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Abstract

This paper analyzes two state-of-the-art Neural Information Retrieval (NeuIR) models: the Deep Relevance
Matching Model (DRMM) and the Neural Vector Space Model (NVSM). Our contributions include: (i) a
reproducibility study of two state-of-the-art supervised and unsupervised NeuIR models, where we present
the issues we encountered during their reproducibility; (ii) a performance comparison with other lexical,
semantic and state-of-the-art models, showing that traditional lexical models are still highly competitive
with DRMM and NVSM; (iii) an application of DRMM and NVSM on collections from heterogeneous search
domains and in different languages, which helped us to analyze the cases where DRMM and NVSM can be
recommended; (iv) an evaluation of the impact of varying word embedding models on DRMM, showing how
relevance-based representations generally outperform semantic-based ones; (v) a topic-by-topic evaluation of
the selected NeuIR approaches, comparing their performance to the well-known BM25 lexical model, where
we perform an in-depth analysis of the different cases where DRMM and NVSM outperform the BM25
model or fail to do so. We run an extensive experimental evaluation to check if the improvements of NeuIR
models, if any, over the selected baselines are statistically significant.
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1. Introduction

Recently, Neural Information Retrieval (NeuIR) has attracted a great deal of attention from the research
community. A dedicated workshop series was held at the ACM SIGIR Conference on Research & Devel-
opment in Information Retrieval (SIGIR) [17, 19], an in depth monograph [56] and a special issue in the
Information Retrieval Journal (IRJ) [18] have been published in 2018. Moreover, at SIGIR, papers employ-
ing deep learning are increasing at a fast pace – i.e., from one article published in 2015 to eleven articles
published in 2017 [2].

Nevertheless, the burst of enthusiasm contrasts the concerns about the actual efficiency and effectiveness
of NeuIR methods [50]. To this end, Wei et al. in [82] critically examined the advances in NeuIR regarding
the reproducibility of the systems, the data on which they are tested and the improvements over robust and
well-tuned baselines.

The issue of reproducibility of search algorithms regards the IR field as a whole, not the only NeuIR.
Reproducibility is now a central research topic for the IR community with dedicated workshops [6, 15, 25]
which raised awareness and proposed a reproducibility model – i.e., PRIMAD [32]; with a specific track
at the European Conference on Information Retrieval (ECIR) since 2015; and, with dedicated journal
special issues [26, 27]. Reproducibility efforts focused on several core topics in IR ranging from reproducing
baselines [51, 84] and core system components [69] to evaluation [30, 43] and advanced applications [40].
Some works have focused on reproducing neural architectures for question answering [23], reproducing and
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generalizing the linear transformation of word embeddings [86], or replicating neural search models on ad-hoc
test collections [28]. However, there has been no specific effort towards the reproducibility and generalization
of NeuIR systems.

A NeuIR system is an ecosystem of components. Its reproducibility is quite challenging, even when the
source code is available. Such systems often include text processing methods, lexical ranking models, word
embeddings, optimizers, query expansion methods, and other traditional Information Retrieval (IR) and
Natural Language Processing (NLP) components. These are used to feed a shallow or deep neural network.
Every single component has a sizable impact on the performances of the system, but its interactions have
not been accurately investigated. For instance, how documents are pre-processed has implications on the
creation of term embeddings. In turn, they affect the optimizer and parameter selection. Even though this
domino effect holds true for almost all advanced IR systems, it is particularly accentuated in NeuIR systems
– where it is hard (or even impossible) to understand why we get a specific output and thus how to detect
the component which may be not working correctly. To reproduce the results achieved by NeuIR models,
each system component needs to be finely tuned. Describing a neural network architecture in detail or
providing the source code is usually not sufficient to reproduce the system successfully. When generalizing
the application of NeuIR models on collections from different domains or in different languages, the problem
is even more significant, as it needs to adapt and optimize many components on a different setting: i.e. from
English news to German news, Web pages or medical documents.

Hence, with the increasing popularity of NeuIR models, the analysis of these approaches, especially
through reproducibility studies, becomes crucial for in-depth understanding. In fact, the more we understand
single system components and their interactions, the more we can generalize the approach and successfully
transfer its performances to different domains.

However, the complexity of NeuIR models is not the only obstacle for their reproducibility. In many
cases, NeuIR approaches work and are tested only on big sets of interaction proprietary data [9, 57, 88] which
may not be easily accessible or available at all. On the other hand, to reproduce an experiment we require
the original dataset or a reasonable approximation of it. Luckily, there are also several NeuIR approaches
working on shared TREC collections [11, 35, 74, 90], especially in an ad-hoc retrieval setting.

In this paper, we reproduce and thoroughly evaluate two NeuIR systems: Deep Relevance Matching
Model (DRMM) and Neural Vector Space Model (NVSM). DRMM [35] was presented at the 25th ACM
International Conference on Information and Knowledge Management (CIKM 2016). DRMM achieved com-
petitive results on re-ranking tasks in ad-hoc retrieval and it is still one of the reference NeuIR approaches.
NVSM was published in the ACM Transactions of Information Systems in 2018 [74] and evaluated on shared
TREC test collections, yielding competitive results in ad-hoc retrieval. NVSM is one of the very few com-
pletely unsupervised existing NeuIR models, therefore it has excellent potential for generalization since it
does not need any interaction data nor labeled data, which is a scarce resource in a typical IR experimental
setting.

We replicate the experimental results in the paper presenting DRMM, leveraging on the source code
shared by the authors. Whereas, we re-implement NVSM from scratch in Python, relying on widely-used
and consolidated libraries like TensorFlow. 1 This choice enables a straightforward comparison of NVSM with
many other NeuIR models available in public repositories. 2 We reproduce the results of the original paper
on the test collections used by the authors not only for NVSM, but also for the main baselines considered.
Our aim is to check if we could reproduce the results achieved both with NVSM and the proposed baselines.

We consider four different perspectives in the analysis of DRMM and NVSM. First of all, we perform
an in-depth evaluation of DRMM and NVSM and compare them with the most widely adopted lexical IR
models such as TF-IDF, BM25, Query Likelihood Model (QLM), Divergence from Randomness (DFR), and
other basic semantic models based on Word2Vec. The goal is to evaluate the potential of NeuIR approaches
compared to a few widely-used and not necessarily heavily tuned IR models. Understanding NeuIR strengths
and weaknesses can enhance their integration into full-stack IR systems, which employ a variety of pre- and
post-retrieval components such as query expansion and relevance feedback.

1https://www.tensorflow.org/.
2https://github.com/NTMC-Community/MatchZoo.
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Secondly, we test DRMM and NVSM on new search domains for which they were not initially de-
signed: (i) the multilingual domain, where we consider Italian, German and Farsi [1, 22] news document
collections from Conference and Labs of the Evaluation Forum (CLEF); (ii) the medical domain, where we
consider the OHSUMED collection [42] composed of references/documents from MEDLINE (the online life
sciences/biomedicine information database); (iii) the Web domain, where we consider a small Web collection,
namely the Text REtrieval Conference (TREC) WT2g [41]. Since NVSM does not scale to large document
collections due to memory and time constraints, we chose collections of the same order of magnitude as
those adopted in the original paper.

Thirdly, we perform an analysis of the impact of different word vector representations (i.e., word em-
bedding models) on DRMM – considering other embedding models such as FastText [8], Word2Vec [55] and
the word embeddings computed by NVSM [74]. Regarding NVSM, we cannot perform the same analysis as
the joint learning of word and document embeddings is an inherent part of the model.

Finally, we perform a topic-by-topic analysis and comparison of selected NeuIR systems to the well-
known BM25 lexical retrieval model. We highlight the performance differences among systems, describing
the topics where NeuIR approaches are performing better than lexical models, and vice versa. The aim is
to understand whether the two approaches are orthogonal, if they share common features, when it is more
convenient to use a lexical model or a neural model.

Contributions. The contributions of this paper include: (i) a reproducibility study of DRMM and NVSM
on the original experimental collections; (ii) a comparison of DRMM and NVSM to widely-used lexical
and semantic IR models; (iii) an application of specific NeuIR models in heterogeneous search domains;
(iv) an evaluation of the impact of different word embedding models on DRMM; and, (v) a topic-by-
topic evaluation of selected NeuIR approaches, based on a comparison of NVSM, DRMM and the BM25
retrieval model. The source code and the settings we used for this study are available at the following URL:
https://github.com/giansilv/NeuralIR.

Outline. The rest of the paper is organized as follows: in Section 2, we describe the experimental setup
employed in our tests; in Sections 3 and 4, we describe the DRMM and NVSM models respectively, along with
the results of our reproducibility experiments; in Section 5, we report a comparison of the selected NeuIR
systems with traditional lexical approaches and other state-of-the-art models; in Section 6, the robustness
of DRMM and NVSM is evaluated over a set of collections in different languages and from distinct domains;
Section 7 assesses the impact of different word embedding models on DRMM; in Section 8, we perform an in-
depth topic-by-topic analysis of the characteristics of the selected NeuIR models; and finally, in Section 10,
conclusions are drawn with a discussion on the lessons learnt.

2. Experimental setup

To evaluate DRMM and NVSM, we use eleven experimental collections in different languages from various
domains. The collections characteristics are indicated in Tables 1 and 2. For the retrieval experiments, we
consider three combinations of the topic fields: the title (T) field only, the description (D) field only, or
both the title and description (TD) fields. We compare the selected NeuIR models to other well-known
semantic and lexical approaches for retrieval. The semantic models include Word2Vec and Latent Dirichlet
Allocation (LDA), while the lexical ones refer to QLM, BM25, TF-IDF, and the Poisson estimation for
randomness using Laplace succession for normalisation (PL2) model [5] (hereafter DFR). In particular, for
Word2Vec we consider the approaches originally proposed in [79], which define a document representation as
the weighted sum of its word embeddings. We consider the unweighted sum, referred to as Word2Vec (add),
and the sum weighted by the term’s self-information, 3 referred to as Word2Vec (si). Whereas, for QLM,
we consider the approaches with Jelinek-Mercer smoothing, referred to as QLM (jm), and with Dirichlet
smoothing, referred to as QLM (dir) [89].

3Self-information is a term specificity measure similar to IDF [16].
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Reproducibility experiments. In the reproducibility experiments of DRMM, we employ the Robust04
collection [38], which is one of the two collections where the model was evaluated in the reference paper [35].

In the reproducibility experiments of NVSM, we use the same set of 6 newswire article collections from
TREC – see Table 1 – adopted in the reference paper [74]. Four of the collections considered herein are
subsets of the TIPSTER corpus [38]: Associated Press 88-89 (AP 88-89), Financial Times (FT), LA Times
(LA) and Wall Street Journal (WSJ) [39]. The remaining two collections are the Robust04 collection –
based on TIPSTER Disk 4&5 minus CR – and the New York Times (NY) collection – which consists of
articles written and published by the New York Times between 1987 and 2007.

AP88-89 FT LA NY Robust04 WSJ
Vocabulary 247,725 437,511 197,024 1,062,137 760,467 184,717

Document Count 164,597 210,158 131,896 1,855,658 528,155 173,252
Query Count 149 144 143 50 249 150

Table 1: Statistics of the AP88-89, FT, LA, WSJ, Robust04 and NY collections.

Comparison with other lexical and semantic models. In this set of experiments, we compare DRMM
and NVSM to other lexical (i.e. BM25, TF-IDF, DFR, QLM) and semantic models (i.e. Word2Vec (si)) on
the Robust04 and NY collections. The aim is to compare the performance of NeuIR models considered to
lexical and semantic matching techniques and to state-of-the-art retrieval approaches. The performances of
other competitive approaches as the BM25+RM3 model in Anserini [84] and the one presented in [85] using
BERT [21] to perform retrieval, are also considered for reference. We also report the performances of the
best TREC systems when available.

Collection-based evaluation. In this set of experiments, we evaluate the impact of the domain and/or
language of different collections on the performance of selected NeuIR models. The DRMM and NVSM
models are evaluated on five collections from different domains and languages:

• WT2g: is a collection of documents crawled from the Web, used in TREC 1999 Web Track [41];

• OHSUMED: consists of a set of 348,566 references/documents from MEDLINE, an on-line life sci-
ences/biomedicine information database, consisting of titles and/or abstracts from many published
medical journals. 4 OHSUMED contains 106 topics, divided into 63 official topics and 43 pre-test
topics that were rejected from official TREC-9 runs for a variety of reasons, often because they had
too few relevance judgments. Topic fields are: title (patient description) and description (information
need) [42].

• CLEF: document sets in different languages form the CLEF corpora but with common features: the
same genre and period [1, 22]. The Italian and German corpora are composed of newspaper articles
from 1994 to 1995 and the Persian corpus (i.e., Farsi) from 1996 to 2002. The German and Italian
news agency dispatches are all gathered from the Swiss news agency and comprise of the same corpus
translated in different languages.

The detailed characteristics of the collections are reported in Table 2. For reference, we also report –
whenever possible – the performance of the best TREC and CLEF systems on the experimental collections
relative to the evaluation measures we consider.

Embedding-based evaluation. In this set of experiments, we evaluate DRMM on the Robust04, NY,
WT2g and OSHUMED collections using word embeddings generated with different techniques. Indeed,
different word representations can have a sizeable impact on the performance of neural models. This is
also shown in [52], where the authors evaluate BERT [21] and ELMo [64] representations for retrieval. We
consider four different types of word embeddings:

4https://www.nlm.nih.gov/bsd/medline.html.
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WT2g OHSUMED CLEF-DE CLEF-FA CLEF-IT
Vocabulary 1,049,056 265,923 739,053 399,185 232,335

Document Count 247,491 348,566 223,132 166,774 157,558
Query Count 50 97 95 100 90

Table 2: Statistics of the WT2G, OHSUMED, CLEF-DE, CLEF-FA and CLEF-IT collections.

W2V: Word2Vec embeddings trained on each collection used to perform retrieval with Gensim [67], fol-
lowing the instruction in the DRMM reference paper [35]. To train this model, we consider a context
window size of 10, an embeddings size of 300, 10 negative samples, a subsampling of frequent words
of 10−4, and we discard all terms appearing less than 10 times. We empirically select 10 as the best
number of training epochs for the model after evaluating the system performance with a model trained
for 5, 15 and 20 epochs. We also decided to apply punctuation and stopwords removal (using the IN-
QUERY [13] stoplist), stemming (Krovetz [47]) and to remove all terms containing one or more digits
or shorter than three characters as a pre-processing step on the document corpus before training the
model;

FastText: FastText [8] embeddings trained with Gensim on each collection used to perform retrieval.
FastText is an extension of Word2Vec to compute word representations based on character n-grams.
In this case, we consider an embeddings size of 300, a context window of size 10, a subsampling of
frequent words of 10−4, 10 negative samples, and we discard words appearing in the collection less
than 10 times. We train this model for 10 epochs on each of the selected experimental collections;

NVSM WE: the set of word embeddings learned and used by the NVSM model. The NVSM retrieval
model works by learning both word and document representations from scratch in an unsupervised
fashion and then using them to perform retrieval. Details on the training and retrieval processes are
described in Section 4. Since NVSM embeddings are learned – like Word2Vec embeddings – based on
the cosine similarity metric, we can use them in the DRMM model without any modifications. As
done for the other embedding models, we train a new model on each of the considered collections;

W2V Google: Word2Vec embeddings trained by Google on part of Google News dataset (about 100 billion
words). The model contains 300-dimensional vectors for 3 million words and phrases. 5

Topic-based evaluation. In this set of experiments, we conduct a topic-by-topic analysis on the perfor-
mance of the selected NeuIR models and the BM25 model. The aim is to perform an in-depth comparison
between lexical and semantic retrieval models. We consider Robust04, NY, WT2g, OHSUMED and CLEF
collections. Each plot in Section 8 represents the Average Precision at Rank 1000 (AP) of BM25 (x-axis)
and NVSM or DRMM (y-axis).

We also employ the Kernel Density Estimation (KDE) [81] to estimate the Probability Density Function
(PDF) of the AP of BM25, NVSM and DRMM models for all the topics. Then, we compute the Kullback-
Leibler Divergence (KLD) [48] between these PDFs to get an estimate of the difference in AP distribution
values for each model.

3. DRMM: Reproducibility of a supervised neural model

Model description. The Deep Relevance Matching Model (DRMM) [35] is a supervised system for ad-hoc
retrieval which implements the following strategies for relevance matching:

• it considers exact matching signals between query and document terms;

• it enables a different importance weight of query terms;

5The model is available at: https://code.google.com/archive/p/word2vec/.
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Figure 1: Architecture of Deep Relevance Matching Model (DRMM).

• it complies with different matching requirements, i.e., verbosity and scope hypotheses. The verbosity
hypothesis assumes that a long document is like a short document, covering a similar scope with
more words. Vice versa, the scope hypothesis assumes that, in longer documents, only portions of the
content may be relevant, the whole document is therefore not needed to be relevant for a query.

Based on word embeddings, DRMM considers local interactions between each pair of terms in a query
and a document. For each query term, it maps the variable-length local interactions into a fixed-length
matching histogram. Then, these matching histograms are fed into a feed-forward neural network that
outputs a matching score for each pair of query/document terms. Finally, a weighted sum of these scores
for each term pair is computed in order to produce a global matching score for each query. The scheme of
this architecture is depicted in Figure 1.

The local interactions between each query and document term are obtained computing the cosine sim-
ilarity between each term vector. Scores are then aggregated in matching histograms which discretize the
interval [−1, 1] into a set of k bins. For instance, if we take 0.5 as the bin size, each bin will contain the cosine
similarity scores respectively in the intervals: [−1,−0.5), [−0.5, 0.5), [0.5, 1). The interval [1, 1], considers
the exact match scores in a separate bin. The authors propose three different ways to map the values in the
matching histograms:

• Count-based Histogram (CH): considers the count of local interactions in each bin as the histogram
value;

• Normalized Histogram (NH): normalizes the count value in each bin by the total count;

• LogCount-based Histogram (LCH): applies logarithm over the count value in each bin.

In our experiments and in the reference paper, the number of bins considered is 30, and we only evaluate
the results of the best performing matching-histograms configuration which is LCH.

The feed-forward network, in its best-performing configuration, has two layers, the first one of 5 nodes
and the second one of a single node, both using tanh as the activation function and a bias term.
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The matching scores returned by the network are then weighted with coefficients computed by a term
gating network. The term gating network optimizes the function reported below in order to estimate the
best values of the coefficients gi for the aggregation of the matching scores at the query level:

gi =
exp(wgx

(q)
i )∑M

j=1 exp(wgx
(q)
j )

, i = 1, ...,M, (1)

where wg is the weight vector of the term network, and x
(q)
i , i = 1, ...,M denotes the i-th query term. The

authors developed different types of weighting functions which require different input values:

• Term Vector (TV): in this case, x
(q)
i denotes the i-th query term vector, and wg is a weight vector of

the same size of the term vectors;

• Inverse Document Frequency (IDF): in this case, x
(q)
i denotes the inverse document frequency of the

i-th query term, and wg is a coefficient with a single parameter.

From the experiments in [35], the best performing approach to compute these weights is the second one.
For this reason, we employ the IDF weighting scheme in our tests.

Finally, the training of the system is performed minimizing the following hinge loss:

LΘ(q, d+, d−) = max(0, 1− s(q, d+) + s(q, d−)), (2)

where d+ is a document ranked higher than d− given a query q, Θ represent the system parameters to be
optimized and s(·) is the function that computes the matching scores.

Evaluation Measures. For this reproducibility experiment we consider the same evaluation measures
adopted in the DRMM reference paper [35]: Mean Average Precision at Rank 1000 (MAP), Normalized
Discounted Cumulated Gain at Cutoff 20 (nDCG@20) and Precision at Cutoff 20 (P@20).

Model configuration. The authors of DRMM share the input data and the implementation of the system
in a public repository. However, in order to replicate the original results and to generalize DRMM to other
collections, we defined a new document pre-processing pipeline and developed a new training script for the
word embeddings required by the retrieval model. We considered only the best configuration of the model
with the LCH matching histograms with 30 bins and the IDF coefficients in the term gating network. Finally,
we set the first feed-forward layer size to 5. This is the default configuration of the network as described in
the reference paper [35].

Moreover, since DRMM performs a re-ranking of a pre-existing run, we compute it using a modified
version of Terrier v.4.1 [53] 6 with the Query Likelihood Model (QLM) with Dirichlet smoothing [89], the
INQUERY stop list [13] and Krovetz stemmer [47] as done in the reference paper [35]. We do not perform
any optimization of the parameters of the model and keep the Terrier default smoothing value µ = 2500.
We also keep this experimental setup for all the experiments with DRMM throughout the paper.

The most critical element among the inputs of DRMM is the set of word embeddings of terms in the
corpus. The authors share a pre-trained Word2Vec model [55] which contains the required word embeddings
trained on the collections used in their original experiments. However, to replicate their experiments on the
Robust04 collection – and to use DRMM on other collections – we train a new Word2Vec model following
their instructions with the Word2Vec implementation available in Gensim. The model was trained as
described in Section 2, in the embedding based evaluation paragraph. The Word2Vec hyperparameters are
the same as the ones indicated in the reference paper. However, differently from what stated in [35], we
experimented with different number of training epochs, and employed the gradient decay option available
in the Word2Vec Gensim implementation. The corpus on which we evaluate the model is the Robust04
collection, where we consider the complete set of 249 topics. Finally, we evaluate DRMM considering the
title (T) and the description (D) fields as done in the experiments of the reference paper [35].

6The modified version of Terrier we used for our experiments is available at the url: https://github.com/gridofpoints.

7



Robust04 (T) Robust04 (D)
MAP nDCG@20 P@20 MAP nDCG@20 P@20

QLM (original) 0.253 0.415 0.369 0.246 0.391 0.334
QLM (reproduced) 0.248 (-0.005) 0.415 (0.000) 0.355 (-0.014) 0.246 (0.000) 0.392 (+0.001) 0.326 (-0.008)

DRMM (original) 0.279 0.431 0.382 0.275 0.437 0.371
DRMM (Gensim WE) 0.268 (-0.011) 0.441 (+0.010) 0.376 (-0.006) 0.249 (-0.026) 0.411 (-0.026) 0.343 (0.028)
DRMM (original WE) 0.270 (-0.009) 0.442 (+0.011) 0.377 (-0.005) 0.252 (-0.023) 0.415 (-0.022) 0.347 (-0.024)

Table 3: Results of our reproducibility experiments of DRMM. Bold values represent the highest scores among the models.
We report between the parentheses the difference between the reproduced results and those reported in the DRMM reference
paper – QLM (original) and DRMM (original).

Experimental Results. In Table 3, we report the experimental results we obtain using the shared DRMM
code with our document pre-processing pipeline. In this experiment we also used (i) the Word2Vec embed-
dings trained with Gensim on the Robust04 collection (Gensim WE), and (ii) the word embeddings model
shared in the official DRMM repository (Original WE). 7 We also compare our performance to those of the
QLM model implementation in Terrier and the shared results in the DRMM reference paper [35]. From
the results reported in Table 3, we observe that our document pre-processing pipeline and the strategy we
adopted for the training of the word embeddings leads to a similar performance to the one reported in the
DRMM reference paper [35].

In general, we obtain slightly lower MAP, nDCG@20 and P@20 values than the ones reported in [35]
when considering only the title (T) or description (D) fields alone, with a larger difference in the second
case. Interestingly, if we repeat the experiments considering both the title and description (TD) fields of the
topics, we obtain better rankings than the ones computed using only the title or description – in this case,
we obtain MAP, nDCG@20 and P@20 values respectively of 0.279, 0.451 and 0.386.

Given our experimental results, we consider our document pre-processing pipeline and word embedding
training strategy as reliable enough to reproduce the DRMM performance.

Discussion. From the results we obtained in these reproducibility experiments, we found a sizeable impact
of the word embeddings quality on the performance of the whole system. We highlight that [35] lacks a
sufficiently detailed description of the embedding training process for the replication of the results. In fact,
we had to perform numerous experiments with different combinations of parameters in order to train a word
embedding model comparable to the one in [35]. We first performed the training of the word embedding
model with the official Word2Vec package shared by Google and the hyperparameter configuration indicated
in Section 2. In this case, we obtained a MAP value of 0.249 on Robust04 (T). Afterwards, we tried the
Word2Vec implementation available in Gensim – the one we later decided to adopt for all of our experiments
– that with the same hyperparameters configuration led to a MAP of 0.268 in the same experiment.

For these reasons, we conclude that sharing the training script for the word embeddings model and
specifying the library used are important requirements to reproduce the results of a NeuIR system.

Another issue we encountered in the reproducibility process concerns the preparation of the other input
data required by DRMM. The shared implementation of the algorithm requires seven files: a run in TREC
format to be re-ranked; a word embedding model to be used by the system; a file containing the document
and corpus frequency for each term in the collection; a file containing each document of the corpus with its
identifier (the same used in the run to rerank), its length, and the frequency of each term in it; a file with
the ideal discounted cumulative gain value for each considered topic; a file with the list of terms for each
topic along with the topic identifier (the same used in the run to re-rank); the relevance judgments in TREC
format for the given topics and the documents in the collection. However, the authors do not share a tool
or describe, with enough detail, the process employed to compute the input in this format. Therefore, a
few assumptions about the preprocessing steps to be applied to the collection were necessary. For instance,
simply whitespace tokenizing, applying stemming and removing stopwords from the collection, as indicated
in the reference paper, leads to the addition of great noise to the input of the system. For this reason, we first
extract the text from the TREC-formatted documents, remove the tags, remove all punctuation, and finally

7https://github.com/faneshion/DRMM.
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perform the tokenization, stemming and stopwords removal. Nonetheless, we obtain about 0.9M distinct
terms compared to the 0.7M terms present in the shared input file. Therefore, applying more aggressive
preprocessing steps on the collection might lead to further performance improvements of DRMM.

In conclusion, we believe that for the authors of NeuIR research papers it would be a a good practice
to share the scripts and the libraries used during document pre-processing, and, when required, also for the
training of word embeddings models. This would allow a better and more straightforward reproducibility
of their experiments. In fact, the pre-processing step is often underspecified, despite its sizeable impact on
the global performance of NeuIR models.

4. NVSM: Reproducibility of an unsupervised neural model

Model description. The Neural Vector Space Model (NVSM) [74] extends two unsupervised representation
learning models for expert [75] and product [72] search to ad-hoc retrieval. NVSM jointly learns distinct word
and document representations by optimizing an unsupervised loss function which minimizes the distance
between sequences of n words (i.e. n-grams) and the documents containing them. Such optimization
objective imposes that n-grams extracted from a document should be predictive of that document. Unlike
the models from which it derives, NVSM integrates a notion of term specificity [68, 70] in the learning
process of word and document representations. In fact, while optimizing the n-gram representations to
be close to the corresponding documents, words that are discriminative for the target documents learn to
contribute more to the n-gram representations. Therefore, words associated with many documents will
be neglected due to low predictive power. After training, the learned word and document representations
are used to perform retrieval. Queries are seen as n-grams and matched against documents in the feature
space. Documents are then ranked in decreasing order of the cosine similarity computed between query and
document representations. 8 A detailed description of NVSM components follows.

Given a document collection D and a word vocabulary V , the model considers the vector representations
~wi ∈ Rkw and ~dj ∈ Rkd for wi ∈ V and dj ∈ D, respectively, where kw and kd denote the dimensionality
of word and document representations. Due to the different dimensionality of word representations ~wi and
document representations ~dj , the model requires a transformation f : Rkw → Rkd from the word feature
space to the document feature space. The considered transformation is linear:

f(~x) = W~x, (3)

where ~x is a kw-dimensional vector and W is a kd × kw parameter matrix that is learned using gradient
descent. A sequence of n words (i.e. an n-gram) (wj,i)

n
i=1 extracted from a document dj is obtained by

averaging its constituent word representations as follows:

g ((wj,i)
n
i=1) =

1

n

n∑
i=1

~wj,i. (4)

Representations of words and documents are learned using mini-batches B of m n-gram/document pairs
such that an n-gram representation is projected close to the document that contains it.

During training, an auxiliary function that L2-normalizes a vector of arbitrary dimensionality is further
introduced:

norm(~x) =
~x

||~x||
(5)

Therefore, the projection of an n-gram into the kd-dimensional document feature space can be written as
the following composition function:

T̃ ((wj,i)
n
i=1) = (f ◦ norm ◦ g)((wj,i)

n
i=1). (6)

8Note that NVSM performs retrieval and then ranking on the whole document collection.
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By estimating the per-feature sample mean and variance over batch B, the standardized projection of the
n-gram representation is obtained as follows:

T ((wj,i)
n
i=1) = hard-tanh

 T̃ ((wj,i)
n
i=1)− Ê[T̃ ((wj,i)

n
i=1)]√

V̂[T̃ ((wj,i)ni=1)]
+ β

 . (7)

The n-gram representation is optimized to be close to the corresponding document. The composition function
g in combination with the L2-normalization norm causes words to compete for contributing to the resulting
n-gram representation. Therefore, words that are discriminative for the target document learn to contribute
more to the n-gram representation, and consequently, the L2-norm of the representations of discriminative
words is larger than the L2-norm of non-discriminative words. This incorporates a notion of term specificity
into the model. Moreover, standardization forces n-gram representations to distinguish themselves solely in
the dimensions that matter for matching.

The similarity of two representations in latent vector space is defined as:

P (S|dj , (wj,i)
n
i=1) = σ(~dj · T ((wj,i)

n
i=1)), (8)

where σ(t) = 1
1+exp(−t) denotes the sigmoid function and S is a binary indicator that states whether the

representation of document dj is similar to the projection of its n-gram (wj,i)
n
i=1 or not. The probability

of a document dj , given its n-gram (wj,i)
n
i=1, is then approximated by uniformly sampling z contrastive

examples [37]:

log P̃ (dj |(wj,i)
n
i=1)) =

z + 1

2z

(
z logP (S|dj , (wj,i)

n
i=1)) +

z∑
k=1,

dk∼U(D)

log(1.0− P (S|dk, (wj,i)
n
i=1)))

)
, (9)

where U(D) represents the uniform distribution over documents D used to obtain contrastive examples.
Then, the loss function used to optimize the model, averaged over the instances in batch B, is:

L(θ|B) = − 1

m

m∑
j=1

log P̃ (dj |(wj,i)
n
i=1) +

λ

2m

( |V |∑
i=1

|| ~wi||22 +

|D|∑
j=1

||~dj ||22 + ||W ||2F
)
, (10)

where θ is the set of parameters {~wi}|V |i=1, {~dj}|D|j=1, W , β and λ is a weight regularization hyperparameter.
After training, a query q is projected into the document feature space by the composition of f and g:

(f ◦g) (q) = h(q). The matching score between a document dj and a query q is given by the cosine similarity
between their representations in document feature space:

score(q, dj) =
h(q)ᵀ · ~dj

||h(q)||2 ||~dj ||2
. (11)

Documents are ranked in decreasing order of score(q, dj) for a query q.

Evaluation measures. In this reproducibility experiment, we employ the same measures reported in [74] to
evaluate retrieval effectiveness: MAP, Normalized Discounted Cumulated Gain at Cutoff 100 (nDCG@100),
and Precision at Cutoff 10 (P@10). To test statistical significance, we perform a two-tailed paired Student’s
t-test between Word2Vec (si) and NVSM as in [74].

Model configuration. We re-implement NVSM from scratch in Python, relying on widely-used and con-
solidated libraries. We employ Whoosh, 9 a fast Python search engine library, to index document collections.

9https://whoosh.readthedocs.io/en/latest/.
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Whoosh allows easy access to the underlying tokenized document collections, providing the same function-
alities as pyndri [76] which was used in the reference paper. During indexing and querying, stopwords are
removed using the Indri stoplist 10 and no stemming is performed. We implement the NVSM architecture
using TensorFlow.

One of the biggest challenges we found to reproduce the results presented in [74] lies in the choice of the
model’s parameters and hyperparameters. The reference paper and the associated GitHub repository 11 lack
a comprehensive description of all the parameters and hyperparameters used by NVSM, which are crucial
to reproduce results. Therefore, to select the parameters and hyperparameters used in this study, we relied
on the reference paper [74], the authors’ GitHub repository and an additional paper [72] on which [74] is
based on. 12 For each setting, the reference source(s) are reported below.

Word vocabulary:

• Vocabulary size is limited to 216 words (GitHub repository: /scripts/functions.sh, [72]), or to 60,000
words (NVSM reference paper [74], gihub repository: /cpp/main.cu );

• Words containing numbers are not considered (GitHub repository: /cpp/main.cu, [72]);
• Words with a document frequency lower than 2 and greater than 50% are not considered (GitHub

repository: /cpp/main.cu).

Model parameters:

• Pseudo-random number generator seed equal to 0 (GitHub repository: /cpp/main.cu);
• The number of batches for a single epoch is computed as d 1

m

∑
d∈D(|d|−n+ 1)e, where m is the batch

size (NVSM reference paper [74]);
• Word representations, document representations and the parameter matrix W are uniformly sampled

in the range [−
√

6.0
m+n ,

√
6.0

m+n ] for an m× n matrix – following the initialization scheme presented in

[34] (GitHub repository, [72]).

Model hyperparameters:

• Word representation dimension kw = 300 (NVSM reference paper [74]);
• Document representation dimension kd ∈ {64, 128, 256} (NVSM reference paper [74]);
• n-gram size n ∈ {4, 6, 8, 10, 12, 16, 24, 32} (NVSM reference paper [74]);
• Batch size m = 51200 (NVSM reference paper [74]);
• The number of epochs to train the model is 15 (NVSM reference paper [74]);
• Number of negative examples z = 10 (NVSM reference paper [74]);
• Adam optimizer with parameters α = 0.001, β1 = 0.9, β2 = 0.999 (NVSM reference paper [74] reports

only α, [72] reports also β1 and β2);
• Regularization λ = 0.01 (NVSM reference paper [74]).

For each collection considered (see Section 2), the given set of topics is split into validation and test sets 13

and only the title (T) field is used. The size of document representations kd ∈ {64, 128, 256} and of the
n-grams n ∈ {4, 6, 8, 10, 12, 16, 24, 32} is optimized on the validation set and then employed on the test set.
The optimal hyperparameters combinations, are not reported in the reference paper.

In our experiments, we set the vocabulary size to 216 and we select kd = 256 according to the results
reported in Fig. 3 of the reference paper [74]. Similarly, for each considered collection, we chose the n-gram
size that provides the best scores in terms of MAP. The rest of the parameters and hyperparameters are
kept as above. We train the model for 15 epochs and we select the model iteration that performs best in
terms of MAP on the validation set. The best model is then evaluated on the test set. Table 4 shows the
comparison between the results obtained with the NVSM original version and our reproduced version.

10http://www.lemurproject.org/stopwords/stoplist.dft.
11https://github.com/cvangysel/cuNVSM/.
12It is worth mentioning that relevant information is scattered across all these sources and none of them provide an off-the-

shelf description of all the required settings.
13Splits can be found at: https://github.com/cvangysel/cuNVSM/tree/master/resources/adhoc-splits.
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AP88-89 (T) FT (T) LA (T)
MAP nDCG@100 P@10 MAP nDCG@100 P@10 MAP nDCG@100 P@10

QLM(jm)
original 0.199 0.346 0.365 0.218 0.356 0.283 0.182 0.331 0.221

reproduced 0.199 0.346 0.364 0.209 0.337 0.258 0.178 0.319 0.214
diff. 0.000 0.000 + 0.001 + 0.009 + 0.019 + 0.025 + 0.004 + 0.012 + 0.007

QLM(dir)
original 0.216 0.370 0.392 0.240 0.381 0.296 0.198 0.348 0.239

reproduced 0.217 0.368 0.397 0.230 0.362 0.270 0.198 0.341 0.233
diff. - 0.001 + 0.002 - 0.005 + 0.01 + 0.019 + 0.026 0.000 + 0.007 + 0.006

LDA
original 0.039 0.077 0.078 0.009 0.028 0.013 0.004 0.015 0.010

reproduced 0.052 0.091 0.077 0.013 0.026 0.015 0.007 0.028 0.015
diff. - 0.013 - 0.014 + 0.001 - 0.004 + 0.002 - 0.002 - 0.003 - 0.013 - 0.005

W2V(add)
original 0.216 0.370 0.393 0.125 0.230 0.195 0.105 0.212 0.159

reproduced 0.234 0.395 0.416 0.140 0.252 0.214 0.075 0.165 0.116
diff. - 0.018 - 0.025 - 0.023 - 0.015 - 0.022 - 0.019 + 0.030 + 0.047 + 0.043

W2V(si)
original 0.230 0.383 0.418 0.141 0.250 0.204 0.131 0.242 0.179

reproduced 0.240 0.400 0.419 0.148 0.261 0.226 0.109 0.215 0.172
diff. - 0.010 - 0.017 - 0.001 - 0.007 - 0.011 - 0.022 + 0.022 + 0.027 + 0.007

NVSM
original 0.257** 0.418** 0.425 0.172** 0.302*** 0.239* 0.166** 0.300*** 0.209*

reproduced 0.257 0.414 0.429 0.175** 0.304*** 0.220 0.180*** 0.316*** 0.208**
diff. 0.000 + 0.004 - 0.004 - 0.002 - 0.002 + 0.019 - 0.014 - 0.016 + 0.001

NY (T) Robust04 (T) WSJ (T)
MAP nDCG@100 P@10 MAP nDCG@100 P@10 MAP nDCG@100 P@10

QLM(jm)
original 0.158 0.270 0.376 0.201 0.359 0.369 0.175 0.315 0.345

reproduced 0.180 0.292 0.382 0.199 0.351 0.358 0.178 0.319 0.347
diff. - 0.022 - 0.22 - 0.006 + 0.002 + 0.008 + 0.011 - 0.003 - 0.004 - 0.002

QLM(dir)
original 0.188 0.318 0.486 0.224 0.388 0.415 0.204 0.351 0.398

reproduced 0.213 0.343 0.500 0.222 0.376 0.411 0.205 0.355 0.391
diff. - 0.025 - 0.025 - 0.014 + 0.002 + 0.012 + 0.004 - 0.001 - 0.004 + 0.007

LDA
original 0.009 0.027 0.022 0.003 0.010 0.009 0.038 0.082 0.076

reproduced 0.024 0.053 0.064 0.004 0.015 0.014 0.041 0.074 0.060
diff. - 0.015 - 0.026 - 0.042 - 0.001 - 0.005 - 0.005 - 0.003 + 0.008 + 0.016

W2V(add)
original 0.081 0.160 0.216 0.075 0.177 0.194 0.175 0.322 0.372

reproduced 0.100 0.196 0.252 0.065 0.158 0.184 0.181 0.326 0.393
diff. - 0.019 - 0.036 - 0.036 + 0.010 + 0.019 + 0.010 - 0.006 - 0.004 - 0.021

W2V(si)
original 0.092 0.173 0.220 0.093 0.208 0.234 0.185 0.330 0.391

reproduced 0.113 0.209 0.284 0.083 0.192 0.214 0.190 0.336 0.393
diff. - 0.021 - 0.036 - 0.064 + 0.010 + 0.016 + 0.020 - 0.005 - 0.006 - 0.002

NVSM
original 0.117 0.208 0.296* 0.150*** 0.287*** 0.298*** 0.208** 0.351 0.370

reproduced 0.110 0.205 0.290 0.138*** 0.270*** 0.289*** 0.213*** 0.359*** 0.408
diff. + 0.007 + 0.003 + 0.006 + 0.012 + 0.017 + 0.009 - 0.005 - 0.008 - 0.038

Table 4: Result comparison between original versions of QLM, Word2Vec, and NVSM (as in [74]) and their reproduced versions.
For each experimental collection, the first row reports the scores of the original model version on MAP, nDCG@100 and P@10,
the second row reports the scores of the reproduced version and the third row reports the difference between original and
reproduced versions; a negative difference indicates that the reproduced baselines are stronger than those employed in the
reference paper. Bold values represent the best model (original and reproduced), whereas italic values represent differences
greater than 0.02. A two-tailed paired Student’s t-test is computed between Word2Vec (si) and NVSM. Statistical significance
is marked as * for p < 0.1, ** for p < 0.05 and *** for p < 0.01.

Baseline configuration. As semantic baselines, we reproduce Word2Vec (add), Word2Vec (si) and LDA.
Following [74], we rely on Gensim to implement Word2Vec (skip-gram architecture) and LDA. For Word2Vec
approaches, we adopted the same choices made for NVSM regarding word vocabulary, seed value, negative
examples, one-sided window size (i.e., n-gram size n/2) and number of epochs. The embedding size is set
to 256 to be consistent with NVSM. Documents are ranked in decreasing order of cosine similarity between
the document representation and the average of the word embeddings in the query. Once again, we selected
the model iteration that performs best in terms of MAP on the validation set and we evaluated it on the
test set. For LDA, we set the number of topics K = 256 and α = β = 0.1. The model is trained until topic
convergence is achieved. At query time, documents are ranked in decreasing order of the cosine similarity
between the query topic distribution and the document topic distribution.

Regarding lexical baselines, we have reproduced QLM (jm) and QLM (dir). As in [74], we relied on Indri
[71] to index and query the collections considered. To be consistent with semantic models, stopwords are
removed using the Indri stoplist and no stemming is performed. Smoothing hyperparameters λ ∈ {x|k ∈
N+, k ≤ 20, x = k/20} and µ ∈ {125, 250, 500, 750, 1000, 2000, 3000, 4000, 5000} for QLM (jm) and QLM
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(dir), respectively, are optimized on the validation set. The comparison between the results obtained with
the original baselines and our reproduced versions is also shown in Table 4.

Rank Fusion configuration. We also reproduce the fusion of three individual rankers, that is QLM (dir),
Word2Vec (si) and NVSM, that provide a mixture of lexical and semantic matching. In [74], the combination
of individual rankers is performed through a grid search on the weights of a linear combination using 20-fold
cross validation on the topic test sets. Feature weights are swept between 0.0 and 1.0 with increments of
0.0125 on the fold training set. Individual features are normalized per query so that their values lie between
0 and 1. The coefficients configuration that achieves the highest MAP on the fold training set is selected
and used to score the fold test set. During scoring of the fold test set, the pool of the top-1k documents
ranked by the individual rankers is used as candidate set.

Due to the extensive memory/time requirements demanded by such approach, 14 we have to limit the
number of documents in each fold of the training set to the pool of the top-1k documents produced by the
individual rankers. In addition, feature weights are swept between 0.0 and 1.0 with increments of 0.1, which
is the minimum step we could support on our machine. Along with the supervised approach presented in
[74], we also employ three classic, fast rank fusion methods, first proposed in [31]: CombSUM, CombMNZ
and CombANZ.

In Table 6, we evaluate the results obtained with our version of the supervised approach and the three
classic methods on the Robust04 collection. The best approach in terms of MAP is then employed on all the
considered collections and compared to the supervised approach of the reference paper, as shown in Table 7.

Experimental Results. In Table 4, we present a comparison between the versions of QLM, LDA, Word2Vec
and NVSM described in the reference paper and our reproduced versions. For each collection, we report
the results from the reference paper, the results obtained with our reproduced versions and the difference
among them.

If we consider the lexical baselines, we see that the original and the reproduced versions present similar
values, for both QLM (jm) and QLM (dir), on AP88-89, LA, Robust04 and WSJ – where an absolute
difference greater than 0.01 is achieved by QLM (dir) only in the nDCG@100 on Robust04, and by QLM
(jm) in the nDCG@100 and P@10 on LA and Robust04, respectively. A larger difference between the two
versions of QLM (jm) and QLM (dir) can be observed on the FT and NY collections. The results obtained
on FT show a marked difference between the original and the reproduced versions of QLM (jm) and QLM
(dir) for nDCG@100 and P@10. The original version of QLM (jm) outperforms the reproduced version by
an absolute difference of 0.019 in nDCG@100 and of 0.025 in P@10, whereas the original version of QLM
(dir) outperforms the reproduced version by an absolute difference of 0.019 in the nDCG@100 and of 0.026
in the P@10. An opposite behavior is observed on the NY collection, where the reproduced versions of QLM
(jm) and QLM (dir) outperform the original versions in all measures, with an absolute difference greater
than 0.02 for the MAP and nDCG@100. Overall, QLM (dir) achieves the best results for all measures on
FT, LA, NY, Robust04 and, only for the original version, for the nDCG@100 and P@10 on WSJ.

Regarding semantic baselines, the reproduced version of LDA performs similarly to the original version
on all the collections considered. The most notable exceptions are the nDCG@100 and P@10 values on the
NY collection, where the reproduced LDA model outperforms the original one with an absolute difference
of 0.026 and 0.042, respectively. Concerning Word2Vec-based models, the reproduced version of Word2Vec
(add) outperforms the original version on AP88-89, FT, WSJ, and NY according to all of the performance
measures, whereas the original version achieves better results on LA and Robust04. In relation to perfor-
mance difference, a more marked gap is found between the two versions only on the LA and NY collections,
with differences of +0.030 in MAP, +0.047 in nDCG@100 and +0.043 in P@10 on LA, and of −0.036 in
nDCG@100 and −0.036 in P@10 on NY. A similar trend can also be observed for Word2Vec (si), where
the reproduced version outperforms the original version on AP88-89, FT, WSJ, and NY, while the original

14The approach could not finish the first training fold, due to OOM, when considering the entire document collection and
an incremental step of 0.0125. The machine used to run the experiments is a 2018 Alienware Area-51 with 36 cores and 64Gb
of RAM.
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version achieves better results on LA and Robust04. The absolute differences between the two versions
are lower than or close to 0.02 on all collections, except for the NY and LA. In particular, the absolute
differences are higher than 0.02 for all measures on the NY collection, with a difference of −0.064 for P@10
– which is the highest (absolute) difference amongst all measures and collections. It is also worth mentioning
that, by achieving a score of 0.284 for P@10 on the NY collection, the reproduced version of Word2Vec (si)
closes the gap with NVSM and results in a competitive neural baseline.

Regarding NVSM, the results obtained with the reproduced version are close to those reported in the ref-
erence paper. Considering the performance difference, the only measure that presents an absolute difference
greater than 0.02 is P@10 on the WSJ collection (−0.038). On AP88-89 and NY, the absolute differences
are lower than 0.01 for all the measures. NVSM outperforms the semantic baselines on all the considered
collections except on the NY, where Word2Vec (si) shows better performance in MAP and nDCG@100.
Furthermore, NVSM achieves the best results overall on AP88-89 and WSJ.

The results reported in Table 4 indicate that we successfully reproduced NVSM and that the baselines
adopted in the original paper are generally aligned with their reproduced versions. The optimal n-gram size
and the epoch at which we obtain the best model for NVSM are indicated in Table 5, for each collection
considered.

In Table 6, we present the results obtained with the reproduced version of the supervised approach and
the three classic methods: CombSUM, CombMNZ and CombANZ, applied on the Robust04 collection. For
each combination of QLM (dir) with Word2Vec (si) and NVSM, we can observe that the reproduced version
of the supervised approach performs consistently worse than its original version. Since the two versions
of QLM (dir) perform similarly, it indicates that we could not successfully reproduce the supervised rank
fusion approach presented in [74]. Overall, the best method is CombSUM and the worst is CombANZ.
Therefore, we employ CombSUM on all the considered collections and compare its performance to the
original supervised rank fusion approach in Table 7.

In Table 7, we can observe that AP88-89 is the only collection where CombSUM achieves similar results as
those of the supervised approach – with differences between the two versions of QLM(dir)+Word2Vec(si)+
NVSM of +0.015 for MAP, +0.005 for nDCG@100 and +0.005 for P@10. Overall, CombSUM shows
positive performance gains in all the combinations of the individual rankers on AP88-89, FT and WSJ. The
performance gains on LA are positive for QLM(dir)+NVSM and QLM(dir)+Word2Vec(si)+NVSM, whereas
they are negative for QLM(dir)+Word2Vec(si). In particular, the CombSUM version of QLM(dir)+NVSM
consistently outperforms the original supervised approach on all the measures. On Robust04, the only
combination that improves over the baseline is QLM(dir)+NVSM. However, when compared to the original
supervised approach, the CombSUM version of QLM(dir)+NVSM presents a performance gap of about 0.020
on all the measures. Regarding the NY collection, each combination of individual rankers using CombSUM
achieves lower performances than the baseline. In particular, the difference between the original supervised
approach and the CombSUM version of QLM(dir)+Word2Vec(si)+NVSM is +0.100 for P@10.

n-gram size Best epoch
AP88-89 16 13

FT 16 11
LA 10 10

WSJ 16 14
Robust04 16 11

NY 16 1

Table 5: NVSM optimal n-gram size and best epoch for each collection.

Discussion. The results reported in Table 4 illustrate that the reproduced and original versions of NVSM
perform similarly. Therefore, based on the parameter and hyperparameter choices presented in the model
configuration, we can reproduce the results of the reference paper. However, we have had to look into
different sources to get appropriate values, since the configuration data are scattered across the reference
paper, the GitHub repository and a previous paper [72]. Furthermore, the lack of information regarding
which are the best hyperparameters to use, for the results reported in Table 2 of the reference paper, has led
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Robust04 (T)
MAP nDCG@100 P@10

QLM(dir)
original 0.224 0.388 0.415

reproduced 0.222 0.376 0.411

QLM(dir)+W2V(si)

original 0.232 0.399 0.428

reproduced 0.190 0.344 0.346
CombSUM 0.199 0.358 0.378
CombMNZ 0.191 0.353 0.366
CombANZ 0.179 0.325 0328

QLM(dir)+NVSM

original 0.247 0.411 0.448

reproduced 0.204 0.357 0.375
CombSUM 0.230 0.391 0.424
CombMNZ 0.229 0.392 0.419
CombANZ 0.199 0.352 0.373

QLM(dir)+W2V(si)+NVSM

original 0.247 0.412 0.446

reproduced 0.1836 0.336 0.344
CombSUM 0.206 0.368 0.385
CombMNZ 0.202 0.363 0.373
CombANZ 0.175 0.323 0.338

Table 6: Result comparison on the Robust04 collection between our version of the supervised rank fusion approach, presented
in [74], and the three classic methods originally proposed in [31]: CombSUM, CombMNZ and CombANZ. The first two rows
report, for reference, the scores of the original and the reproduced versions of QLM (dir) for MAP, nDCG@100 and P@10.
Then, for each combination of QLM (dir) with Word2Vec (si) and NVSM, the first two rows report the scores of the original
and the reproduced versions of the supervised approach. Subsequent rows report the scores of CombSUM, CombMNZ and
CombANZ, respectively. Bold values represent the best method amongst the supervised approach (reproduced) and the three
classic methods.

us to identify such hyperparameters differently. We relied on Fig. 3 from the reference paper, which allowed
us to identify the optimal choices and to obtain results with the reproduced version of NVSM that are close
to those reported in [74].

Another critical aspect when reproducing NVSM is the lexicon. For example, when considering the Ro-
bust04 collection, NVSM does not retrieve any document for the following four topics: topic 312 “Hydropon-
ics”; topic 316 “Polygamy Polyandry Polygyny”; topic 348 “Agoraphobia” and topic 379 “mainstreaming”.
If we analyze the content of such topics, we see that three out of four topics are composed of a single word.
Therefore, since the word vocabulary does not contain any of those query terms, NVSM cannot retrieve any
document for them. To faithfully reproduce results, it is pivotal to know the exact lexicon used in the orig-
inal paper. Otherwise, we cannot identify whether the differences between the original and the reproduced
versions are related to implementation nuances or different preprocessing steps.

Regarding lexical baselines, we relied on the same search engine, i.e. Indri, and performed the same op-
erations reported in [74] for indexing, querying and hyperparameters optimization. The differences between
the original and the reproduced versions of QLM (jm) and QLM (dir) might lie on the different tokenization
process applied to topics. In fact, we relied on Indri for both indexing and querying, whereas in [74] pyndri
is used to perform querying.

Regarding semantic baselines, for LDA, we followed the same configuration presented in [74]. However,
the Gensim implementation of LDA presents many more parameters than those mentioned in the reference
paper. Thus, not knowing which values to assign to these parameters prevents the reproducibility of the
results. For what concerns Word2Vec-based retrieval approaches, we adopt the same hyperparameter values
of NVSM on every collection. The resulting versions of Word2Vec (si) and Word2Vec (add) present sizable
differences compared to the original ones. Most likely, our hyperparameter choices are different than those
used in [74], especially if we consider the results obtained with the reproduced versions on the NY collection.
However, in the reference paper, there is no description of the optimal choices found for Word2Vec, nor any
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AP88-89 (T) FT (T)
MAP nDCG@100 P@10 MAP nDCG@100 P@10

QLM(dir)
original 0.216 0.370 0.392 0.240 0.381 0.296

reproduced 0.217 0.368 0.397 0.230 0.362 0.270

QLM(dir)+W2V(si)
original 0.279 (+29%) 0.437 (+18%) 0.450 (+14%) 0.251 (+4%) 0.393 (+3%) 0.313 (+6%)

CombSUM 0.275 (+27%) 0.441 (+20%) 0.446 (+12%) 0.242 (+5%) 0.381 (+5%) 0.293 (+9%)
diff. + 0.004 - 0.004 + 0.004 + 0.009 + 0.012 + 0.020

QLM(dir)+NVSM
original 0.289 (+33%) 0.444 (+20%) 0.473 (+20%) 0.251 (+4%) 0.401 (+5%) 0.322 (+9%)

CombSUM 0.269 (+24%) 0.428 (+16%) 0.456 (+15%) 0.233 (+1%) 0.378 (+4%) 0.286 (+6%)
diff. + 0.020 + 0.016 + 0.017 + 0.018 + 0.023 + 0.036

QLM(dir)+W2V(si)+
NVSM

original 0.307 (+42%) 0.466 (+26%) 0.498 (+27%) 0.258 (+7%) 0.406 (+6%) 0.322 (+9%)
CombSUM 0.292 (+35%) 0.461 (+25%) 0.493 (+24%) 0.244 (+6%) 0.386 (+7%) 0.297 (+10%)

diff. + 0.015 + 0.005 + 0.005 + 0.014 + 0.020 + 0.025

LA (T) NY (T)
MAP nDCG@100 P@10 MAP nDCG@100 P@10

QLM(dir)
original 0.198 0.348 0.239 0.188 0.318 0.486

reproduced 0.198 0.341 0.233 0.213 0.343 0.500

QLM(dir)+W2V(si)
original 0.212 (+7%) 0.360 (+3%) 0.236 (-1%) 0.206 (+9%) 0.333 (+4%) 0.494 (+1%)

CombSUM 0.191 (-4%) 0.326 (-4%) 0.229 (-2%) 0.194 (-9%) 0.325 (-5%) 0.436 (-13%)
diff. + 0.021 + 0.034 + 0.007 + 0.012 + 0.008 + 0.058

QLM(dir)+NVSM
original 0.220 (+11%) 0.376 (+7%) 0.244 (+1%) 0.222 (+18%) 0.355 (+11%) 0.520 (+6%)

CombSUM 0.232 (+17%) 0.381 (+12%) 0.255 (+9%) 0.198 (-7%) 0.333 (-3%) 0.476 (-5%)
diff. - 0.012 - 0.005 - 0.011 + 0.024 + 0.022 + 0.044

QLM (dir)+W2V(si)+
NVSM

original 0.226 (+14%) 0.378 (+8%) 0.250 (+4%) 0.222 (+18%) 0.353 (+10%) 0.526 (+8%)
CombSUM 0.214 (+8%) 0.366 (+7%) 0.251 (+7%) 0.182 (-14%) 0.320 (-7%) 0.426 (-15%)

diff. + 0.012 + 0.012 - 0.001 + 0.040 + 0.033 + 0.100

Robust04 (T) WSJ (T)
MAP nDCG@100 P@10 MAP nDCG@100 P@10

QLM(dir)
original 0.224 0.388 0.415 0.204 0.351 0.398

reproduced 0.222 0.376 0.411 0.205 0.355 0.391

QLM(dir)+W2V(si)
original 0.232 (+3%) 0.399 (+2%) 0.428 (+2%) 0.254 (+24%) 0.410 (+16%) 0.454 (+13%)

CombSUM 0.199 (-10%) 0.358 (-5%) 0.378 (-8%) 0.238 (+16%) 0.399 (+12%) 0.449 (+15%)
diff. + 0.033 + 0.041 + 0.050 + 0.016 + 0.011 + 0.005

QLM(dir)+NVSM
original 0.247 (+10%) 0.411 (+6%) 0.448 (+7%) 0.248 (+21%) 0.396 (+12%) 0.425 (+6%)

CombSUM 0.230 (+4%) 0.391 (+4%) 0.424 (+3%) 0.244 (+19%) 0.403 (+14%) 0.443 (+13%)
diff. + 0.017 + 0.020 + 0.024 + 0.004 - 0.007 - 0.018

QLM(dir)+W2V(si)+
NVSM

original 0.247 (+10%) 0.412 (+6%) 0.446 (+7%) 0.271 (+32%) 0.426 (+21%) 0.456 (+14%)
CombSUM 0.206 (-7%) 0.369 (-2%) 0.385 (-6%) 0.251 (+22%) 0.416 (+17%) 0.455 (+16%)

diff. + 0.041 + 0.043 + 0.061 + 0.020 + 0.010 + 0.001

Table 7: Result comparison between CombSUM rank fusion [31] and the supervised rank fusion proposed in [74]. For each
experimental collection, the scores of the original and the reproduced versions of QLM (dir) on MAP, nDCG@100 and P@10
are reported for reference. For each of the three combinations of QLM (dir) with Word2Vec (si) and NVSM, the first row
reports the original scores of the supervised rank fusion while the second row reports the scores of the CombSUM rank fusion.
The third row illustrates the difference between the original scores of the supervised approach and the scores obtained with
CombSUM; a negative difference indicates that CombSUM achieves higher scores than those of the supervised approach used
in the reference paper. Bold values represent the best method (original and reproduced), whereas italic values represent
differences greater than 0.02. The percentage gain (or loss) over the baseline method is reported next to each rank fusion
approach.

figure that allows us to identify a subset of candidate choices. Moreover, the same considerations that are
true for NVSM about the word vocabulary are also true for Word2Vec methods. Nevertheless, the results
of the two-tailed paired Student’s t-tests between the reproduced versions of Word2Vec (si) and NVSM are
consistent with those presented in [74]. The only notable variations are in AP88-89 – where no statistical
difference is found between the reproduced versions of Word2Vec (si) and NVSM – and in WSJ – where for
nDCG@100 there is a statistical difference between the two reproduced versions.

Regarding rank fusion, the main issues relate to the extensive memory/time requirements of the super-
vised rank fusion approach. The choices we made to reproduce it were insufficient to obtain comparable
results as those presented in [74]. On the other hand, classic and fast rank fusion techniques like Comb-
SUM produced mixed results, which tended to even worsen the performance of the QLM (dir) baseline on
some collections. Nevertheless, the trade-off between effectiveness and efficiency provided by CombSUM
shows that far less expensive fusion methods can be employed to improve performance, achieving, on some
collections, performance gains similar to those reported in [74].
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5. Comparison with other lexical and semantic retrieval models

In this section, we compare the performance of NVSM and DRMM (re-ranking over QLM (dir)) to other
lexical and semantic models considering the Robust04 (T) and NY (T) collections. Other retrieval models
we consider in this comparison are: QLM (dir), DFR, BM25, TF-IDF (all with Krovetz stemmer) and
Word2Vec (add and self-information versions). We also employ NVSM to re-rank the same QLM (dir) runs
used by DRMM in its experiments where the objective is to investigate how well a neural unsupervised model
like NVSM performs within a re-ranking scenario. Finally, we perform a statistical significance analysis with
Tukey’s T test to assess the statistical significance of performance differences of the retrieval models. The
evaluation measures used in this set of experiments are: MAP, nDCG@100 and P@10.

Experimental results. The results in Table 8 show that the lexical models considered perform better than
all the Word2Vec-based approaches or the NeuIR models on the NY collection. On the other hand, we also
notice that DRMM outperforms both the lexical models and NVSM on the Robust04 collection. Instead,
NVSM always performs better than the semantic matching models, but is never competitive with other
lexical models nor with DRMM. In the re-ranking task, NVSM outperforms DRMM on the NY collection,
but not on the Robust04. Furthermore, we observe that performing re-ranking with NVSM on QLM (dir)
always leads to a performance improvement over NVSM alone. However, the re-ranking produced by NVSM
significantly worsens the performance of the QLM (dir) baseline on both collections.

NY (T) Robust04 (T)
MAP nDCG P@10 MAP nDCG P@10

QLM(dir) 0.232 0.370 0.522 0.248 0.411 0.424
BM25 0.234 0.347 0.468 0.242 0.404 0.431

TF-IDF 0.228 0.499 0.472 0.242 0.405 0.431
DFR 0.225 0.350 0.478 0.227 0.390 0.425

Word2Vec (add) 0.100 0.196 0.252 0.062 0.150 0.175
Word2Vec (si) 0.113 0.209 0.284 0.081 0.185 0.205

DRMM 0.141 0.211 0.274 0.268 0.435 0.455
NVSM 0.110 0.205 0.290 0.139 0.269 0.279

QLM(dir)/NVSM 0.152 0.252 0.328 0.157 0.289 0.287

Table 8: Results comparison between reproduced versions of DRMM, NVSM and QLM(dir)/NVSM and other lexical and
neural baselines: DRM, BM25, TF-IDF, QLM and Word2Vec. For each experimental collection used, the scores on MAP,
nDCG at rank 100 AND P@10 are reported for each model. Bold values represent the highest scores among the models.

For reference, we report the best values for MAP and P@10 obtained in the TREC 2004 Robust Retrieval
Track [78] on the Robust04 collection, and the best value for MAP in the TREC 2017 Common Core Track
[4, 77] on the NY collection. On Robust04 (T), the best value for MAP is 0.333 and for P@10 is 0.513. On
NY, the best value for MAP is 0.538.

Significance tests. In Figure 2, we report the results of Tukey’s T test on the runs produced by the systems
in Table 8. Firstly, we notice that on the NY collection there is no statistical difference between considered
lexical models (i.e. QLM (dir), DFR, TF-IDF and BM25). Additionally, pure lexical models always perform
statistically better than semantic models (i.e. Word2Vec (add), Word2Vec (si), QLM(dir)/NVSM, DRMM
and NVSM). If we consider the tests on the Robust04 collection, we observe that DRMM belongs to the top
group and statistically outperforms the other semantic matching models, including the re-ranking of the QLM
(dir) run performed by NVSM – i.e., when NVSM performs the same task as DRMM. However, it is worth
mentioning that QLM(dir)/NVSM is an unsupervised re-ranking model, whereas DRMM is a supervised
one. Therefore, while NVSM performs re-ranking relying only on word and document representations learned
from the collection, DRMM exploits relevance judgments to learn how to rank documents given a query.
These observations apply to all the performance measures considered – i.e. MAP, nDCG@100, and P@10.
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Figure 2: Significance tests for the results reported in Table 8 (top group highlighted). All pairwise comparisons are calculated
with Tukey’s HSD confidence intervals and a significance level α = 0.05. Each row depicts the comparisons made for MAP,
NDCG at rank 100 and P@10 for a specific collection.

Discussion. From the results reported in Table 8, our first observation has to do with the performance
of DRMM which differs in the two considered collections. In fact, DRMM improves the ranking of QLM
(dir) and it is the best system on the Robust04 collection; but, it worsens the ranking computed by the
QLM (dir) baseline, provided in input on the NY collection. This result reflects one of the weaknesses of
supervised NeuIR models: i.e., their inability to generalize when trained on a limited number of topics.
Compared to Robust04, which presents 249 topics, the NY collection has only 50 topics – about one fifth of
the topics of Robust04. Therefore, on the NY collection DRMM suffers from the lack of topics to learn from,
compared to the large size of the collection. In fact, the large number of documents – combined with the
intrinsic characteristics of the collection and the queries – generates a wide variety of matching signals to be
interpreted by the model. This makes it harder for DRMM to learn how to discriminate between relevant
and non-relevant documents without seeing larger parts of the collection during training. This claim is also
confirmed by our experiments on the WT2g collection in Section 6. Indeed, the WT2g collection has the
same number of topics of the NY collection, but contains seven times less documents. This difference in size
reduces the effect of the lack of training topics on DRMM which performs similarly to other lexical models
on this collection. Conversely, on the Robust04 collection, where the model is trained on a larger number of
topics, DRMM outperforms all the other baselines. On the other hand, the re-ranking performed by NVSM
always worsens the performance of the QLM (dir) baseline. This suggests that NVSM does not effectively
re-rank the results provided by a lexical model like QLM (dir). As shown in Table 7, a rank fusion approach
that combines lexical and semantic signals together is better suited for NVSM than a simple re-ranking
approach.

When considering other state-of-the-art approaches that use different ranking strategies – such as [85],
an application of BERT to IR that achieves a MAP of 0.328 on the Robust04, or the BM25+RM3 model
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in Anserini [84] that achieves a MAP of 0.2903 15 – we have observed that DRMM and NVSM are not
competitive with such approaches. However, these two NeuIR models remain relevant as they are unsuper-
vised (NVSM) and supervised (DRMM) innovative neural architectures for document retrieval which do not
rely on any auxiliary data source or component, like relevance feedback or query expansion. Indeed, the
advancement proposed by DRMM and NVSM is more methodological rather than performance oriented.
Nevertheless, the combination of DRMM and NVSM with pre-trained NLP models, such as BERT, or other
IR techniques, such as RM3, may still lead to better performance than state-of-the-art.

6. Collection-based evaluation

In this set of experiments, we evaluate the ability of DRMM and NVSM models to generalize in the
presence of different domains and tasks. The considered collections and topic fields include: CLEF-DE (TD),
CLEF-FA (TD), CLEF-IT (TD), WT2G (TD), and OHSUMED (D). We select the above combinations of
topic fields, since they are the ones that lead to the best retrieval performance on each collection and
the most widely used. Additionally, we also compare the performance of DRMM and NVSM to those of
lexical IR models, that is BM25, DFR, TF-IDF and QLM (dir). To perform retrieval on CLEF multilingual
collections, all the considered models rely on publicly available stop lists specifically defined for the target
language. 16 The evaluation measures we consider for this set of experiments are: MAP, nDCG@100, and
P@10. Furthermore, we rely on post-hoc Tukey’s T test to assess statistical significance.

Hyperparameter tuning. The performance measures of DRMM are obtained according to the steps de-
scribed in Section 2, where a re-ranking of the documents in each QLM (dir) run is performed. The main
hyperparameters of DRMM are the number of bins in the matching histograms and the size of the hidden
layer. The number of bins in the matching histograms should be high enough to allow the representa-
tion of different degrees of word similarity. At the same time, it should be small enough to maintain the
generalization power of the model and keep computational complexity low.

We performed hyperparameter optimization on the OHSUMED and WT2g collections – which are the
corpora that differ the most from the ones used in the DRMM reference paper – to assess whether the
changes to the mentioned hyperparameters could improve the performance of the model. We considered all
the combinations of the following hyperparameters: number of bins in the matching histograms, in the range
{5, 10, 15, 20, 25, 30, 35} and hidden layer size, in the range {5, 10, 15, 20, 25}. In our experiments, we
noticed a performance improvement – an increase of 0.02 or higher in MAP, nDCG@100 and P@10 – only
on the WT2g collection with 20 bins in the matching histograms, and 15 units in the hidden layer. We will
keep this configuration of DRMM also for the other experiments on this collection. On the other hand, we
did not notice any sizable performance increase on the OHSUMED collection changing the hyperparameters
of the DRMM model.

Regarding NVSM, we adopted the same experimental setup described in Section 4. For every collection,
we optimize the following hyperparameters:

• Vocabulary size |V | ∈ {216, 217};
• Document representation dimension kd ∈ {128, 256};
• n-gram size n ∈ {4, 6, 8, 10, 12, 16, 24, 32};
• Batch size m ∈ {12800, 25600, 51200};
• Regularization λ ∈ {0.01, 0.1, 1.0}.

The rest of the hyperparameters are kept as in Section 4. Due to the prohibitive time required to perform
grid search over the hyperparameters, we first optimize the n-gram size by keeping the default values for
|V | = 216, kd = 256, m = 51200, and λ = 0.01. Then, for each collection we keep the n-gram size that
performs best in terms of MAP and we optimize the rest of the hyperparameters. From this optimization
we did not detect any improvement related to different combinations of kd, m, and λ. However, the impact

15https://github.com/castorini/anserini/blob/master/docs/experiments-robust04.md.
16http://members.unine.ch/jacques.savoy/clef.
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of the vocabulary size has shown to be significant on two collections: WT2g and CLEF-DE. For WT2g,
NVSM goes from MAP: 0.206, nDCG@100: 0.356, and P@10: 0.370, with |V | = 216, to MAP: 0.225,
nDCG@100: 0.380, and P@10: 0.402, with |V | = 217. Similarly, for CLEF-DE the model goes from MAP:
0.194, nDCG@100: 0.322, and P@10: 0.281, with |V | = 216, to MAP: 0.211, nDCG@100: 0.343, and P@10:
0.301, with |V | = 217. Therefore, we adopt |V | = 217 for WT2g and CLEF-DE collections and we keep the
rest of the hyperparameters as default. The optimal n-gram size, vocabulary size, and the epoch at which
we obtain the best model for NVSM are reported in Table 9 for every collection.

Experimental results. Table 10, illustrates the retrieval results related to the WT2g and OHSUMED
collections. In such case, we first observe that DRMM always improves the ranking of the runs produced
with QLM (dir). We also employed DRMM to re-rank the runs obtained with BM25 and TF-IDF, but we
found no substantial improvement over the baselines. Conversely, NVSM performances are the worst overall
on WT2g and outperform only those of QLM (dir) on OHSUMED. In particular, the performance gap
between NVSM and all the other models is more accentuated on WT2g than on OHSUMED. This may be
due to the fact that NVSM derives from two approaches that are specifically tailored to product and expert
search [72, 75]. Therefore, the model has a robust domain-specific nature and for heterogeneous collections
like WT2g, where documents have different contents and scopes, it generalizes worse than for homogeneous
collections like OHSUMED. Indeed, NVSM achieves better results than QLM (dir) on OHSUMED for all
the evaluation measures considered.

For reference, we report the best value for MAP obtained in the TREC-8 Web Track [41] on the WT2g
collection, and the best value for MAP obtained on the OHSUMED collection according to [66]. These are
0.383 and 0.450 on WT2g and OHSUMED, respectively.

In Table 11, we report the experimental results on CLEF collections. If we consider the performances
of DRMM and compare them to QLM (dir), we do not observe the same trend for all the experimental
collections. DRMM outperforms QLM (dir) on CLEF-IT and CLEF-FA collections, whereas it worsens the
performance of QLM (dir) on CLEF-DE. Overall, the performance of DRMM and the lexical baselines follow
the same trend of the previous set of experiments, where BM25 and TF-IDF are the two best baselines. The
results of NVSM also represent a similar behavior as those reported for the two previous collections when
compared to BM25, TF-IDF, and DFR. Nevertheless, NVSM shows competitive results with QLM (dir) on
CLEF-IT and CLEF-DE, and it outperforms QLM (dir) on CLEF-FA. When compared to DRMM, NVSM
achieves lower results on CLEF-IT and CLEF-FA, but it outperforms DRMM on CLEF-DE.

For reference, we report the best values for MAP obtained in the CLEF 2006 Ad Hoc Track [22] on
the CLEF-IT and CLEF-DE collections, and the best value for MAP obtained in the CLEF 2009 Ad Hoc
Track [29] on the CLEF-FA collection. On CLEF-IT (TD) and CLEF-DE (TD), the best values for MAP
are 0.419 and 0.483, respectively. On CLEF-FA (TD), the best value for MAP is 0.494.

n-gram size Vocabulary Best epoch
WT2g 16 131072 11

OHSUMED 16 65536 12
CLEF-IT 20 65536 14

CLEF-DE 8 131072 13
CLEF-FA 16 65536 15

Table 9: NVSM optimal n-gram size, vocabulary size, and best epoch for each collection.

Significance Tests. From Tukey’s T tests conducted with a significance level α = 0.05 reported in Figure
3, we observe a similar behavior as in the results reported in Tables 10 and 11. NVSM is never in the top
group – except when we consider the P@10 on the CLEF-FA collection – while DRMM is in the top group for
most of the collections (i.e. CLEF-FA, WT2g, and OHSUMED). Regarding lexical models, BM25, TF-IDF
and DFR are almost always the best performing systems, while QLM (dir) is in general the worst performing
one – often being out of the top group (e.g. in the CLEF-FA, CLEF-IT, and OHSUMED collections).
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WT2g (TD) OHSUMED (D)
MAP nDCG P@10 MAP nDCG P@10

QLM(dir) 0.264 0.418 0.418 0.212 0.326 0.305
BM25 0.296 0.454 0.484 0.250 0.369 0.364
TF-IDF 0.234 0.389 0.419 0.250 0.370 0.364
DFR 0.267 0.426 0.452 0.236 0.354 0.344
DRMM 0.289 0.455 0.434 0.272 0.407 0.375
NVSM 0.225 0.380 0.402 0.214 0.335 0.319

Table 10: Generalization experiments results on the Web (WT2g) and medical (OHSUMED) domain. The highest score
amongst the models is in bold. The considered evaluation measures are MAP, nDCG@100 and P@10.

CLEF-IT (TD) CLEF-DE (TD) CLEF-FA (TD)
MAP nDCG P@10 MAP nDCG P@10 MAP nDCG P@10

QLM(dir) 0.334 0.510 0.319 0.209 0.350 0.324 0.200 0.340 0.405
BM25 0.437 0.627 0.402 0.253 0.395 0.373 0.408 0.550 0.594
TF-IDF 0.438 0.628 0.408 0.251 0.392 0.367 0.411 0.553 0.601
DFR 0.415 0.605 0.393 0.241 0.382 0.350 0.421 0.565 0.619
DRMM 0.357 0.557 0.349 0.188 0.329 0.316 0.375 0.551 0.623
NVSM 0.345 0.522 0.317 0.211 0.343 0.301 0.342 0.494 0.567

Table 11: Generalization experiments results on CLEF collections in Italian (IT), German (DE) and Persian (FA). The highest
score amongst the models is in bold. The considered evaluation measures are MAP, nDCG@100 and P@10.

Discussion. From the experimental results described above, we can conclude that DRMM does not always
statistically improve the ranking produced by the QLM (dir) baseline. The only collections where there is
a statistically significant improvement of DRMM over QLM (dir) are CLEF-FA and OHSUMED. The same
behavior can be found when DRMM is trained and used to re-rank runs produced by different lexical models
(i.e., TF-IDF and BM25), where it often fails to produce a substantial improvement. For these reasons,
it is unclear whether the improvement brought by DRMM in the re-ranking task is more attributable to
DRMM itself, or to the lexical model used to compute the input run – which might be good at finding
relevant documents but bad at ranking them. In fact, we observe that DRMM tends to achieve competitive
performances only when those of QLM (dir) are particularly low compared to other lexical models, e.g. on
the OHSUMED and CLEF-FA collections. On the other hand, if we consider WT2g or CLEF-DE, where
QLM (dir) achieves performances closer to those of other lexical models, the re-ranking of DRMM is less
effective or even detrimental. Indeed, DRMM worsens the QLM (dir) baseline in all measures on CLEF-DE.
However, the overall results on CLEF-DE – compared to those obtained on the other CLEF collections –
suggest that CLEF-DE is a more difficult collection to perform retrieval on. Nevertheless, we cannot exclude
that, if more topics were provided in the training step, DRMM would improve the ranking of QLM (dir)
also on this collection.

Regarding NVSM, we observe that it is not competitive with traditional lexical models. The only
exception is QLM (dir), that achieves results that are comparable to or lower than NVSM on the OHSUMED
and CLEF collections. Results from Tables 10 and 11 show that NVSM struggles to generalize when
considering heterogeneous data. The reason why NVSM suffers more with the WT2g collection than on
OHSUMED and CLEF collections may be related to its inherent domain-specific nature. Indeed, NVSM
derives from [72, 75], which are two approaches targeting product and expert search, respectively.
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Figure 3: Significance tests for the results reported in Table 10 and Table 11 (top group highlighted). All pairwise comparisons
are calculated with Tukey’s HSD confidence intervals and a significance level α = 0.05. Each row depicts the comparisons made
for MAP, nDCG@100 and P@10 for a specific collection.
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7. Embedding-based evaluation

This section, evaluates the effect of different word embedding models on DRMM. We performed the
evaluation on the Robust04 (T), NY (T), WT2g (TD), and OHSUMED (D) collections.

In fact, DRMM allows the usage of different word embedding models, regardless of their characteristics.
Differently from NVSM, which learns its own words and documents representation, DRMM does not learn
any representation. But rather, it learns to interpret the interactions between each document and query
term, given a certain word representation. For this reason, we have investigated here how sensitive DRMM
can be to different word embedding models.

We consider the word embedding models described in Section 2: (i) Word2Vec word embeddings com-
puted with the implementation available in Gensim (W2V), (ii) FastText word embeddings obtained again
with the FastText implementation from Gensim (FastText), (iii) the word embeddings obtained with NVSM
(NVSM Embeddings), (iv) a set of word embeddings trained by Google on a Google News corpus. All the
models, except the last one, have been trained on the experimental collections on which we later performed
the retrieval experiments. We also report the performance of NVSM on each collection as a baseline.

Experimental results. From the results reported in Table 12, we observed the robustness of DRMM when
using different embedding models. Indeed, there is no sizeable difference between the Gensim Word2Vec and
the FastText embeddings on the Robust04, NY and OHSUMED collections. However, on the NY and WT2g
collections FastText embeddings lead to a slightly higher performance. In general, none of the embedding
models considered outperforms the others on all the collections and for all the measures. However, we
observe that the Word2Vec embeddings trained by Google lead to the lowest performances overall – despite
the significantly larger corpus used to train such model. Conversely, the word embeddings generated by
NVSM outperform all the others on Robust04 and OHSUMED in MAP and P@10.

Robust04 (T) NY (T) WT2g (TD) OHSUMED (D)
MAP NDCGP@10 MAP NDCGP@10 MAP NDCGP@10 MAP NDCGP@10

NVSM 0.139 0.269 0.279 0.141 0.211 0.274 0.225 0.380 0.402 0.214 0.335 0.319

DRMM (W2V) 0.268 0.435 0.455 0.141 0.211 0.274 0.289 0.455 0.434 0.272 0.407 0.375
DRMM (FastText) 0.262 0.427 0.456 0.153 0.226 0.276 0.309 0.471 0.468 0.268 0.402 0.368

DRMM (NVSM WE) 0.270 0.434 0.458 0.130 0.207 0.232 0.294 0.458 0.442 0.273 0.405 0.397
DRMM (W2V Google) 0.261 0.428 0.455 0.126 0.215 0.268 0.309 0.455 0.460 0.238 0.361 0.360

Table 12: Comparison between NVSM and DRMM using with different word embedding models: Word2Vec trained on the
experimental collection (W2V), FastText trained on the experimental collection (FastText), NVSM word embeddings trained
on the experimental collection (NVSM WE), pre-trained Word2Vec model by Google on Google News (W2V Google). The
considered evaluation measures are MAP, nDCG@100 and P@10.

Discussion. The results in Table 12 suggest that DRMM has the tendency to learn to match documents
leveraging more on strong exact matching signals or collection-based co-occurrence signals (NVSM WE)
rather than latent semantic ones (W2V or FastText). Otherwise, DRMM would have achieved better
retrieval results using a Word2Vec model trained on a very large corpus – like Google News – compared to
an embedding model trained on each experimental collection. Indeed, we expect a model trained on a much
larger corpus to be better at representing semantic relations between words.

Interestingly, the results obtained with the embeddings generated by NVSM (NVSM WE) – trained
to model term specificity along with co-occurrence relations between terms – are the best on Robust04
and OHSUMED. This result suggests that NVSM embeddings are better at modeling the collection-based
co-occurrence relations between terms than Word2Vec-based approaches. This also leads to more useful
matching signals that may be used to perform retrieval on the collection they are trained on. For DRMM,
we can therefore conclude that matching signals based on collection-based co-occurrence relations have a
more positive effect on performances than semantic ones.

Also, since there is no relevant performance difference between all the considered embedding models,
we can conclude that DRMM learns to assign more importance to exact matching signals – associated to a
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separate bin in the histograms received in input (see Section 3) – than the other ones. Indeed, as shown in
[65], word embedding models such as Word2Vec or FastText, learn very different word representations and
produce different matching scores for the same terms. Hence, since the component with less variability in
the matching histograms is the one associated to exact matching signals and the performance of the model is
very similar for different embedding models, we conclude that DRMM learns to rely more on this dimension
of the input.

8. Topic-based evaluation

In this section, we perform a topic-by-topic analysis of the runs of NVSM and DRMM, comparing their
per-topic AP to that obtained with BM25 on the Robust04 (T), NY (T), WT2g (TD), OHSUMED (D) and
CLEF (TD) collections.

We also employ Kernel Density Estimation (KDE) [81] to estimate the PDF of the APs of BM25, NVSM
and DRMM for all topics.

Discussion. In Figure 4, we present the scatter plots of the per-topic AP of NVSM, DRMM and BM25
on different collections. For each collection, we compare each model with the others.

We begin to consider the results on the Robust04 collection. If we compare DRMM and BM25, we
observe that most of the points are close to the bisector. This indicates that, in general, the two models
have a similar performance on most of the topics. On the other hand, the comparison between NVSM
and BM25, reveals that the majority of the points is concentrated below the bisector, meaning that BM25
outperforms NVSM on most of the topics. If we analyze the results of the comparison between NVSM and
DRMM, we observe a similar point distribution as in the previous chart, once again indicating, on this
collection, DRMM’s greater effectiveness over NVSM.

Considering the results on NY, DRMM reveals a worse performance than BM25 on most of the topics,
and so does NVSM. However, in comparing the two NeuIR models, we see that DRMM outperforms NVSM
on a large number of topics. The large performance difference between DRMM and BM25 is likely due to
the fact that the NY collection only has 50 topics, which are not enough for DRMM to learn a good ranking
model as done in other collections. However, since DRMM re-ranks on a set of 2000 documents previously
retrieved with QLM (dir), it has an advantage over NVSM which is also confirmed by its performance
difference. Examining the documents retrieved by NVSM in greater detail, and comparing them with the
ones returned by BM25, we noted that NVSM can return relevant documents which do not contain any
query term. For instance, on topic 442 (“heroic acts”) NVSM returns a relevant document – with doc id
“1036498” – which does not contain any query term and is not returned by BM25. In this case, terms like
“heroism” and “sacrifices” are used in the documents instead of those of the query. Similar situations for
other topics are observable in other collections (i.e. OHSUMED).

On CLEF collections, we observe similar relative performances as in the two previous collections. DRMM
performed overall similarly to BM25 except for a few topics where it outperforms it, i.e., topic 200 in CLEF-
DE, and topic 148 in CLEF-IT; or vice versa, where BM25 performs better by a large margin, i.e., topics
141, 149, and 161 on CLEF-DE, topic 628 on CLEF-FA and topics 161 and 44 on CLEF-IT. On the other
hand, NVSM is in general outperformed by BM25 on all the collections for most of the topics. This time
however, the difference is less marked than on the Robust04 and NY collections. Finally, if we compare
DRMM and NVSM on the same set of collections, we observe a performance difference of the two models
for a large number of topics mostly on the CLEF-IT collection – where the points in the scatterplot are in
general further from the bisector – while we observe a similar performance on the other two collections in
the majority of the topics with just a few outliers where NVSM outperforms DRMM by a larger margin on
CLEF-DE.

On the WT2g collection, we observe that DRMM is performing once again in the majority of the topics
in a very similar way to BM25 – with the exception of topics 423 and 410 where BM25 outperforms DRMM
by a large margin. NVSM on the other hand is outperformed by the two other models on the vast majority
of the topics. However, we also observe that in a handful of topics, DRMM and NVSM both manage to
outperform BM25. This happens for topic 416: “Three Gorges Project What is the status of The Three
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Gorges Project?”. In this case, the documents containing the topic keywords are very long and BM25 does
not recognize many of them as relevant.

Finally, on OHSUMED, we observe a similar relative performance of the models as on the Robust04
collection. Where DRMM is performing on all topics in a similar way as BM25, and NVSM is in general
outperformed by the two other models in most of the topics. Here, as in the NY collection, there are
some topics, for which NVSM returns relevant documents which do not contain any query term. This is
the case for topic OHSU7 (“lactase deficiency therapy options”) and document with doc id “91359745”
which contains none of the query terms but only their synonyms or closely related terms (i.e. “lactose” and
“intolerance”).

Overall, we can conclude that DRMM and BM25 have a very similar performance across all topics, with
a few outliers only on CLEF-DE and NY, while NVSM is usually outperformed by both BM25 and DRMM
on most of the topics and collections. If we consider the differences between NVSM and the two other models
we also observe that these are always larger than DRMM and BM25. This is likely due to the fact that
DRMM performs a re-ranking on the top 2000 documents retrieved with QLM (dir) – a lexical model like
BM25. For this reason, we expect the rankings of NVSM to contain a more diverse set of documents than
the ones in the runs produced by DRMM or BM25 since NVSM relies solely on the neural model without
explicitly considering exact term matches.

Considering the charts in Figure 5, we can assess the differences in the systems’ behavior that is otherwise
not identifiable when observing the average measures across all topics. In this case, we see that on the
Robust04, NY, CLEF-DE, WT2g and OHSUMED collections, the MAP value is highly influenced by the
low performances of the systems on a large number of topics – this situation is especially true for NVSM.
In fact, in all these charts there is a high peak associated to low AP values. Conversely, the experiments on
the CLEF-IT, CLEF-FA collections, highlight that the final MAP value is dominated by a large number of
topics where the systems obtain an AP around 0.3 – except for NVSM which also has a high peak close to
0.1.

The quantitative distance in the distribution of AP values across different topics can be measured con-
sidering the KLD between the AP distributions reported in Figure 5. Table 13 illustrates the distances
between the AP distribution associated to the BM25, NVSM and DRMM models.

Robust04 NY CLEF-DE CLEF-FA CLEF-IT OHSUMED WT2g
BM25 - DRMM 10.86 63.29 21.76 18.58 14.48 16.91 27.08
BM25 - NVSM 20.57 40.69 28.15 22.70 26.65 49.60 61.22

DRMM - NVSM 31.52 23.85 24.06 16.45 18.69 71.66 76.29

Table 13: KLD values between the PDF of the AP values obtained with BM25, NVSM and DRMM on the Robust04, NY,
CLEF-DE, CLEF-FA, CLEF-IT, OHSUMED, and WT2g collections. KLD ∈ [0,+∞), it denotes the divergence between the
two distributions [12]; therefore, 0 means that the two models behave in the same way for all the topics in the collection; +∞
means that for no topic the two models behave in the same way.

Considering the distances among the distributions on the Robust04, CLEF-DE, CLEF-IT, OHSUMED
and WT2g collections, we notice that DRMM and BM25 are often the closest systems. This indicates that
DRMM and BM25 have a comparable number of topics where they obtain a similar AP. Worth noting that
the set of topics with a similar AP might be different since we are only considering the distribution of the
AP values, ignoring any corresponding topic ids. On the NY and CLEF-FA collections instead, DRMM and
NVSM are the two closest systems, implying that they have a similar number of topics with comparable AP
values. This also corresponds to the results reported in Figure 5, where both models show very high peaks
associated to AP values around 0.1 and 0.2 on the NY and CLEF-FA collections, respectively.

In conclusion, the main advantage observed of the considered NeuIR models is the ability to retrieve
documents which do not contain any query term. Moreover, in a few cases we observed that NeuIR models
have the ability to rank higher than lexical models very long documents containing relatively short relevant
passages related to a query. Nevertheless, we did not find enough empirical evidence to strongly support
this claim.

Finally, NeuIR systems do not outperform in general traditional lexical approaches such as BM25. It
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can however be noticed that DRMM is competitive with lexical models on certain collections (Robust04,
WT2g and OHSUMED), and outperforms BM25 on a few topics.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BM25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
R
M
M

Robust 2004 - Topic-based analysis (Average Precision)

301

302

303

304

305

306

307

308

309

310

311

312

313

314
315

316

317

318
319320

321

322

323

324

325

326

327

328

329

330331 332

333

334

335

336

337

338

339

340

341

342

343
344

345

346347

348

349350

351

352

353

354355
356

357

358

359

360

361

362

363

364

365
366

367

368

369

370

371

372 373
374

375

376

377

378

379

380

381

382

383

384

385

386
387

388389 390

391

392

393394
395

396
397

398

399

400

401

402

403

404
405

406

407

408
409

410

411
412

413

414

415

416
417

418

419

420

421

422
423

424

425

426

427

428

429

430

431

432433

434

435

436

437

438

439 440

441

442

443

444

445

446
447

448
449

450

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622
623

624

625

626

627

628
629

630

631

632

633

634

635

636

637

638

639

640
641

642

643
644

645

646
647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667
668

669

670

671
673

674

675

676

677

678

679

680

681

682

683

684
685

686

687688
689

690

691
692

693
694

695
696
697

698699

700

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DRMM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
VS

M

Robust 2004 - Topic-based analysis (Average Precision)

301

302

303

304

305 306

307
308

309 310

311

312

313

314315 316
317

318319

320
321

322 323

324

325 326327
328

329

330

331

332

333

334

335

336

337

338

339

340
341342

343344

345

346

347

348

349

350

351

352

353

354

355

356

357

358
359

360
361

362 363

364

365

366

367
368

369
370

371

372
373

374
375

376
377378 379

380
381

382

383
384 385

386387388
389
390391

392

393394

395 396

397398 399

400

401
402

403

404

405 406
407

408

409

410

411

412
413

414

415

416417

418 419 420
421

422

423

424

425

426

427

428

429

430

431

432433

434435
436

437

438

439

440

441

442

443

444

445

446

447
448

449 450
601

602

603

604

605

606607

608

609

610

611
612

613

614

615

616
617

618

619

620

621

622623

624

625

626

627

628

629

630

631

632 633

634

635

636

637

638

639
640641

642

643

644

645

646
647648

649

650
651

652

653

654

655
656 657

658

659
660

661

662 663

664

665
666

667668

669
670 671

673

674
675

676

677

678

679
680

681

682

683

684

685 686
687688689690

691

692

693

694

695 696
697

698

699

700

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BM25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
VS

M

Robust 2004 - Topic-based analysis (Average Precision)

301

302

303

304

305 306

307
308

309 310

311

312

313

314315 316
317

318319

320
321

322 323

324

325 326327
328

329

330

331

332

333

334

335

336

337

338

339

340
341342

343344

345

346

347

348

349

350

351

352

353

354

355

356

357

358
359

360
361

362363

364

365

366

367
368

369
370

371

372
373

374
375

376
377378 379

380
381

382

383
384 385

386 387388
389

390391

392

393394

395 396

397398 399

400

401
402

403

404

405 406
407

408

409

410

411

412
413

414

415

416417

418419 420
421

422

423

424

425

426

427

428

429

430

431

432433

434435
436

437

438

439

440

441

442

443

444

445

446

447
448

449 450
601

602

603

604

605

606607

608

609

610

611
612

613

614

615

616
617

618

619

620

621

622623

624

625

626

627

628

629

630

631

632 633

634

635

636

637

638

639
640641

642

643

644

645

646
647 648

649

650
651

652

653

654

655
656 657

658

659
660

661

662 663

664

665
666

667668

669
670 671

673

674
675

676

677

678

679
680

681

682

683

684

685 686
687688689690

691

692

693

694

695696697

698

699

700

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BM25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
R
M
M

NY Times - Topic-based analysis (Average Precision)

307

310321

325

330

336

341

344 345347 350353

354
355

356

362

363367

372

375

378

379
389

393

394

397
399

400

404
408 414

416

419

422

423

426

427

433
435 436439442

443445

614

620
626

646

677

690
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DRMM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
VS

M

NY Times - Topic-based analysis (Average Precision)

307

310

321

325330

336

341

344
345

347
350

353

354
355

356

362

363367

372

375

378379

389 393

394

397

399

400

404
408

414

416

419

422

423
426

427

433
435

436

439
442

443
445 614

620

626

646

677

690
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BM25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
VS

M

NY Times - Topic-based analysis (Average Precision)

307

310

321

325330

336

341

344
345

347
350

353

354
355

356

362

363367

372

375

378379

389393

394

397

399

400

404
408

414

416

419

422

423
426

427

433
435

436

439
442

443
445 614

620

626

646

677

690

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BM25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
R
M
M

CLEF-DE - Topic-based analysis (Average Precision)

110

111
112

113

114

115

116

117

118
119

130

131

132

133

134

135
136

137

138

139

140

141

142

143

145147
148

149

160 161
162

163

164

165

166
167

168

169

171

172

173

174

175

176

177

178

179

190

192

193 194195

196

197

198

199

200

41

42

43

45
46

47

48

49

60

61 62

63

64
65

66

67
6869

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96
97

98
99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DRMM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
VS

M

CLEF-DE - Topic-based analysis (Average Precision)

110 111
112

113
114

115

116

117 118

119

130

131

132

133134

135

136

137

138

139

140

141
142

143

145

147

148

149

160161

162 163

164

165

166

167

168

169
171

172

173

174

175 176

177

178

179
190

192

193

194

195

196

197

198

199

200

41
42

43

45
4647

48
49

60

61

62

63

64

65

66

676869

80
81 82

83

8485

86
87

88

89

90

9192

93

94

95 9697

98

99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BM25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
VS

M

CLEF-DE - Topic-based analysis (Average Precision)

110111
112

113
114

115

116

117 118

119

130

131

132

133134

135

136

137

138

139

140

141
142

143

145

147

148

149

160 161

162163

164

165

166

167

168

169
171

172

173

174

175 176

177

178

179
190

192

193

194

195

196

197

198

199

200

41
42

43

45
4647
48

49

60

61

62

63

64

65

66

67 6869

80
81 82

83

84 85

86
87

88

89

90

9192

93

94

95 9697

98

99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BM25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
R
M
M

CLEF-FA - Topic-based analysis (Average Precision)

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583
584

585

586
587

588 589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621622

623

624 625
626

627

628

629

630

631

632

633

634

635

636

637

638

639

640
641

642

643

644

645

646

647

648649

650

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DRMM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
VS

M

CLEF-FA - Topic-based analysis (Average Precision)

551

552

553

554
555

556
557

558

559

560

561

562 563

564

565

566

567

568

569
570

571

572

573

574

575

576
577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592593

594

595

596

597

598

599
600 601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624
625

626

627

628
629

630
631

632
633

634

635

636

637

638

639

640
641642

643

644

645

646

647648

649

650

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BM25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
VS

M

CLEF-FA - Topic-based analysis (Average Precision)

551

552

553

554
555

556
557

558

559

560

561

562563

564

565

566

567

568

569
570

571

572

573

574

575

576
577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592 593

594

595

596

597

598

599
600601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624
625

626

627

628
629

630
631

632
633

634

635

636

637

638

639

640
641642

643

644

645

646

647648

649

650

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BM25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
R
M
M

CLEF-IT - Topic-based analysis (Average Precision)

110

111

112

113

114

115

116

117

118

119

130
131

132

133

134

135

136

137

138

139

140

141

142

143

145

147

148

149

161

162

163

164

165

166

167

168

171

173

174

176177

178

179 190

192

193

194

195

196

197

198
199

200 41

42

44

454647
48

49

60

61

62

63

65

66

67

68

69

80
81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96
97

98

99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DRMM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
VS

M

CLEF-IT - Topic-based analysis (Average Precision)

110

111

112

113

114

115

116

117

118

119

130

131

132

133

134

135

136

137

138

139

140

141

142

143

145

147

148

149

161

162

163

164

165

166

167

168171
173

174

176

177

178

179

190

192

193

194

195

196

197

198

199200

41

42

44

45

46
47 48

49

60

61

62 63

65

66

67

6869

80

81

82

83

84

85

86

87

88

89

90

91

92

93
94

95
96

97

98

99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BM25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
VS

M

CLEF-IT - Topic-based analysis (Average Precision)

110

111

112

113

114

115

116

117

118

119

130

131

132

133

134

135

136

137

138

139

140

141

142

143

145

147

148

149

161

162

163

164

165

166

167

168 171
173

174

176

177

178

179

190

192

193

194

195

196

197

198

199200

41

42

44

45

46
4748

49

60

61

62 63

65

66

67

6869

80

81

82

83

84

85

86

87

88

89

90

91

92

93
94

95
96

97

98

99

26



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BM25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
R
M
M

WT2g - Topic-based analysis (Average Precision)

401 402

403

404

405

406

407

408

409

410

411
412

413

414

415

416

417

418

419

420421
422

423

424

425

426

427

428

429430

431

432

433

434

435
436

437

438

439 440

441

442

443

444

445

446

447

448

449

450

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DRMM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
VS

M

WT2g - Topic-based analysis (Average Precision)

401

402

403

404
405

406

407408
409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424
425

426

427

428

429

430

431

432
433

434

435

436

437
438

439

440

441

442

443

444

445

446

447

448

449

450

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BM25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
VS

M

WT2g - Topic-based analysis (Average Precision)

401

402

403

404
405

406

407408
409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424
425

426

427

428

429

430

431

432
433

434

435

436

437
438

439

440

441

442

443

444

445

446

447

448

449

450

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BM25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
R
M
M

OHSUMED - Topic-based analysis (Average Precision)

OHSU-TEST1OHSU-TEST11

OHSU-TEST12

OHSU-TEST14OHSU-TEST15OHSU-TEST16

OHSU-TEST17

OHSU-TEST19
OHSU-TEST2

OHSU-TEST20
OHSU-TEST21OHSU-TEST22
OHSU-TEST23

OHSU-TEST25

OHSU-TEST26

OHSU-TEST29

OHSU-TEST30

OHSU-TEST31OHSU-TEST32

OHSU-TEST33

OHSU-TEST34

OHSU-TEST35

OHSU-TEST37
OHSU-TEST38

OHSU-TEST39

OHSU-TEST4

OHSU-TEST40

OHSU-TEST41

OHSU-TEST42

OHSU-TEST43

OHSU-TEST5

OHSU-TEST7OHSU-TEST8OHSU-TEST9

OHSU1

OHSU10 OHSU11

OHSU12

OHSU13

OHSU14

OHSU15OHSU16

OHSU17

OHSU18

OHSU19

OHSU2

OHSU20

OHSU21

OHSU22

OHSU23

OHSU24

OHSU25

OHSU26

OHSU27

OHSU28
OHSU29

OHSU3

OHSU30

OHSU31OHSU32

OHSU33

OHSU34

OHSU35

OHSU36

OHSU37

OHSU38

OHSU39

OHSU4

OHSU40

OHSU41

OHSU42

OHSU43

OHSU44

OHSU45

OHSU46
OHSU47

OHSU48
OHSU49

OHSU5

OHSU50

OHSU51

OHSU52

OHSU53

OHSU54

OHSU55

OHSU56 OHSU57

OHSU58

OHSU59

OHSU6OHSU60
OHSU61

OHSU62

OHSU63

OHSU7
OHSU8

OHSU9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DRMM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
VS

M

OHSUMED - Topic-based analysis (Average Precision)

OHSU-TEST1OHSU-TEST11
OHSU-TEST12

OHSU-TEST14OHSU-TEST15OHSU-TEST16

OHSU-TEST17

OHSU-TEST19
OHSU-TEST2

OHSU-TEST20

OHSU-TEST21
OHSU-TEST22OHSU-TEST23

OHSU-TEST25OHSU-TEST26 OHSU-TEST29

OHSU-TEST30

OHSU-TEST31

OHSU-TEST32

OHSU-TEST33

OHSU-TEST34
OHSU-TEST35OHSU-TEST37

OHSU-TEST38

OHSU-TEST39
OHSU-TEST4

OHSU-TEST40

OHSU-TEST41

OHSU-TEST42

OHSU-TEST43

OHSU-TEST5

OHSU-TEST7OHSU-TEST8OHSU-TEST9

OHSU1

OHSU10

OHSU11

OHSU12
OHSU13 OHSU14OHSU15

OHSU16
OHSU17

OHSU18

OHSU19

OHSU2

OHSU20

OHSU21

OHSU22

OHSU23

OHSU24

OHSU25

OHSU26

OHSU27

OHSU28

OHSU29

OHSU3

OHSU30

OHSU31

OHSU32

OHSU33
OHSU34

OHSU35

OHSU36
OHSU37

OHSU38

OHSU39

OHSU4

OHSU40

OHSU41

OHSU42

OHSU43

OHSU44

OHSU45

OHSU46

OHSU47

OHSU48

OHSU49

OHSU5

OHSU50
OHSU51

OHSU52

OHSU53

OHSU54OHSU55

OHSU56

OHSU57

OHSU58

OHSU59

OHSU6

OHSU60
OHSU61

OHSU62

OHSU63

OHSU7
OHSU8

OHSU9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BM25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
VS

M

OHSUMED - Topic-based analysis (Average Precision)

OHSU-TEST1OHSU-TEST11
OHSU-TEST12

OHSU-TEST14OHSU-TEST15OHSU-TEST16

OHSU-TEST17

OHSU-TEST19
OHSU-TEST2

OHSU-TEST20

OHSU-TEST21
OHSU-TEST22OHSU-TEST23

OHSU-TEST25OHSU-TEST26 OHSU-TEST29

OHSU-TEST30

OHSU-TEST31

OHSU-TEST32

OHSU-TEST33

OHSU-TEST34
OHSU-TEST35OHSU-TEST37

OHSU-TEST38

OHSU-TEST39
OHSU-TEST4

OHSU-TEST40

OHSU-TEST41

OHSU-TEST42

OHSU-TEST43

OHSU-TEST5

OHSU-TEST7OHSU-TEST8OHSU-TEST9

OHSU1

OHSU10

OHSU11

OHSU12
OHSU13OHSU14OHSU15

OHSU16
OHSU17

OHSU18

OHSU19

OHSU2

OHSU20

OHSU21

OHSU22

OHSU23

OHSU24

OHSU25

OHSU26

OHSU27

OHSU28

OHSU29

OHSU3

OHSU30

OHSU31

OHSU32

OHSU33
OHSU34

OHSU35

OHSU36
OHSU37

OHSU38

OHSU39

OHSU4

OHSU40

OHSU41

OHSU42

OHSU43

OHSU44

OHSU45

OHSU46

OHSU47

OHSU48

OHSU49

OHSU5

OHSU50
OHSU51

OHSU52

OHSU53

OHSU54OHSU55

OHSU56

OHSU57

OHSU58

OHSU59

OHSU6

OHSU60
OHSU61

OHSU62

OHSU63

OHSU7
OHSU8

OHSU9

Figure 4: Scatter plots of the AP for each topic of Robust04, NY, CLEF-DE, CLEF-FA, CLEF-IT, WT2g and OHSUMED
collections, obtained with DRMM, NVSM and BM25 retrieval models.
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Figure 5: PDF of the AP relative to WT2g, OHSUMED, CLEF-IT, CLEF-DE, and CLEF-FA collections, of NVSM and BM25
retrieval models. Note that on the x-axis there are the AP values distributed into 100 bins (from 0 to 1 with 0.01 step) and on
the y-axis the density estimation.
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9. Related work

In the past few years, the increased availability of data and the success of deep neural networks in the
NLP field, has promoted the diffusion of neural models even in the IR field. Existing NeuIR approaches can
be classified into representation- and interaction-based models [59].

The aim of representation-based models is to learn how to represent a query and a document and then
use it to estimate their similarity. Within this class, one of the earliest neural models is the Deep Structured
Semantic Model (DSSM). DSSM is trained by maximizing the conditional likelihood of clicked documents
given a query using click-through data. The model employs word hashing, which allows DSSM to scale
up and handle large vocabularies which are common in large-scale Web search applications. Architectural
variants of this model are Convolutional Latent Semantic Model (CLSM) [87] and LSTM Deep Structured
Semantic Model (LSTM-DSSM) [60]. On the other hand, recent advances in building unsupervised low-
dimensional text representations [14, 49, 54, 63] has led the IR community to consider them for retrieval.
We can identify two main lines of work: (i) approaches that incorporate features from neural language
models [3, 33, 36, 90] and (ii) methods that learn representations of words and documents from scratch
and use them directly for retrieval [72, 74, 75, 79]. Within (i), the effectiveness of Doc2Vec (PV-DBOW
architecture) is evaluated for ad-hoc retrieval in [3]. The Generalized Language Model (GLM) is presented
in [33] where the mutual independence between a pair of words no longer holds and word embeddings are
used to derive the transformation probabilities between words. A similar idea is proposed in [90] where
word embeddings are used to estimate probabilities in a translation model that is combined with traditional
retrieval models. In [36], a semantic matching model based on the Bag-of-Word-Embeddings (BoWE)
representation is introduced. The model represents every document as a matrix of the word embeddings
occurring in it and the matching between queries and documents is seen as a non-linear word transportation
problem. Within (ii), the approach presented in [79] proposes to compose document representations as the
weighted sum of their word embeddings using the self-information [16] value of each word as its weighting
operator. The idea is that IDF-inspired weights assign more importance to words bearing more information
content during the compositional process. The works presented in [72, 75] introduce an unsupervised end-
to-end representation learning model for product and expert search, respectively. The NVSM model [74]
extends [72, 75] to ad-hoc retrieval by incorporating term specificity in the learned word representations.
Finally, an extension of NVSM that integrates text matching and product substitutability for product search
is presented in [73].

Differently from representation-based approaches, interaction-based models tackle the problem of pre-
dicting the relevance score between a query and a document computing the interactions between the query
and document terms. DRMM is one of these approaches and the first that outperforms similar previ-
ous existing NLP techniques for text matching such as ARC-II [44], and MatchPyramid [61]. Other suc-
cessful approaches which belong to this category are Match-SRNN [80], HIerarchical Neural maTching
model (HiNT) [24], Kernel based Neural Ranking Model (K-NRM) [83], Convolutional Kernel-based Neural
Ranking Model (Conv-KNRM) [20], A Position-Aware Neural IR Model for Relevance Matching (PACRR)
[45] and A Context-Aware Neural IR Model for Ad-hoc Retrieval (Co-PACRR) [46]. The architecture of
Match-SRNN models the interaction between two texts as a recursive process. This means that the in-
teraction of two texts at each position can be considered as a combination of interactions between their
prefixes and words at a given position. This approach is similar to the one employed in MatchPyramid
[61], even though it uses a a Spatial Recurrent Neural Network (SRNN) instead of a regular Convolutional
Neural Network (CNN). HiNT focuses on the diverse relevance patterns in a document given a query. This
means that a document may be completely or partially relevant to a query as long as it provides sufficient
information for users needs. For this reason, HiNT allows relevance signals at different granularities to
compete with each other for final relevance assessment through a hierarchy of matching layers. K-NRM uses
a translation matrix that models word-level similarities via word embeddings, a kernel-pooling technique
that uses kernels to extract multi-level soft match features, and a learning-to-rank layer that combines those
features into the final ranking score. Conv-KNRM is similar to K-NRM but computes the similarity between
word n-grams after computing their representation with a CNN on the word embeddings layer. PACRR and
Co-PACRR compute the relevance score of a query-document pair from multiple word n-gram similarity
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matrices processed first with a CNN and then with a Recurrent Neural Network (RNN). In Co-PACRR,
Hui et al. propose to employ – as an extension of the model proposed in PACRR – a context vector to
enrich the matching signals, and replace the RNN with a simpler Feed Forward Neural Network (FFNN).

Along with the growing importance of NeuIR models, their reproducibility is becoming a central topic
in the IR community. As we mentioned above, Lin criticized the “neural hype” in a recent SIGIR Forum
paper [50] and more recently Wui et al. [82] critically examined the baselines used for assessing NeuIR
improvements pointing out that “weak baselines (still) pervade the [IR] literature”. The comparison to
weak baselines is a long-standing problem in the community [7] that needs to be seriously addressed to
prevent unreliable claims and statistical analyses. For this reason, in this work we also focused on comparing
some NeuIR models with generally good performing “classic” IR models. [82] shows that, currently, only
one NeuIR system actually outperforms a well-tuned RM3 model on the Robust04 collection in a re-ranking
task; in this paper we further investigate this aspect and, amongst other findings, we extend and confirm Wei
et al. findings by showing that classic retrieval models like BM25 and TF-IDF are still highly competitive
or better than NeuIR models both for retrieval and re-ranking tasks on a variety of collections.

10. Conclusion

In this work, we analyzed the key components and some relevant issues related to Neural Information
Retrieval (NeuIR) models. The neural models we selected are prominent examples of the current NeuIR
wave and they report competitive results for ad-hoc retrieval. Deep Relevance Matching Model (DRMM) is
a supervised approach which performs a re-ranking of the documents retrieved by another retrieval model.
This approach relies on a set of pre-trained word embeddings – obtained with Word2Vec – to extract
semantic matching signals which, in turn, are used to perform the re-ranking of documents. The Neural
Vector Space Model (NVSM), on the other hand, is an unsupervised model which performs retrieval on
the whole collection. NVSM extends two unsupervised representation learning models for expert [75] and
product [72] search to ad-hoc retrieval. It integrates the notion of term specificity [68, 70] in the learning
process of word and document representations. Both models have been tested on shared experimental
collections, which play a fundamental role in enabling the reproducibility of the results.

First, we studied the most important factors for the reproducibility of DRMM and NVSM. From the
experiments on DRMM, we noticed the importance of sharing the tool used for document pre-processing
(i.e. the tool used to compute the input data for the model). This step is often overlooked in the description
of the experimental setup of a new NeuIR model. However, it has a great impact on the model performance.
An additional factor to consider while using a word embedding model which is not publicly available, is
to share the script and tools used to train it. Small changes in the training parameters can lead to very
different word embeddings and largely impact the retrieval phase. Regarding NVSM, we have drawn similar
conclusions. The lack of information regarding the pre-processing steps – and especially the creation of the
word vocabulary – hampers the reproduction of the results presented in [74].

Secondly, we compared DRMM and NVSM to several lexical retrieval models (i.e. BM25, TF-IDF,
DFR, and QLM (dir)), semantic approaches (i.e. Word2Vec (add) and Word2Vec (si) [79]) and other
state-of-the-art approaches (i.e. BM25+RM3 [84], as well as an application of BERT to IR [85]). From
the comparison analysis, we observed that DRMM outperforms traditional lexical models on the Robust04
collection. Therefore, its combination with state-of-the-art retrieval methods, such as BM25+RM3 [84]
or BERT-based applications for IR like [85], could further improve the retrieval effectiveness. On the
other hand, the limited number of topics available on the NY collection combined with its large size and
the differences between the documents hampers the learning process of DRMM, leading to poor retrieval
performance which worsen the QLM (dir) baseline used for re-ranking. Regarding NVSM, the comparison
analysis on the Robust04 showed that it outperforms Word2Vec (add) and Word2Vec (si) [79] semantic
baselines. Nevertheless, the gap between NVSM and lexical models is still significant. On the NY collection,
DRMM, NVSM, and Word2Vec (si) show comparable results – far from those obtained by lexical models.
We also evaluated the effectiveness of NVSM when used to perform re-ranking. The results showed that
NVSM significantly deteriorates the performance of the QLM (dir) baseline on which it performs re-ranking.
Our intuition is that NVSM, by learning exclusively from the document collection and not relying on any
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interaction or labeled data, does not exploit the lexical signals provided by the QLM (dir) baseline. In fact,
unlike DRMM which considers exact matching signals between query and document terms to minimize a
supervised loss function, NVSM performs a semantic matching between the latent representations of words
and documents obtained by minimizing an unsupervised loss function. Thus, the unsupervised nature of
NVSM suits better for rank fusion techniques (e.g. CombSUM [31]), where lexical and semantic signals are
combined with promising results (see Table 7), or for providing additional features to supervised re-ranking
models like DRMM (see Table 12) or Learning-to-Rank.

Thirdly, we evaluated the robustness of the NeuIR models on collections from different domains and in
different languages. We considered three CLEF collections, i.e. CLEF-DE, CLEF-FA and CLEF-IT, respec-
tively in German, Farsi and Italian; one Web collection, i.e. WT2g; and, one collection from the medical
domain, i.e. OHSUMED. We performed hyperparameters tuning for both DRMM and NVSM, obtaining
significant improvements over the default values on WT2g, for DRMM and NVSM, and on CLEF-DE, for
NVSM. Regarding DRMM, we reduced the number of bins in the matching histogram and increased the
hidden layer size. For NVSM instead, the performance improvement was obtained by tuning the vocabulary
size. Our intuition is that the default vocabulary size of NVSM (i.e. 216 words) is not sufficient to rep-
resent CLEF-DE and WT2g collections, which present bigger vocabularies compared to those of the other
collections considered (see Table 2). Thus, by increasing NVSM’s vocabulary size we managed to obtain
higher results – even outperforming DRMM on CLEF-DE. However, improving effectiveness comes at the
expense of efficiency since a higher number of vocabulary words means a higher number of word embeddings,
which in turn means higher memory requirements. Therefore, it is necessary to find a trade-off between
the NVSM’s vocabulary size and the collection size. The same considerations also apply to the collections
employed in the original NVSM paper [74], where Robust04 and NY present vocabulary sizes similar to
those of CLEF-DE and WT2g, respectively (see Table 1). Additionally, we found that NVSM struggles
more on heterogeneous collections, like WT2g, than in domain-specific ones, like OHSUMED. The reason
might be related to the fact that NVSM derives from two approaches specifically tailored to product [72]
and expert [75] search, thus presenting a strong domain-specific nature.

Fourthly, we evaluated the impact of different word embedding models (i.e. Word2Vec, FastText and
NVSM embeddings) on DRMM. From this analysis, we conclude that collection-based co-occurrence repre-
sentations of words such as the ones learned by NVSM lead to a performance improvement over traditional
embedding models which are trained to represent semantic relations. Also, we did not detect any rele-
vant performance difference when using different semantic-based embedding models (i.e. Word2Vec and
FastText), concluding that DRMM learns to rely more on exact matching signals than semantic ones. We
also experimented with different hyperparameter settings during the training of Word2Vec embeddings (i.e.
learning rate decay, and number of training epochs). These often overlooked hyperparameters variations
had a great influence on the overall performance of the model, showing the impact of small differences in
word representations on the overall performance of DRMM.

Fifthly, we conducted an in-depth per topic analysis of the performance of DRMM and NVSM, analyzing
the different cases where these models outperform the BM25 lexical model or vice-versa. The experiments
have shown that DRMM performs better than BM25 on certain topics. In particular, a few relevant docu-
ments where the frequency of query terms is low have ranked higher than BM25. On the other hand, through
semantic matching, NVSM can retrieve documents which do not contain any query term. This characteristic
is however insufficient to outperform BM25 on average. In other words, when semantic matching is required,
or there is the need to focus on a limited portion of the document containing relevant information, NeuIR
models tend to outperform lexical ones. However, in the considered collections the number of topics where
these characteristics are needed is quite limited. As a consequence, the effect of semantic matching has a
minor impact on average performances.

We believe that understanding NeuIR strengths and weaknesses can enhance their integration into full-
stack IR systems, which employ a variety of pre- and post-retrieval components such as query expansion and
relevance feedback. We think that this work and the insights resulting from it can shed some light on NeuIR
models and their potentialities, inspiring others to further investigate their differences with traditional lexical
models and how their complementary nature can be leveraged to the best.
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