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ABSTRACT
RDF datasets are becoming increasingly useful with the develop-
ment of knowledge-based web applications. SPARQL is the ocial
structured query language to search and access RDF datasets. De-
spite its eectiveness, the language is often dicult to use for
non-experts because of its syntax and the necessity to know the
underlying data structure of the database queries. In this regard,
keyword search enables non-expert users to access the data con-
tained in RDF datasets intuitively.

This work describes the TSA+VDP keyword search system for
eective and ecient keyword search over large RDF datasets. The
system is compared with other state-of-the-art methods on dierent
datasets, both real-world and synthetic, using a new evaluation
framework that is easily reproducible and sharable.

CCS CONCEPTS
• Information systems → Retrieval models and ranking; In-
formation retrieval; Document representation; Evaluation of retrieval
results.
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1 INTRODUCTION
In the last decade, the Web of Data has become one of the principal
means to expose structured data on the Web [15]. The actual para-
digm of the Web of Data is the Linked Data realized via Resource
Description Framework (RDF) datasets (or RDF graphs). An RDF
dataset is a set of triples (subject-predicate-object) each connected
to the other to form a directed graph. RDF allows for exible ma-
nipulation, enrichment, data discovery, and reuse of data across
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applications, enterprises, and community boundaries. Today, RDF
datasets typically contains thousands of millions of edges [16].

The SPARQL structured query language is the standard means
to retrieve and access data from RDF graphs. Its complexity – i.e.,
syntax and the need to know the underlying data schema – is,
however, an obstacle to non-experts. In this regard, keyword search
will enable users to easily access these data, overcoming SPARQL
complexity.

Over the past two decades, the research community and data
technology vendors have developed new approaches for keyword
search over structured databases [2, 12, 19], but no prototype has
led to a transition from proof-of-concept implementations into fully
deployed systems [5]. The main limitations of state-of-the-art sys-
tems regard both eectiveness and eciency. To target eectiveness,
we need to develop methods for retrieving and ranking candidate
answers, which are RDF subgraphs in our case. The structure and
the semantic relevance to the query of the latter is the object of
evaluation. To target eciency, in relation to query execution time
and memory consumption, systems that scale to real-world dataset
sizes have to be designed. Scalability is “the most pressing chal-
lenge” that search systems over structured data have to face and
this aspect is particularly striking for graph data [16] such as RDF.

The research community has dedicated great eort in searching
relational databases, conducting extensive evaluation, and identify-
ing benchmarks to evaluate system eciency and eectiveness [5].
Regarding RDF, a common evaluation framework and shared bench-
mark to evaluate keyword search systems are still missing.

Markov Random Fields-Keyword Search (MRF-KS)[13] is one of
the top systems that has been evaluated using the relational bench-
mark [4]. Although MRF-KS has been tested on relational databases,
in principle it can be used for any kind of data graph. Based on the
“virtual documents” approach [7, 17], the text documents are built
starting from the content of nodes and edges of the graph and then
indexed and retrieved by means of IR techniques. One of the few
native RDF search systems, also based on the virtual documents
approach, is the Structured Language Model (SLM) [6].

The virtual documents approach is promising from the scalability
viewpoint, since it moves part of the computations o-line (e.g.,
documents creation) and exploits IR ranking techniques and data
structures (e.g., inverted indexes) to speed up the search process.
Even though IR techniques scale well to large datasets, they need
to be adapted in dealing with the complexity of structured data.

Contributions of this paper include: (i) TSA+VDP, a virtual
documents-based keyword search system that is both ecient and
eective over dierent databases, which overcomes the limitations
of other state-of-the-art systems; (ii) a new evaluation framework
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based on the Craneld paradigm and a new measure (i.e., tb-DCG)
that weights the overall utility of a subgraph ranking for the end-
user in terms of the top-heaviness (best answers are ranked rst)
and essentialness (non-redundancy) of the ranking.

Outline The rest of the paper is organized as follows: Section 2
presents the relatedwork. Section 3 describes the proposed keyword
search system. Section 4 and 5 present the evaluation framework
and the experimental results respectively. Finally, Section 6 draws
some conclusions and discusses future work.

2 RELATEDWORK
Keyword Search has been extensively studied in the context of
structured databases such as Relational DB and Knowledge Bases.
Good reviews about these topics are [2, 18, 19].

There are three main approaches to keyword search.
The rst one is the schema-based (e.g. DISCOVER [1]), which

uses the schema of the database to formulate SQL queries starting
from the keyword query.

The second one is the graph-based (e.g. BANKS [3]), which mod-
els relational databases as graphs, where the tuples are nodes and
the foreign-primary key relationship between them dene the edges.
While this approach is one of the most commonly used in literature
(cfr. [4]), it specically relies on the exploration of the graph struc-
ture. This prevents the system from scaling to very large databases.

The third approach is the document-based, that concatenates the
text contained in the nodes and edges of the graph into textual
documents and leverages on IR methods for ranking. This approach
seems promising from the scalability perspective since online graph
traversals, which require a lot of time and memory, can be avoided.

Two main systems that follows this approach are considered:
SLM andMRF-KS. The rst was designed towork for RDF graphs [6].
It is based on the construction of potential answer subgraphs con-
taining query keywords and on a ranking function that uses an
adapted language model. The second system, MRF-KS [13], was
originally designed for relational databases. In order to work over
RDF graphs, it was re-implemented. This system is based on answer
trees and their ranking with an MRF function [14]. The system re-
quires performing o-line pre-computations, and include exploring
the graph via the Dijkstra algorithm.

3 TSA+VDP SEARCH SYSTEM
The TSA+VDP search system takes as input an RDF graph G and a
user keyword query Qk . It creates a set of potential answer graphs
G j and the corresponding textual document DG j by combining
the strings extracted from IRIs and literals contained in the graphs.
A retrieval function on the graphs and documents is applied for
ranking according to their relevance to Qk . The ranking is then
returned to the user.

Figure 1 shows the main components of the system along with
a simple example. There are two main phases: the o-line phase,
performed before the user query is issued, and the on-line phase.

The o-line phase is performed by the Topological Syntactical
Aggregator (TSA) algorithm. As shown in Figure 1, the rst step
of the algorithm is to build a set of subgraphs – the Representa-
tive Collection (RC) – from the RDF dataset. The idea is to create
subgraphs via a series of BFS-like explorations of the dataset. TSA
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Figure 1: The ve steps of the TSA+VDP search system.

considers an IRI node and all the literals connected to it as a big
meta-node. For every iteration, the exploration starts from a fresh
meta-node (i.e. a source node) with an out-degree greater than a
given threshold. Only edges labeled with frequent predicates are
traversed. An edge is traversed only if it leads to a fresh source node.
The algorithm stops when it encounters a visited node or when it
reaches a given graph radius. Each subgraph is then associated with
a Virtual Document created by connecting the words in the given



A Scalable Virtual Document-Based Keyword Search System for RDF Datasets SIGIR ’19, July 21–25, 2019, Paris, France

subgraph nodes and edges. These documents are then indexed with
standard IR methods.

The second step of the algorithm begins when the user submits
the query. Firstly, a ranking is obtained (top 1,000 results) over all
the virtual documents with the BM25 model (step 2 in Figure 1). In
step 3 (note that the sub-graph triples containing query keywords
are highlighted) the sub-graphs with overlapping triples are merged
using a decision algorithm based on a learned threshold.

Afterwards, the Virtual Document Pruning (VDP) algorithm (step
4) is applied. First of all, VDP considers the collection of merged
graphs and keeps those containing all the query keywords. These
graphs are then merged in a not always connected and usually
quite small graph, called query graph. VDP explores it via BFS
and produces new sub-graphs. Finally, the sub-graphs that do not
contain all of the query keywords are discarded and the remaining
ones go through a pruning phase which eliminates the triples that
do not contain at least a keyword. The nal result is a collection
of answer graphs that are further ordered by a Markov Random
Field-based [14] ranking function.

4 EVALUATION FRAMEWORK
The ecacy evaluation is quite straightforward since it is enough
to measure the (online and oine) time and memory used by the
search systems (i.e. TSA+VDP, SLM and MRFKS) to run the o-line
and the on-line search phases.

To measure the eectiveness of the search system a critical dif-
ference between standard text retrieval and virtual document-based
keyword systems needs to be taken into account. In the former case,
the collection of documents is xed, while in the latter the answer
graphs and the virtual documents of the collection are generated
dynamically (sometimes on-the-y) with dierent strategies and
heuristics. Hence, the relevance of a document to a query cannot
be veried in advance, as can be done for standard text retrieval.

While [5] denes a shared test collection to evaluate the eec-
tiveness of search systems over relational data, there is no such
shared test collection for RDF.

We dene a new evaluation framework on the basis of the use
of SPARQL queries and their counterpart keyword queries that
is easily reproducible and shareable. In our context, the SPARQL
query Qtk associated to a given topic tk ∈ T , returns the “perfect
answer graph” – i.e. the ground truth graph Gtk . Thus, all the triples
in the answer graph Gtk are deemed as “relevant” to the topic tk
while all the triples outside Gtk are “not-relevant”.

Denition 4.1. LetQk be a keyword query derived from the topic
tk ∈ T and submitted to a keyword search system and let Gtk be
the ground-truth graph of tk . We dene the ranking returned by
the system as Rk = [ap1,ap2, . . . ,apn], where api = (Gi , simi ) ∈
Rk , i ∈ [1,n] is called answer pair s.t. Gi is the RDF answer graph
at rank i and simi ∈ R is a degree indicating the similarity of Gi
to Gtk . For every couple of answer pairs {api ,apj } ∈ Rk s.t. i < j,
simi ≥ simj holds true.

A good keyword search system should return a ranking that is:
(i) top-heavy: the answer graphs ranked at the top contain more
relevant triples than noisy triple; and, (ii) essential: redundant triples
in dierent graphs ins the ranking are irrelevant to the user.

Denition 4.2. Given a topic tk ∈ T , a rankingRk and the ground-
truth graph Gtk , the Signal-to-Noise Ratio (SNR) of Gi ∈ Rk and

the Graph Relevance Weight (GRW) of Gi ∈ Rk as are dened as
follows:

SNR (Gi ) =
|(Gi ∩ Gtk ) \ S |

|Gi |
GRW (Gi ) =

|(Gi ∩ Gtk ) \ S |

|Gtk |

where S is the union of all the relevant triples in Gj ∈ Rk ,∀j ∈ [1, i[.
The SNR recognizes precise and essential graphs, while the GRW

is a weighting function which rewards the graphs that contain new
relevant triples seen for the rst time by the user.

Denition 4.3. Let tk ∈ T be a topic, Rk a ranking with length
n ∈ N+, λ ∈ [0, 0.1, 0.2, . . . , 1] be a threshold value indicating the
level of redundancy in the ranking1 and b ∈ N+ a logbase value.
We dene the Relevance Gain (RG) of Gi ∈ Rk as

RGb (Gi ) =




GRW (Gi ) if i < b ∧ SNR (Gi ) > λ,
GRW (Gi )

logb i
if i ≥ b ∧ SNR (Gi ) > λ,

0 SNR (Gi ) ≤ λ.

The triple-based Discounted Cumulative Gain (tb-DCG) of the rank-
ing Rk is dened as

tb-DCGb (Rk ) =
n∑
i=1

RGb (Gi )

The tb-DCG is a variation of the DCG measure [11], widely-used
in text retrieval.

5 EXPERIMENTAL RESULTS
Three RDF datasets have been considered: LinkedMDB [10] (7M
triples), IMDB 2 (116M triples) and the synthetic dataset LUBM
(two versions of 1M and 10M triples) [8]. LinkedMDB and IMDB
are too big for SLM (> 1000 sec online execution time for every
query) and MRF-KS (> 48 hours oine execution time). Hence, to
allow eectiveness comparison to TSA+VDP, two reduced versions
– rLinkedMDB and rIMDB – of 1M triples each are created by
randomly sampling connected components.

We created 50 queries for both LinkedMDB and IMDB; whereas,
for LUBM, we used the 14 ocial queries 3. The source code of
the search systems, the scripts to obtain the test datasets and the
code to run the experiments along with the topics and the keyword
queries are made available in our git repository4.

The eectiveness and the eciency of the considered keyword
search systemswere tested in terms of tb-DCG (λ = 0.1), oine time
to build the virtual documents, average online time and memory
used by the queries for every dataset. The results are shown in
Table 1. An ANOVA test among the results was performed to assess
the statistical reliability of the systems’ performances.

In terms of oine time required to build and index the virtual
documents, we can see that SLM has a negligible oine phase,
whereas MRF-KS requires up to 2 days to process the rIMDB data-
base. TSA+VDP reports the best trade-o between oine and online
time and constantly keeps the oine time under 1h with the solely
exception of LUBM10M. The oine execution time is the main bot-
tleneck for MRF-KS. Considering the databases of 1M triples, it is
1λ = 0 redundant triples allowed, λ = 1 no redundant triples allowed in the ranking.
2https://datasets.imdbws.com/
3http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt
4https://bitbucket.org/keywordsearchrdfproject
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Table 1: From left to right: dataset name; system name; of-
ine time to build and index the virtual documents; aver-
age tb-DCG; average online time; average central memory.
† indicates the systems in the top performing group with
p < 0.01. The best system is in bold.

Dataset Systems oine(min) tb-DCG online(sec) memory(MB)

rLinkedMDB
SLM 1 0.0005±0.00 334.36±96.01 6.2868±0.55
MRF-KS 1,368 0.4348±0.10† 113.22±62.67 2.2252±0.76
TSA+VDP 23 0.5168±0.13† 30.69±09.43† 21.9080±3.48

LinkedMDB TSA+VDP 64 0.4490±0.12 213.67±87.04 44.528±10.60

rIMDB
SLM 1 0.0030±0.00 34.50± 1.59† 3.2733±0.06
MRF-KS 2,880 0.4217±0.06 440.68±189.77 0.9858±0.44
TSA+VDP 12 0.5449±0.12† 35.87± 9.53† 19.8860±3.66

IMDB TSA+VDP 52 0.2697±0.10 248.35±187.37 35.037±23.14

LUBM1M
SLM 1 0.0380±0.02 39.60±39.6† 3.4607±1.14
MRF-KS 1,440 0.0902±0.10† 286.80±130.20 1.8161±0.1842
TSA+VDP 26 0.2434±0.1842† 24.02±26.27† 5.2571±1.66

LUBM10M TSA+VDP 510 0.2080±0.170 17.21±11.66 105.34±215.28

interesting to note how TSA+VDP is the algorithm with the highest
performances for tb-DCG and the highest eciency in terms of
online time. While MRF-KS attains reasonable values of tb-DCG on
rIMDB and rLinkedMDB, its online execution time is signicantly
higher than TSA+VDP.

LUBM1M is more dicult than the other two databases, perhaps
due to the topology of the graph and the nature of the node IRIs.
Many triples in LUBM have IRIs and texts that are often repeated
within the dataset. It does not have the variability of lexicon found
in the other two real-world datasets. Hence, the virtual documents
obtained from the subgraphs extrapolated from LUBM1M tend to
be more similar to one another than those derived from LinkedMDB
and IMDB. The same words are used over and over only in dierent
combinations. Hence, one keyword can be present in many more
virtual documents, thus making dicult for the ranking functions
to distinguish between relevant and not-relevant documents.

In particular, TSA+VDP is very good on certain queries over
LUBM1M, but retrieved no relevant graphs on others. This is due
to the inability of BM25 (step 2) to eectively distinguish between
relevant and not-relevant virtual documents.

TSA+VDP and MRF-KS are the two top performing algorithms
on rLinkedMDB, whereas TSA+VDP performs signicantly better
than the other systems on rIMDB and on LUBM1M. Moreover,
thanks to its heuristics, it performs much faster than the baselines
in rLinkedMDB and LUBM1M.

As we can see, only the TSA+VDP algorithm is able to scale to the
full-size datasets. Both SLM and MRF-KS time out (> 1000 sec) on
all the queries for the full-size datasets. Performances for tb-DCG
on LinkedMDB, LUBM10M, and IMDB are signicantly lower than
the ones on the reduced versions. This is due to the higher number
of graphs and virtual documents in the RC. It is harder for BM25
to isolate the more relevant documents and associated graphs, so
VDP can rank fewer relevant subgraphs. This phenomenon can
be immediately seen on LinkedMDB and LUBM10M but becomes
much more evident on the full-sized IMDB database.

The higher number of virtual documents in RC has also an impact
on time and memory usage since VDP produces more graphs and
the set of nal potential answer graphs is also bigger. Consequently,
the algorithm requires more memory and more time, since a bigger
number of answer graphs needs to be created and ranked.

6 CONCLUSIONS
The TSA+VDP search system is presented herein for keyword
search over graph data. The system exploits state-of-the-art IR
methods and scales to real-world RDF dataset sizes.

A new evaluation framework for keyword search systems based
on structured SPARQL query and corresponding keyword query
pairs has been illustrated. This framework can be easily reproduced.
It is also based on tb-DCG, a new user-oriented measure, which
awards top-heavy and non-redundant rankings.

In the future, TSA+VDP can be tested on other datasets like
DBpedia Infobox to further assess the ability of TSA+VDP to scale.
Dierent methods in the construction of the virtual documents and
their impact on eectiveness will also be tested.
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