databases, driving
database owners, publishers and standards groups to con-
sider how such data should be cited.

Currently, several databases describe (in English) what
“snippets” of information are to be included in a citation for
information displayed as web page views of the database.
Three such examples are eagle-i1, an RDF dataset built
to facilitate translational science research which allows re-
searchers to share information about resources such as cell
lines and software; Reactome2, an open-source, curated and
peer reviewed pathway relational database; and Drugbank3,
a relational database combining chemical, pharmacological

1https://www.eagle-i.net/
2http://www.reactome.org/
3http://www.drugbank.ca/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PODS’17 May 14-19, 2017, Chicago, IL, USA
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4198-1/17/05.

DOI: http://dx.doi.org/10.1145/3034786.3056123

and pharmaceutical data with sequence, structure, and path-
way information. Instructions are given on which snippets of
information on the web page view of the resource should be
included in a citation to the resource. However, generating
the citation is left to the user.

Another interesting example is the IUPHAR/BPS Guide
to Pharmacology 4 (GtoPdb). The content of GtoPdb repre-
sents the effort of a large number of members of the scientific
community. Different portions of the database, with varying
granularity, are contributed and/or curated by different sub-
groups of these individuals. While GtoPdb as a whole can
be treated as a traditional publication and cited accordingly,
citations to many web page views of the database include
the people who provided the relevant content, along with an
identifier for the view and the version of the database. Views
are generated on the fly from the database, and citations are
generated at the same time.5 Thus, GtoPdb automatically
generates citations, but only for some queries.

The question then is: How can we generate citations for
general queries over the database, i.e. those which do not
correspond to web page views of the database? The prob-
lem is that, unlike traditional publications which have a fixed
granularity to which citations can be attached – e.g. a con-
ference proceedings, or a paper in a conference proceedings
– the granularity of the material to be cited varies. Since
there are a potentially infinite number of queries, each ac-
cessing and generating different subsets of the database, we
cannot hope to explicitly attach a citation to every possi-
ble result set and/or query. Instead, we must find ways of
using citations for some portions of the database to auto-
matically construct citations for more general queries. Thus
data citation is a computational problem, as argued in [4].

The approach we propose next draws inspiration from re-
sults in two areas that have been extensively studied by the
database theory community: query answering using views
(e.g. [9, 3, 10]) and database provenance (e.g. [8, 5]). In
particular, we leverage the fact that citations and prove-
nance are both forms of annotation that are manipulated
through queries. We give an overview of the approach next;
details can be found in [6].

4http://www.guidetopharmacology.org/
5Since versioning is not enabled, re-executing the query
brings back the current version which may be different from
the version seen when cited.

1



2. AN APPROACH
We start with a set of view queries that are specified by

the database owner, representing the web-page views or por-
tions of the database for which citations are understood.
Each view query V is associated with one or more citation
queries and a citation function, which are also specified by
the database owner. The citation queries pulls snippets of
information from the database to be included in the citation;
the citation function takes the output of the citation queries
as input and outputs a citation in some appropriate format
(e.g. human readable, BibTex, RIS or XML). The citation
becomes an annotation on every tuple t in the view.

View and citation queries are expressed as Conjunctive
Queries [2] that are optionally parameterized by one or more
variables. The parameters must appear in the head of the
queries, and be consistent across the view and associated
citation queries. In a parameterized view, subsets of tuples
which agree on all parameter values will have the same ci-
tation, which is based on the output of the citation query
when its parameters are instantiated with these values. Con-
sequently, tuples which disagree on some parameter value
may have different citations. We denote by CV(p1, ..., pn)
the citation for the tuples in the result of a view V param-
eterized with p1, ..., pn.

For example, suppose we have the following relations where
the keys are underlined.6 For each Family tuple, the Com-

mittee relation associates the names of committee members
responsible for the content (Desc) of a particular family. The
FamilyIntro relation contains additional information (Text)
about a particular family, which may be contributed by peo-
ple other than committee members (details omitted):

Family(FID, FName,Desc)

Committee(FID, PName)

FamilyIntro((FID, Text)

The following view query is parameterized by FID, and
therefore creates a separate citation for each tuple in Family.
The associated citation query pulls the names of committee
members from the Committee relation for the family tuple,
in addition to its FID and FName from the Family relation:

λ FID. V1(FID,FName,Desc):- Family(FID,FName,Desc)

λ FID.CV 1(FID,FName,PName):- Family(FID,FName,Desc),

Committee(FID,PName)

However, in the following (unparameterized) view all tu-
ples in Family have the same citation, indicated by the as-
sociated citation query:

V2(FID,FName,Desc):- Family(FID,FName,Desc)

CV 2(D):- D="IUPHAR/BPS Guide to PHARMACOLOGY..."

Our approach to constructing the citation to a general
query is to rewrite it to a set of equivalent queries using the
views, and combine the citations for these views to construct
a citation to the general query. To do this, we leverage the
fact that citations and provenance are both forms of annota-
tion that are manipulated through queries [5]. In particular,
the joint (·) and alternative (+) use of annotations within a
rewriting are modeled using the semirings approach of [8].

Given a query Q and set of views V together with their
associated citations, consider the set of minimal equivalent

6The example is drawn from GtoPdb, and Family refers to
families of drug targets.

rewritings, {Q1, ..., Qn}. In the rewritings, parameters are
ignored.

For example, consider the query

Q(FName) : −Family(FID, FName, Desc), FamilyIntro(FID, Text)

and an additional (unparameterized) view V3 and associated
citation query:

V3(FID,Text):- FamilyIntro(FID,Text)

CV 3(D):- D="IUPHAR/BPS Guide to PHARMACOLOGY..."

Q can be rewritten in terms of V1 and V3, or V2 and V3:

Q1(FName):- V1(FID,FName,Desc),V3(FID,Text)

Q2(FName):- V2(FID,FName,Desc),V3(FID,Text)

To define the citation for a tuple in the result of the query,
we start by defining a citation for a single binding of a single
rewriting of the query. This dictates a single output tuple,
and a particular valuation to the parameters of the views.
We define the citation of the output tuple as the joint use
of citations for the views and the parameter valuations, de-
noted by “·”.

Definition 2.1. Let Q be a query and let V be a set of
citation views, such that CVi, FV i are respectively a citation
query and citation function associated with V i. Further let
Q′ be a (partial) rewriting of Q using V 1, ..., V n ∈ V . Fur-
ther let B be a binding to the variables of Q′, yielding an
output tuple t. The citation for t w.r.t. Q,Q′, V, B, denoted
cite(t, Q,Q′, V, B), is defined as

cite(t,Q,Q’,V,B)= FV 1(CV1(B1)) · . . . · FV n(CVn(Bn))
where Bi is the result of applying B to the variables occurring
in an atom involving V i in Q′.

Multiple bindings lead to multiple alternative citations,
which we capture using +.

Definition 2.2. Let Q,V,Q′ be as in Definition 2.1, and
let βt be the set of all bindings for Q′ that yield a tuple t.
The citation for t w.r.t. Q,Q′ (denoted cite(t, Q,Q′, V )) is
defined as

cite(t, Q,Q′, V )= ΣB∈βtcite(t, Q,Q
′, V, B).

As noted earlier, a query may have multiple rewritings,
each leading to a possibly different citation for a tuple. These
are again alternatives, but the function used to combine the
citations for them may be different than the one used for
multiple bindings for a single rewriting. We therefore use
+R (“+ for rewritings”) to denote this function. Note that
this is a formal semantics, not a means of computation: go-
ing through all rewritings would be impractical.

Returning to our example, suppose that there are two
families that share the name ‘Calcitonin’ and therefore two
sets of bindings for the result tuple (Calcitonin):

{FID=11, FName=’Calcitonin’, Desc=’C1’, Text=’1st’}

{FID=12, FName=’Calcitonin’, Desc=’C2’, Text=’2nd’}

Using rewriting Q1, the citation for the result tuple ‘Calci-
tonin’ would be CV1(11)·CV3+CV1(12)·CV3, where 11 and 12
are the parameters passed to V1. Using rewriting Q2, the
citation would be CV2·CV3.

The resulting citation for result tuple ‘Calcitonin’ would
therefore be:

2



(CV1(11)·CV3+CV1(12)·CV3)+
R(CV2·CV3)

Finally, to obtain a citation for the query answer, the ci-
tations for its member tuples must be combined. We denote
this abstract function as Agg.

The abstract functions “·” , “+”, +R and Agg are policies
to be specified by the database owner. There are many
interpretations that could be used for these functions. For
“·”, “+” and Agg, union or join are natural. For +R, the
“minimum” in some ordering would also be natural. The
ordering could reflect how “precise” or “comprehensive” the
rewritings are relative to each other, or the “size” of the
resulting citation.

As a final step in our example, suppose we use union for
“·”, “+” and Agg, and +R as the (estimated) minimum size.
Since V1 is parameterized, CV1 will be different for every
tuple. In contrast, CV2 and CV3 will be the same for every
tuple. The estimated size of the citation using Q1 would
therefore be proportional to the size of Family, whereas the
estimated size of the citation using Q2 would be 1 (recall
that Agg is union). The final citation for Q would therefore
be the citation leading to the minimum size, which is the
one using Q2 (CV2·CV3).

3. DISCUSSION AND OPEN PROBLEMS
A number of interesting research questions arise from this

approach, both practical and theoretical.
Calculating citations. While we have defined a model

for citations for query results, we have not given an efficient
means for computing them. In particular, it is infeasible
both in terms of run time and the size of the resulting cita-
tion to go through all rewritings and all assignments within
each of them, pointing to the need for cost functions to re-
duce the search space (somewhat analogous to e.g. [9, 3,
10]). It may also be possible to do some of the reasoning at
the schema level, and impose the views that are retained at
this level over tuple-level annotations.

Defining citations. As described, views represent the
web-page views or common queries against the database for
which citations are understood. From a practical perspec-
tive, the database owner must first ensure that the database
includes the snippets of information to be included in the
citation queries. They must then specify the view and ci-
tation queries in terms of the database schema, as well as
the policies for combining citations (“·”, “+” and Agg, and
+R). This could easily be overwhelming for a non-expert,
and therefore designing a user-friendly interface with appro-
priate defaults is essential. Note that once the view and
citation queries have been specified, the system should take
care of the annotation tracking rather than relying on the
database owner to modify the database schema.

From a theoretical perspective, there are interesting ques-
tions around defining and efficiently deciding whether these
views represent the “best” ones given an expected query
workload, i.e. the ones that “cover” the expected queries,
and give concise and unambiguous results.

Fixity. One of the “core principles” of data citation [1, 7]
is fixity: data may evolve over time, and a citation should
bring back the data as seen at the time it was cited. Thus
the citation must include a mechanism of obtaining the data,
in addition to snippets of information useful for human un-
derstanding. One approach is for the database to support
versioning, and citations to include a timestamp or version

number along with the query (or some means of recovering
the query) used to obtain the data. (A prototype system for
relational databases which pursues these ideas can be found
in [11].)

Size of citations. An obvious concern is that, since views
may be parameterized, the size of a citation may be propor-
tional to the size of the query result. In contrast, conven-
tional citations are small – for example, when there is an
extended author list (more than 3 authors), we use “et al”
to abbreviate – and much of this is driven by wanting a
reasonable size for the bibliography section of conventional
publications. How does this change when we are talking
about digital objects? In particular, should the citation ob-
ject returned be an encoding of or reference to an extended
citation which is a searchable object?

Citation evolution. The views or the citations associ-
ated with views may change over time, either in response to
a change in query workload or evolving standards in data
citation. This can be captured in our model by including a
“timestamp” attribute in base relations, with lambda vari-
ables in views corresponding to this attribute. Citations
could then depend on the timestamp. An intriguing compu-
tational challenge is how to compute citations in an incre-
mental manner in this setting.

Other models. Conjunctive queries are a core for many
different models and languages, and the idea of citation
views is useful beyond relational systems, e.g. XML and
RDF. However, do we need to go beyond conjunctive queries?
In particular, for several of the RDF systems we have ex-
amined the citation depends on the class of resource and
determining the class of the resource involves reasoning over
an ontology. What extensions to the language are needed,
or are there other approaches that might be useful for RDF
systems?

4. ACKNOWLEDGMENTS
This work has been partially funded by NSF IIS 1302212,

NSF ACI 1547360, and NIH 3-U01-EB-020954-02S1; by the
European Research Council under the FP7, ERC grant MoDaS,
agreement 291071; by the Israeli Science Foundation (1636/13);
and by a grant from the Blavatnik Interdisciplinary Cyber
Research Center.

5. REFERENCES
[1] Out of Cite, Out of Mind: The Current State of

Practice, Polocy, and Technology for the Citation of
Data, volume 12. CODATA-ICSTI Task Group on
Data Citation Standards and Practices, September
2013.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] F. N. Afrati, C. Li, and J. D. Ullman. Using views to
generate efficient evaluation plans for queries. J.
Comput. Syst. Sci., 73(5):703–724, 2007.

[4] P. Buneman, S. Davidson, and J. Frew. Why data
citation is a computational problem. CACM, 59, 2016.

[5] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance
in databases: Why, how, and where. Foundations and
Trends in Databases, 1(4):379–474, 2009.

[6] S. B. Davidson, D. Deutch, T. Milo, and G. Silvello. A
model for fine-grained data citation. In CIDR 2017,

3



8th Biennial Conference on Innovative Data Systems
Research, Chaminade, CA, USA, January 8-11, 2017,
Online Proceedings, 2017.

[7] FORCE-11. Data Citation Synthesis Group: Joint
Declaration of Data Citation Principles. FORCE11,
San Diego, CA, USA, 2014.

[8] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In PODS, pages 31–40, 2007.

[9] A. Y. Halevy. Answering queries using views: A
survey. VLDB J., 10(4):270–294, 2001.

[10] L. Popa and V. Tannen. An equational chase for
path-conjunctive queries, constraints, and views. In
Database Theory - ICDT ’99, 7th International
Conference, Jerusalem, Israel, January 10-12, 1999,
Proceedings., pages 39–57, 1999.

[11] S. Pröll and A. Rauber. Scalable data citation in
dynamic, large databases: Model and reference
implementation. In Proc. of the 2013 IEEE
International Conference on Big Data, pages 307–312,
2013.

4




