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Abstract

In today’s era of big data-driven science, an increasing amount of information is being published as
curated online databases and retrieved by queries, raising the question of how query results should be
cited. Because it is infeasible to associate citation information with every possible query, one approach
is to specify citations for a small set of frequent queries – citation views – and then use these views to
construct a citation for general queries. In this paper, we describe this model of citation views, how
they are used to construct citations for general queries, and an efficient approach to implementing this
model. We also show the connection between data citation and data provenance.

1 Introduction

Citation is an essential part of scientific and scholarly publishing. It is crucial for gauging the trust placed
in published data and giving appropriate credit to authors. However, the nature of publication is shifting from
traditional venues – such as books, journals and conferences – for which citation is well understood, to databases
containing curated information which is retrieved by queries. This is especially true in Big Data-driven science,
where many scientific reference works and collections of experimental results are now being published as curated
on-line databases with web-page views.

Typically, database owners specify the citation to a web-page view as a journal article whose title includes
the name of the database and whose author list includes the chief personnel (e.g. the PI, DBA, lead annotator,
etc), along with the query and date of access. However, in many cases the content of the query result is con-
tributed by members of the community and curated by experts, who are not on the author list of the journal
article, and the lack of appropriate citation is becoming a stumbling block as evidenced by the recent “data
parasite” controversy [14]. Appropriate data citation is therefore essential to motivate members of the scientific
community to continue to share data and experimental results so that they can be used and built on by others in
the advancement of science.

Many of the “citable” databases that we have examined - e.g. the Reactome Pathway database [13] and the
eagle-i [17] resource discovery tool - describe in English what snippets of information are to be included in a
citation for data displayed on a web page; however, users must then construct the citation by hand. However, the
English specifications are fairly complex, and the effort required to pull the data off the web page discourages
users from generating the citations. Users are therefore unlikely to cite this data correctly unless the citations
are automatically generated and returned to users along with the data retrieved by a query.

The most advanced database from the perspective of citation that we have examined is the IUPHAR/BPS
Guide to Pharmacology (GtoPdb) [16], a relational database that contains expertly curated information about
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drugs, the cellular targets of the drugs, and their mechanisms of action in the body. In this database, users view
information through a hierarchy of web pages. The top level divides information by “families” of drug targets
that reflect typical pharmacological thinking; lower levels divide the families hierarchically into sub-families
and so on down to individual drug targets and drugs. For data displayed in Family and Family Introduction web
pages, GtoPdb places a human readable citation calculated from information in the underlying database in the
page; the citation can then be copy-pasted and reformatted into whatever style the user wishes. The citation
varies depending on the part of the database being queried (e.g. the particular Family), and contains an identifier
for the data along with information about the contents (analogous to a title), the contributors and/or curators of
the data (analogous to authors), the date on which the contents were last modified, and the date the database
was queried. In the future, owners of GtoPdb would like to enable general queries against the underlying
database rather than restricting access to the database to queries expressed as web-pages, and automatically
return citations along with the data. The question is: how should citations to general queries be generated?

Data citation is a challenge because, unlike traditional publications which have a fixed granularity to which
citations can be attached, the granularity of reference varies; there are a large number of possible queries over a
database, each returning a different subset of data. The “snippets” of information to include in the citation may
also vary from query to query, e.g. descriptive information about the data subset being returned, analogous to the
distinct titles that different chapters have in an edited collection. Note that these snippets of information play an
important human role: While the query and date of access (or some form of digital object identifier) is sufficient
to locate the query result, they are not informative enough if used as a citation as they do not give intuition
about the content. This is analogous to the fact that, in traditional journals, a citation like “Nature, 171,737-
738” specifies how to locate the article but doesn’t tell you why you might want to do so, whereas adding the
information “Watson and Crick: Molecular Structure of Nucleic Acids” does. It is therefore necessary to be able
to specify citations to query results [5].

Since it is impossible to specify the content of a citation to every possible query over a database, one strategy
is to specify citations to a small number of frequent queries – citation views [8, 9] – and use these to construct
citations to other “general” queries. The citation views may be combined (jointly used) to construct the citation,
and there may be alternate ways in which combinations of citation views can be used. The interpretations of
joint and alternate use (e.g. union or join) are policies to be specified by the database owner.

There is an interesting connection between data citation and data provenance: Naively, citation captures
the “origins” of data by giving credit to the people responsible for it. However, the connection goes deeper by
viewing both citation and provenance as annotations on data that are carried through queries. That is, each
tuple t in a base relation is annotated with a view iff t is used to construct the materialized view. When a user
query is issued, the view annotations are regarded as provenance tokens to be propagated along with values to
the final query result. The view annotations of each tuple are then reasoned over to determine whether or not
they are valid in a citation for the tuple.

In the remainder of this paper we explore this connection. We start in Section 2 by describing the model
of citation views and how they are used to construct citations to general queries. In Section 3 we discuss
the connection to where- and why-provenance [6, 11]. We then describe in Section 4 an efficient approach to
implementing the model which draws on the ideas of the previous two sections. We conclude in Section 5.

2 Model of Citation Views

The citation framework is based on conjunctive queries [1]. Conjunctive queries are “universal” across different
types of databases (e.g. relational, semistructured, RDF, etc.), and simplify the reasoning used to generate
citations. Throughout the paper, we will use Datalog as the syntax for queries, and assume that fresh variables
are introduced everywhere in relational subgoals rather than being reused.

We start by defining the notion of citation views, which defines how to associate citations to a fixed set of
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FID FName Type
58 n1 gpcr
59 n2 gpcr
60 n3 lgic
61 n4 vgic
62 n5 vgic

Figure 1: Effect of Parameters on Views

frequent queries, and then give a semantics for how to associate citations to general queries based on citation
views.

2.1 Citation views.

A citation view specifies: 1) the data being cited (view definition); 2) the information to be used to construct the
citation (citation queries); and 3) how the information is combined to construct the citation (citation function).
The citation function takes the snippets of information retrieved from citation queries as input, and generates an
appropriately formatted citation as output (e.g. human readable, BibTex, RIS or XML). Note that the snippets
of information required for the citation must be in the database, and that the citation can be thought of as an
annotation on every tuple in the view result.

The view definition and citation queries are optionally parameterized, where the parameters (λ-variables)
appear as variables somewhere in the body of the query. 1 A parameterized view creates a set of instantiated
views, one for each possible choice of parameters. The number of such views is therefore instance-dependent,
as illustrated in Figure 1. We will use the input parameter(s) to distinguish such views, e.g. V1(60) refers to the
instantiated view V1 for FID=60.

Example 1: Recall that in the GtoPdb database, users view information through a hierarchy of web pages. The
top level divides information by families of drug targets; lower levels divide the families into sub-families and
so on down to individual drug targets and drugs. The content of a particular family “landing” page (referred to
as the Family relation) is curated by a committee of experts; a family may also have a “detailed introduction
page” (referred to as the FamilyIntro relation) which is written by a set of contributors, who are not necessarily
the same as the committee of experts for the family.

Citation views for the Family and FamilyIntro relations can be specified as follows. Views V1, V2 and V4
are parameterized by the key FID, whereas V3 is unparameterized.

λFID.V 1(FID,FName) : −Family(FID,FName, Type)
λFID.V 2(FID, Text) : −FamilyIntro(FID, Text)

V 3(FName, Type) : −Family(FID,FName, Type)
λFID.V 4(FID,FName, Text) : −Family(FID,FName, Type), FamilyIntro(FID1, T ext), F ID = FID1

For each view V, we define one or more citation queries CV . We show below examples of citation queries
for views V1 and V3, where relation FC captures the committee members who curate the content for V1 and
relation MetaData captures general snippets of information such as the owner and url of the database.

λFID. CV 1(FID,FName, PName) : − Family(FID,FName, Type), FC(FID,PID), P erson(PID,PName)
CV 3(X1, X2) : − MetaData(T1, X1), T1 = ‘Owner′, MetaData(T2, X2), T2 = ‘URL’

1Also called binding patterns in [15].
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This information can then be used to construct citations for tuples in the query result. For example, the
JSON-formatted citation for V1(60) could be {FID: ‘60’, FName: ‘RXFP’, PName: [‘Roger’, ‘Ross’]}, and
that for V3 could be {Owner: [‘Alexander’, ‘Davenport’], URL: ‘http://www.guidetopharmacology.org’}.

Attaching citations to general queries. To give a semantics to citations for general queries, we use the
following intuition: If a view tuple can be used to create a tuple and is visible in the query result, then the result
tuple carries the view tuple’s citation annotation. To do this, mappings between the view definitions and input
query are created which maximally and non-redundantly cover the query subgoals; we call this a covering set
of mappings [3]. This is similar to the notion of query rewriting using views as used, for example, in query
optimization and data integration [12]. More formally:

Definition 1: Given a view definition V and query Q

V(Ȳ) : −A1(Ȳ1), A2(Ȳ2), . . . , Ak(Ȳk), condition(V)
Q(X̄) : −B1(X̄1), B2(X̄2), . . . , Bm(X̄m), condition(Q)

in which Ai, Bj are relational subgoals, and condition() are non-relational subgoals which include com-
parisons of variables to constants (called local predicates) and comparisons of variables with variables (called
global predicates if the variables come from different relational subgoals and local otherwise). Then a view
mapping M from V to Q is a tuple (h, ϕ) in which:

• h is a partial one-to-one function from {A1, ..., Ak} to {B1, ..., Bm} which 1) maps Ai to Bj only if they
have the same relation name; and 2) cannot be extended to include more subgoals of Q (i.e. there is no
unmapped Ai, Bj which have the same relation name).

• ϕ are the variable mappings from Ȳ ′ = ∪k
i=1Ȳi to X̄ ′ = ∪m

i=1X̄i induced by h

A relational subgoal Bj of Q is covered iff h(Ai) = Bj for some i. A variable xj ∈ X̄ ′ is covered iff ϕ(yi) = xj
for some variable yi ∈ Ȳ ′. Note that a view may be in zero or more view mappings for a given query.

We also use the notion of the extension of Q, called Qext, which expands the head of Q to include all
variables in the body (X̄ ′).

Definition 2: Valid View Mapping Given a database instance D, a view mapping M = (h, ϕ) of V is valid for
a tuple t ∈ Qext(D) iff:

• The projection of t on the variables that are mapped in Qext under the mapping ϕ is a tuple in Vext(D):
Πϕ(Ȳ ′)t ∈ Vext(D)

• There exists at least one variable y ∈ Ȳ such that ϕ(y) is a distinguished variable.

• All lambda variables in V are mapped to variables in X̄ ′.

Given a set of views V , a query Q and a database instance D, we can build a set of valid view mappings
M(t) for each tuple t ∈ Q(D) according to Definitions 1 and 2. We then combine different view mappings
from M(t) to create a covering set of views for t.

Definition 3: Covering set Let C ⊆ M(t) be a set of valid view mappings. Then C is a covering set of view
mappings for t iff it is maximal and nonredundant:

• No V ∈ M(t) \ C can be added to C to cover more subgoals of Q or variables in X̄; and
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• No V ∈ C can be removed from C and cover the same subgoals of Q and variables in X̄ .

Within a covering set, the citation views are jointly used (indicated by “*”) to construct a citation, and if
there are more than one covering set the citations of the covering sets are alternatively used (indicated by “+R”)
to construct a citation to each tuple. The citations for each tuple in the query result can then be aggregated
(indicated by Agg) to form a citation for the entire query result.

Example 2: In this example, there will be at most one valid view mapping from a view V to a query Q; we will
therefore use the name of the view as the name of the mapping.

Suppose we had the input query

Q1(Name) : −Family(FID,Name, Type), F ID >= 60

For this, one covering set is {V1}: there is a mapping from the body of V1 to the relational subgoal (Family)
as well as an input to the parameter FID. {V3} and {V4} are also covering sets; note that mapping V4 is partial
since FamilyIntro is not mapped to any relational subgoal in Q1. The citation for the first tuple (FID=60) would
therefore alternatively use the citations for V1(60), V3, and V4(60), i.e. it would be Cite(V 1(60) +R V 3 +R

V 4(60)). If “+R” were interpreted as “most specific”, the resulting citation would be Cite(V 1(60)). Similarly,
for tuple FID=62 the citation would be Cite(V 1(62) +R V 3 +R V 4(62)). The citations for each tuple are then
aggregated to derive a citation for the entire query result. If aggregation were interpreted as some form of
intersection, and “+R” balanced size with specificity, the citation for the query result would be Cite(V3).

On the other hand, consider the following the input query

Q2(Type, Text) : −Family(FID1, Name, Type), FamilyIntro(FID2, T ext), F ID1 = FID2 = 60

One covering set is {V2, V3}: there are mappings from the body of V3 to the relational subgoal Family
as well as from the body of V2 to the relational subgoal FamilyIntro. We would therefore jointly use the
citations for V3 and V2, written Cite(V 3 ∗ V 2(60)). Another covering set is {V1, V2}, resulting in citation
Cite(V 1(60) ∗ V 2(60)). Finally, there is a mapping from the body of V4 which covers all relational subgoals
of Q2, however {V4} is not a covering set since it only covers the distinguished variable Text, and can be
augmented with V3 to cover both Type and Text. The third covering set is therefore {V3, V4}. The final
citation for the single result tuple is therefore Cite(V 1(60) ∗ V 2(60) +R V 3 ∗ V 2(60) +R V 3 ∗ V 4(60)).

Finally, suppose we had an input query which is a subset of the cross product of Family and FamilyIntro:

Q3(Type, Text) : −Family(FID1, Name, Type), FamilyIntro(FID2, T ext), F ID1 <= 60, F ID2 <= 60

Note that some of the tuples in the result may be in the join of the two tables, and therefore be visible in V4,
while others are not. This motivates the need to evaluate the extended query Q3ext. Since this returns the value
of all variables in the body, the validity of the join predicate FID1=FID2 can be evaluated for each result tuple,
thereby determining whether the V4 is valid for that particular tuple. Thus, for tuples in the result that are not in
the join, the covering sets would be {V1, V2} and {V3, V2}, while for tuples in the join it would also include
{V3, V4} (as in Q2).

3 Connection to Provenance

To understand the connection to provenance, we start with a simple but common subclass of view definitions
called partitioning views which corresponds to where- provenance, and then move to the (more complex) general
case which corresponds to why-provenance [6, 11].
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3.1 Partitioning Views

A set of select-project views over a single relation R is partitioning if each attribute of R appears in at most
one view; a set of views is partitioning over a database schema S if it is partitioning for each R ∈ S.2 As an
example, the following set of citation views is partitioning for our running example:

λFID.V 10(FID,FName) :- Family(FID,FName, Type), T ype = ‘gpcr′

λFID.V 11(Type) :- Family(FID,FName, Type)
λFID.V 12(FID, Text) :- FamilyIntro(FID, Text)

In this case, since fresh variables are introduced for every relational subgoal in queries, each attribute of
each tuple in a query result is visible in at most one view, and must be the same view across all tuples.3

In where-provenance [4, 10], each attribute of each tuple in an instance of a relation is annotated with a
(unique) provenance token, which is then carried through queries to annotate tuples in the query result. Assume
for now that duplicates in queries are not removed, and that views are materialized. Then the citation for each
tuple in the query result would be the set (joint use) of citation views in which the where-provenance tokens
for attributes in the tuple appear. When duplicates are removed, the union of the sets of citation views for each
duplicate tuple would be used.

Table 3: Base relations with provenance tokens

(a) Family

FID FName Type
t1 58 a1 n1 a6 gpcr a11 s1
t2 59 a2 n2 a7 gpcr a12 s2
t3 60 a3 n3 a8 lgic a13 s3
t4 61 a4 n4 a9 vgic a14 s4
t5 62 a5 n5 a10 vgic a15 s5

(b) FamilyIntro

FID Text
t′1 58 b1 tx1 b5 r1
t′2 60 b2 tx2 b6 r2
t′3 61 b3 tx3 b7 r3
t′4 62 b4 tx3 b8 r4

Table 4: Materialized views V10-V12 and query result Q4(D) with provenance tokens

(a) V10

FID FName
t101 58 a1 n1 a6
t102 59 a2 n2 a7

(b) V11

Type
t111 gpcr a11, a12
t112 lgic a13
t113 vgic a14, a15

(c) V12

FID Text
t121 58 b1 tx1 b5
t122 60 b2 tx2 b6
t123 61 b3 tx3 b7
t124 62 b4 tx3 b8

(d) Q4(D)

FID FName Type covering sets
tq41 58 b1 → {V 12} n1 a6 → {V 10} gpcr a11 → {V 11} V 12 ∗ V 10 ∗ V 11
tq42 60 b2 → {V 12} n3 a8 → {} lgic a13 → {V 11} V 12 ∗ V 11
tq43 61 b3 → {V 12} n4 a9 → {} vgic a14 → {V 11} V 12 ∗ V 11
tq44 62 b4 → {V 12} n5 a10 → {} vgic a15 → {V 11} V 12 ∗ V 11

Example 3: Consider the provenance-annotated relations in Table 3, and ignore for now the annotations in the
last column. Observe that for tuple t1 in Family the provenance annotation for FID is a1 and that for FName is

2Note that more complicated cases of partitioning could also be considered, e.g. horizontal in which conditions on variables in the
views are mutually exclusive.

3Recall that an attribute appears in at most one view, but that a local predicate may cause some tuples in the underlying relation not
to be considered. For example, V10 only applies to tuples in Family whose type is ‘gpcr’.
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a6. In the materialized instance of V10 shown in Table 4a, tuple t101 is the projection of t1 and therefore carries
these annotations.

Assume we have the following query which joins the Family and FamilyIntro relations:
Q4(FID, FName, Type):- Family(FID1, FName, Type), FamilyIntro(FID, Text), FID1=FID

The annotated result of Q4(D) is shown in Figure 4d, where we show the mapping from each where-
provenance token to the materialized view in which it occurs. For example, the provenance token b1 in the
result tuple tq41 appears in tuple t121 of V 12(D). For each tuple in the query result, the combination of views
from each where-provenance token are jointly combined to cover as many distinguished variables of query as
possible. For instance, for tuple tq41 the combination of views is V 10 ∗ V 11 ∗ V 12, which is the covering set
for tuple tq41.

3.2 General views

However, when views are not partitioning (as in the case of views V1-V4), where-provenance is no longer
sufficient; we must also understand how the tuple in the result was constructed from the input tuples (why-
provenance). The final column in Table 3 represents the why-provenance for each tuple.

Example 4: The materialized instances of views V1-V4 from Example 1, together with their provenance anno-
tations, are shown in Tables 5a-5d and the result of query Q3 from Example 2 with provenance annotations is
shown in Table 5e. Note that the views V1-V4 and the query Q3 carry the provenance tokens from the underlying
relations.

Table 5: Materialized views V1-V4 and Query result Q3(D) with provenance tokens

(a) V1

FID FName
t11 58 a1 n1 a6 {s1}
t12 59 a2 n2 a7 {s2}
t13 60 a3 n3 a8 {s3}
t14 61 a4 n4 a9 {s4}
t15 62 a5 n5 a10 {s5}

(b) V2

FID Text
t21 58 b1 tx1 b5 {r1}
t22 60 b2 tx2 b6 {r2}
t23 61 b3 tx3 b7 {r3}
t24 62 b4 tx3 b8 {r4}

(c) V3

FName Type
t31 n1 a6 gpcr a11 {s1}
t32 n2 a7 gpcr a12 {s2}
t33 n3 a8 lgic a13 {s3}
t34 n4 a9 vgic a14 {s4}
t35 n5 a10 vgic a15 {s5}

(d) V4

FID FName Text
t41 58 a1 n1 a6 tx1 b5 {s1, r1}
t42 60 a3 n3 a8 tx2 b6 {s3, r2}
t43 61 a4 n4 a9 tx3 b7 {s4, r3}
t44 62 a5 n5 a10 tx3 b8 {s5, r4}

(e) Q3(D)

Type Text
tq31 gpcr a11 tx1 b5 {s1, r1}
tq32 gpcr a12 tx2 b6 {s2, r1}
tq33 lgic a13 tx1 b5 {s3, r1}
tq34 gpcr a11 tx2 b6 {s1, r2}
tq35 gpcr a12 tx1 b5 {s2, r2}
tq36 lgic a13 tx2 b6 {s3, r2}

The validity of the view mappings must be considered for each tuple in the query result; however, this cannot
be determined simply by reasoning over the where-provenance tokens. For example, for tuple tq32 ∈ Q3(D),
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Table 6: Query result Q3(D) with provenance annotations and valid views

Type Text why-provenance covering sets
tq31 gpcr a11 → {V 3} tx1 b5 → {V 2, V 4} {s1, r1} V 3 ∗ V 2 +R V 4 ∗ V 3
tq32 gpcr a12 → {V 3} tx2 b6 → {V 2} {s2, r1} V 3 ∗ V 2
tq33 lgic a13 → {V 3} tx1 b5 → {V 2} {s3, r1} V 3 ∗ V 2
tq34 gpcr a11 → {V 3} tx2 b6 → {V 2} {s1, r2} V 3 ∗ V 2
tq35 gpcr a12 → {V 3} tx1 b5 → {V 2} {s2, r2} V 3 ∗ V 2
tq36 lgic a13 → {V 3} tx2 b6 → {V 2, V 4} {s3, r2} V 3 ∗ V 2 +R V 4 ∗ V 3

there are two where-provenance tokens, i.e. a12 for attribute “Type” and b6 for attribute “Text”, which come
from tuple t2 in the Family relation and t′2 from the FamilyIntro relation. There exists a view mapping from view
V 4 to Q2, however its join condition (global predicate) under the mapping, FID1 = FID2, is not satisfied
since the attribute FID in tuples t2 and t′2 do not match. However, if we just compare the where-provenance
tokens, the token b6 exists in both tuple tq32 ∈ Q3(D) and the tuple t42 ∈ V 4(D), which leads to the incorrect
conclusion that there is a valid view mapping for view V 4 in tuple tq32.

The validity of view mappings can be checked by reasoning over the result of the extended query, Q3ext,
as illustrated in Example 2. However, there is an alternative approach which reasons over why-provenance
information. For example, the last column in Tables 5a-5e records the why-provenance annotations for each
tuple in the materialized views and query result. If we consider tuple tq31 in Q3(D) again, the corresponding
why-provenance annotation also appears in tuple t41 of V 4(D), which means that the tuples from Family and
FamilyIntro used to construct tuple tq31 can also work for the construction of tuple t41. This implies that the join
condition under the mapping for V 4 can be satisfied by tuple tq31, hence that the view mapping is valid for tq31.
However, for tuple tq32, the why-provenance annotation is {s2, r1} which does not exist in any tuple in V 4(D)
and thus the view mapping of V 4 is not valid.

After checking the validity of views for each tuple in the query result, a mapping is built between each
where-provenance token a of a tuple t and the valid materialized views for t in which the token appears. For
example, as Table 6 shows, for tuple tq31, the token a11 is mapped to view V 3 while the token b5 is mapped to
views V 2 and V 4. In order to cover the attributes “Type” and “Text”, the views from each where-provenance
token are combined. Notice that we can combine V 3 with either V 2 or V 4 for tuples tq31 and tq36, which leads
to two alternative combinations.

4 Implementing the Model

In this section, we describe an implementation of the model presented in Section 2 which generates citations for
individual tuples in the query result. The citations can then be aggregated to compute a citation to any subset
of the query result. The approach was implemented in a prototype, demonstrated in [3], and is called the Tuple
Level Approach (TLA). TLA is similar to the eager approach to computing provenance [7], which also uses an
extended query to carry an extra annotation column from the database. Note that in the TLA implementation,
citation views are not materialized and all reasoning is done using the instance returned by the extended query
discussed in Section 2.

In TLA, as much initial work is done as possible for reasoning about covering sets: each tuple is annotated
with all views in which it potentially participates. This is done by expanding the schema of each base relation
R with a single column (called the view vector column), and adding view V to the view vector for tuple t in
R whenever R appears as a relational subgoal of V and t satisfies the local predicates of V . Checking global
predicates in V is delayed until the user query is executed. Sample instances with view vectors for the Family
and FamilyIntro relations are shown in Tables 7 and 8.

34



Table 7: Sample table for base relation Family

Family id Name Type View vector
58 n1 gpcr V1,V3,V4
59 n2 gpcr V1,V3,V4
60 n3 lgic V1,V3,V4
61 n4 vgic V1,V3,V4
62 n5 vgic V1,V3,V4

Table 8: Sample table for base relation FamilyIntro

Family id Text View vector
58 tx1 V2,V4
60 tx2 V2,V4
61 tx3 V2,V4
62 tx3 V2,V4

The approach is implemented in four steps:

Preprocessing step. When a query Q : −BQ is issued, we first calculate all possible view mappings according
to Definition 1. View mappings will be filtered out in this step if they cannot cover any distinguished variables
of Q (the second condition of Definition 2). This result is a set of view mappings M(Q).

In order to derive valid view mappings for each tuple in the query result, Q is extended to include view
vectors of every base relation occurring in BQ and the boolean expressions of any global predicates under the
view mappings M(Q). The lambda variables under all view mappings in M(Q) will also be included in the
head of the extended query if they are not distinguished variables of Q.

Query execution step. The extended query, Qext1, is then executed over the database instance D yielding an
instance Qext1(D) over which the citation reasoning occurs.

Reasoning step. In first phase of citation reasoning, valid view mappings within each view vector are calcu-
lated for each tuple t ∈ Qext1(D). A view mapping M from M(Q) is valid for a view vector from relational
subgoal R iff there exists a view annotation V in this view vector so that M can be derived from V , the global
predicates under M are satisfied, and M covers at least one head variable in the query. In the second phase,
combinations of valid view mappings from each view vector are considered to find the covering sets.

Population step To avoid the expense of calculating covering sets tuple by tuple, subsets of tuples that will
share the same covering sets are found using the view vectors and boolean values of global predicates. Such
tuples are then grouped; covering sets are calculated once per group and propagated to all tuples in the group.
For example, in Table 9, the result tuples form a single group and therefore the covering set is only calculated
once. This optimization leads to significant performance gains.

Example 5: Consider the following query:

Q5(Type, Text) : −Family(FID1, Name, Type), FamilyIntro(FID2, T ext), F ID1 = FID2

After deriving valid view mappings within each view vector, the resulting instance of the extended query
Q5ext1(D) is shown in Table 9. It is worth noting that the boolean expression of the global predicate FID =
FID1 from V 4 is not evaluated since it matches the global constraint of Q5. Since each view in this example
only has one view mapping, we use V 1, V 2, . . . , V 4 to denote the corresponding view mappings.4 Note that
FID1, F ID2 are included in the head of Q5ext1 since they are lambda variables. The final query result with
covering sets is shown in Table 10. Parameterized views are instantiated by passing the parameter values (e.g.
V1(59) indicates V1 for FID=59). Multiple covering sets for each tuple are combined with +R (alternative use).
After projecting over the distinguished variables of Q5, the third tuple and the fourth tuple in Q5ext1(D) share

4In general, since a query may use the same relation more than once in a subgoal, a view may have multiple view mappings.
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Table 9: Result of executing the extended query, Q5ext1(D)

Type Text FID1 FID2 Valid view mappings from view vector 1 Valid view mappings from view vector 2
gpcr tx1 58 58 V3 V2, V4
gpcr tx2 60 60 V3 V2, V4
vgic tx3 61 61 V3 V2, V4
vgic tx3 62 62 V3 V2, V4

Table 10: The final result, Q5(D), annotated with the covering sets

Type Text Covering sets
gpcr tx1 V 3 ∗ V 2(58) +R V 4(58) ∗ V 3
lgic tx2 V 3 ∗ V 2(60) +R V 4(60) ∗ V 3
vgic tx3 (V 3 ∗ V 2(61) +R V 4(61) ∗ V 3) + (V 3 ∗ V 2(62) +R V 4(62) ∗ V 3)

the same Type and Text and thus the covering sets of the two tuples are combined with a new alternate use
operator, denoted +.

Citations are then generated for each tuple using the covering sets, the citation query and function for each
view in the covering sets, and the policies for *, +R, and +.

For example, suppose +R is interpreted as min according to a cost function which calculates the total number
of unmatched terms (distinguished variables or subgoals) between the views in a covering sets and the query.
Then for each tuple in Table 10 the resulting covering set for each tuple will be V 3 ∗ V 2(FID). Furthermore,
suppose ∗,+ and Agg are interpreted as join, union and intersection, respectively, and that the JSON-formatted
citations for view V 3 and each instantiated view V 2 are as shown in Table 11. Then the citation for the covering
set V 3 ∗ V 2(58) in the first tuple of the query result would be {ID: ‘58’, author: [‘Mark’, ‘Steve’, ‘Roger’],
Committee: [‘Poyner’, ‘Hay’, ‘Justo’]}, which is the join of the citations from V 3 and V 2(58). To construct
a citation for the entire query result, the citations from each tuple (V 3 ∗ V 2(FID)) in the query result are
aggregated, yielding {ID: [‘58’, ‘60’, ‘61’, ‘62’], author: [‘Mark’, ‘Steve’, ‘Roger’, ‘Jens’, ‘Rodrigo’, ‘John’],
Committee: [‘Hay’, ‘Poyner’, ‘Justo’, ‘Andrew’, ‘Leo’, ‘Joel’]}.

Overview of citation framework. The architecture of the citation framework is shown in Figure 2. The DBA
specifies the citation views and policies for how the views are to be used in constructing a citation to a general
query. When a user submits a query to the database, view definitions are mapped to it and their associated
citations combined according to the policies; a citation is then returned to the author along with the query
result. When a Reader later uses a citation to access the cited data, the process of citation generation is reverse
engineered (see dashed arrows in Figure 2). The citation is dereferenced, obtaining the original query and the
citation views that were used; note that versioning is an important component of the solution but is not discussed
in this paper. A specialized version of this architecture was developed for eagle-i as a proof-of-concept [2].

Table 11: Citations for sample views

View Result of citation function
V2(58) {ID: ‘58’, author: [‘Mark’], Committee: [‘Hay’, ‘Poyner’]}
V2(60) {ID: ‘60’, author: [‘Jens’], Committee: [‘Andrew’]}
V2(61) {ID: ‘61’, author: [‘Rodrigo’], Committee: [‘Leo’]}
V2(61) {ID: ‘62’, author: [‘John’], Committee: [‘Joel’]}

V3 {author: [‘Steve’, ‘Roger’], Committee: [‘Hay’, ‘Justo’]}
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Figure 2: Citation Framework

5 Conclusions

In this paper, we address the problem of generating citations to the results of queries over data published in
databases – data citation – and explore the connection to data provenance, in particular where-provenance and
why-provenance. Our approach to data citation is based on citation views, as proposed in [9] and implemented
in [3]. In this approach, citations are specified to some small number of frequent queries (e.g. web-page views
of the database), and are used to construct citations for general queries.

Intuitively, a citation captures the origins of data by giving credit to its authors, i.e. the contributors and/or
curators responsible for the data. When the citation views are select-project views over single relations and are
partitioning, the view tuples which are used to create a tuple in the result can be simply calculated using where-
provenance. However, in the general case where citation views may involve multiple relations (e.g. joins) and
may overlap, where-provenance is no longer sufficient; one must also understand how a tuple in the result was
constructed from the input tuples (why-provenance).

Rather than constructing and maintaining the materialized citation views as suggested by the connection
above, our implementation of citation views reasons solely over the input query Q and the view definitions.
It starts by annotating tuples in the base relations with the views in which they potentially participate, and
determines which of the potential views are valid for result tuples by evaluating global predicates in Qext(D).
A number of clever optimizations are used to improve the efficiency of the approach, e.g. constructing citations
for groups of tuples which share the same covering sets. Initial performance results (not discussed in this paper)
show that citations can be generated for typical views and queries in a reasonable amount of time.

In future work, we would like to explore how to integrate data citation within provenance-enabled database
systems. We would also like to study how existing versioning techniques can be adapted for data citation. Note
that in this context versioning must be triggered when a user cites a data entry and only needs to record change
on the cited data, thus interesting optimizations may be possible. Finally, we would like to explore how citations
can be integrated into data science environments, in which queries are interleaved with analysis steps. This is
difficult since provenance is not well understood in the context of machine learning algorithms.
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