
Received December 6, 2019, accepted January 11, 2020, date of publication January 15, 2020, date of current version January 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2966823

Search Text to Retrieve Graphs: A Scalable RDF
Keyword-Based Search System
DENNIS DOSSO AND GIANMARIA SILVELLO , (Member, IEEE)
Department of Information Engineering, University of Padua, 35122 Padova, Italy

Corresponding author: Dennis Dosso (dennis.dosso@unipd.it)

This work was supported in part by the Computational Data Citation (CDC-STARS) project of the University of Padua, and in part by the
ExaMode Project, as a part of the European Union Horizon 2020 Program under Grant 825292.

ABSTRACT Keyword-based access to structured data has been gaining traction both in research and
industry as a means to facilitate access to information. In recent years, the research community and big
data technology vendors have put much effort into developing new approaches for keyword search over
structured data. Accessing these data through structured query languages, such as SQL or SPARQL, can
be hard for end-users accustomed to Web-based search systems. To overcome this issue, keyword search
in databases is becoming the technology of choice, although its efficiency and effectiveness problems still
prevent a large scale diffusion. In this work, we focus on graph data, and we propose the TSA+BM25 and
the TSA+VDP keyword search systems over RDF datasets based on the ‘‘virtual documents’’ approach.
This approach enables high scalability because it moves most of the computational complexity off-line and
then exploits highly efficient text retrieval techniques and data structures to carry out the on-line phase.
Nevertheless, text retrieval techniques scale well to large datasets but need to be adapted to the complexity
of structured data. The new approaches we propose are more efficient and effective compared to state-of-the-
art systems. In particular, we show that our systems scale to work with RDF datasets composed of hundreds
of millions of triples and obtain competitive results in terms of effectiveness.

INDEX TERMS Information retrieval, database, keyword search, RDF datasets, search methods, triples
(data structure).

I. INTRODUCTION
In the last decade, the Web of Data emerged as one of the
principal means to access, share, and re-use structured data on
the Web [1]. Linked Data, in particular, is the paradigm that
realizes the Web of Data typically represented as Resource
Description Framework (RDF) datasets (or RDF graphs).
RDF is widely-used for data publishing, accessing, and shar-
ing since it allows flexible manipulation, enrichment, and dis-
covery of data as well as encouraging interoperability. In the
past years, we have seen a significant increase in the number
of knowledge bases published as large RDF graphs, such as
DBpedia,1 Wikidata,2 and OpenPHACTS.3 The use of RDF
is growing even for the representation and management of

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita .
1https://wiki.dbpedia.org/
2https://www.wikidata.org/wiki/Wikidata:Main_Page
3https://www.openphacts.org/

enterprise data with heterogeneous and very large graphs,
often containing millions of edges [2].

Efficient and effective techniques to retrieve and access
these data are of paramount importance to allow end-users
to discover, consult, re-use, and share these resources.

The standard way to retrieve data from RDF graphs is
through the powerful, yet complex, SPARQL language. This
language is not intuitive for end-users and is also very differ-
ent from a natural expression of their information needs [3].
Moreover, it requires some knowledge of the underlying
schema of the database. Keyword search is adopted to over-
come these information access barriers since it is the easiest
and quickest approach for searching information. It has been
successfully applied to retrieve unstructured documents, e.g.,
by Web search engines [4]. Keyword-based methods have
over time gained importance both in research fields and in
industrial activities as a means to facilitate and make more
natural the access to structured data. Over the past sev-
eral years, the research community and big data technology

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 14089

https://orcid.org/0000-0001-7307-4607
https://orcid.org/0000-0003-4970-4554
https://orcid.org/0000-0002-5169-9232

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

vendors have put great effort into developing new approaches
for keyword search over databases [4]–[6], but no research
prototypes have so far transitioned from proof-of-concept
implementations into fully deployed systems [7].

Two main challenges need to be addressed to improve
current keyword-based search systems over structured data:
effectiveness and efficiency. Effectiveness concerns the abil-
ity of the system to address the user information need by
providing the best possible ranking of the retrieved candidate
answers; whereas, efficiency concerns the time and memory
required to provide such answers. To target effectiveness,
we need to develop methods for ranking candidate answers –
i.e., RDF subgraphs in our case – considering their structure
and semantic relevance for a user’s keyword query. A key-
word query over an RDF graph may produce many results,
so it is highly beneficial to present the user with a ranked list
of candidate answers, where the top elements are the most
relevant ones to satisfy the information need represented by
the query [8]. To target efficiency, we need to develop systems
that adequately scale, regarding query execution time and
memory consumption, to real-world dataset sizes. Scalability
is ‘‘the most pressing challenge’’ [2] that search systems over
structured data have to face. This is of striking evidence in
particular for graph data such as RDF.

Amongst the various keyword-based search methods,
the so-called virtual documents approach is one of the most
promising in terms of scalability [9], [10]. Following such
approach, text documents are built starting from the content
of nodes and edges of the graph – native if working with
RDF or inferred if working with a relational database – and
then indexed and retrieved using Information Retrieval (IR)
techniques [9]. The systems based on this method move
off-line part of the computations (e.g., documents creation)
and exploits IR ranking techniques and data structures (e.g.,
inverted indexes) to speed up the search process on-line.
IR techniques scale well to large datasets but need to be
adapted to the intrinsic complexity of structured data.

A common aspect to all the systems based on the virtual
documents approach is that they start from a definition of an
exact answer: an answer for the keyword query Q is a non-
redundant subtree Tx of the data graph, such that Tx contains
all the keywords of Q. While containment means that each
keyword appears in at least one node, non-redundancy means
that every answer does not have a proper subtree containing
all the keywords of the query.

Nevertheless, we deal with ambiguous information needs
expressed with a few keywords. Therefore, we claim that a
search system returning a ranking of best answers – as search
engines do – rather than a single exact answer – as databases
do – is better suited to capture the different angles of the
information need potentially implied by the query. Hence,
we compare the commonly adopted exact-match approach
against the best-match approach we pursuit, and we show that
we return accurate and non-redundant answers, while scaling
to large data graphs that cannot be handled by exact-match
based systems.

In this work, we propose two new keyword search systems
over RDF graphs based on the virtual document approach
and following the best-match search paradigm – i.e., the
Topological Syntactical Aggregator+BM25 (TSA+BM25)
and Topological Syntactical Aggregator+Virtual Documents
Pruning (TSA+VDP). TSA is the name of the document
building strategy (that refers to how the document is built),
which is common to the two systems. They differ in the
on-line phase: how the document is ranked and mapped back
to answer subgraphs. The off-line phase is based on the idea
that an RDF triple is characterized by the concepts it contains,
and triples describing similar concepts will cluster together.
When working on text retrieval, this idea is postulated by
the clustering hypothesis, on which even recent IR systems
rely on [11]. TSA takes an RDF dataset as input and creates
subgraphs around a single ‘‘topic’’ characterizing the sub-
graph semantics. Each subgraph is then mapped into a text
document and indexed. The text documents and the related
subgraphs are used for retrieval purposes during the on-line
phase. TSA+BM25 is based on the classical retrieval func-
tion BM25, which ranks the virtual documents based on the
user’s keyword query. Once ranked, the graphs corresponding
to the documents are returned to the user following the order
given by BM25. Instead, the on-line phase of TSA+VDP
starts from the ranking produced by TSA+BM25. It then
aggregates and prunes them according to heuristics to reduce
noise and increase specificity. It finally re-ranks them based
on their relevance to the query. Compared to state-of-the-art
systems, the difference consists in the way documents are
built, and if and how the answer graphs are aggregated and
pruned after the first ranking phase.

Another important aspect of keyword search is the evalua-
tion of the systems. In the last years, the research community
has concentrated the efforts on the evaluation of keyword
search over relational databases [4] and an extensive evalu-
ation has been conducted on the subjects. In particular, [7],
[12] present a benchmark for the assessment of the system’s
efficiency and effectiveness when using models that work
on relational databases. Unfortunately, there is no similar
benchmark to evaluate keyword search systems over graph
data.

The objectives of this work are:
• Modern state-of-the-art systems today are not able to
scale to real-world-databases of tens and millions of
triples. Our objective is the creation of new systems for
Keyword Search on real-world RDF graphs.

• Many keyword search systems use a precise definition
of the answer graph. We want our systems to be more
focused on answering the information needs implied by
the query rather than searching for particular subgraph
structures inside the database.

• We aim to develop an evaluation framework designed
for keyword search on RDF datasets based on a set
of different RDF graphs, with different structures and
sizes, and a set of keyword queries which can be easily
reproduced and shared among researchers. Moreover,

14090 VOLUME 8, 2020

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

traditional evaluation measures do not consider all the
peculiar characteristics of the answer graphs, such as
the different dimensions of the graphs, the overlapping
among graphs, the presence of noise within the graphs.
We aim at developing one new measure in order to take
into consideration all of these elements in a holistic way.

Contributions of this paper include:

• Two new virtual document-based keyword search sys-
tems (TSA+BM25 and TSA+VDP) tested against
three state-of-the-art baselines: the Structured Language
Model (SLM) [13], Markov Random Fields-Keyword
Search (MRF-KS) [14], and SUMM [15]. TSA+VDP
shows statistically significant improvements over the
baselines in terms of efficiency (up to one order of mag-
nitude) and effectiveness. Moreover, TSA+BM25 and
TSA+VDP are the only systems scaling to hundreds of
millions of triples.

• A new evaluation framework based on the Cranfield
paradigm, the standard for off-line evaluation of search
engines working with the best-match approach. The
framework consists of three real RDF datasets and two
synthetic ones, 50 query topics per each real database,
and their corresponding keyword query reformulations.
For the synthetic databases, we used the topics provided
released with the datasets. We construct the Ground
Truth (GT) by leveraging on the answer graphs returned
by the SPARQL queries that were manually built to
match the information needs synthesized by the topics.

• An evaluation metric (i.e., tb-DCG) to measure the
overall utility of a subgraph ranking for the end-users.
It weights the top-heaviness (best answers are ranked
first) and essentialness (absence of redundancy) in the
ranking.

The rest of the paper is organized as follows: Section II,
the related work. Section III, basic concepts about RDF,
SPARQL and keyword search. Section IV, running experi-
ment used as a reference throughout the paper. Section V,
a detailed description of the functioning of the three base-
line search systems we consider. Section VI describes
TSA+BM25 and TSA+VDP. Section VIII, the Evaluation
Setup of our experiments. Section VII, the design and use
of the evaluation framework. Section IX, the experimental
results. Finally, Section X draws some conclusions and dis-
cusses future work.

II. RELATED WORK
We classify the approaches to keyword search over structured
data by query type, search paradigm, and data model.

Queries can be classified in natural language queries or
keyword queries. Natural language queries are longer and
have a stronger expressive power than keyword queries.
Generally, they are considered by systems where the
query is translated in a structured language (e.g., SQL
or SPARQL) [16] via machine-translation techniques or
computer-aided interfaces [17].With shorter keyword queries

it becomes harder to guess precisely the information need [4]
and to ‘‘understand’’ the meaning inferred by the query.
On the other hand, queries are more natural to formulate, and
end-users are accustomed to using this paradigm for research
thanks to services like Google and Amazon.

There are two main search paradigms: exact-match and
best-match. Structured query languages work under the
exact-match paradigmwhen a query is precise, unambiguous,
and with only one correct answer. Within the best-match
paradigm, the user query needs to be interpreted and inferred
from a few keywords. The search system then returns a
ranking of answers, ordered by relevance to the query. Ideally,
the answers returned at the top of the ranking are more
relevant than those at the bottom, and they are essential, i.e.
without overlapping.

Keyword search systems have proved their flexibility in
different applications and conditions, also thanks to sup-
porting techniques such as QE [18]. They have been used,
for example, to query knowledge bases [19], temporal
graphs [20], and probabilistic graphs [21].

The search system we propose works with keyword
queries, under the best-match assumption, and on RDF
graphs. The task we face is challenging as we need to guess
the information need of a query, and it is not straightforward
to define what it means to be ‘‘relevant’’ for an answer [4].

In the literature, keyword query search systems over struc-
tured data are mainly focused on relational databases (RDB),
leveraging on schema-based or graph-based techniques [6].
Schema-based techniques (e.g., DISCOVER [22], DBX-
plorer [23] and SPARK [24]) exploit the schema informa-
tion to formulate SQL queries designed to start from the
user keyword queries. Most of the existing approaches rely
on indexes and functions over the data values to select the
most prominent tuples as results of queries. [25], [26] are
schema-based RDF search systems that translate keyword
queries into SPARQL queries. Graph-based techniques (e.g.,
BANKS [27], PRECIS [28], DPBF [29] and STAR [30])
model relational databases as graphs, where the tuples are
nodes and the foreign-primary key relations among them
define the edges. The main difference within graph-based
systems is how they optimize the computation of specific
structures over the graphs (e.g., Steiner trees, rooted trees) to
find the most relevant top-k connected tuples to be returned
to the user. A core challenge is how to tackle the large graphs
induced by the database instance. In several cases, the size of
the graph makes it difficult to treat the problem.

All of these papers apply a particular definition of the
answer to a keyword query, that is, the Tree Answer, derived
from the one found in [6]. The Tree Answer is a tree-shaped
answer graph where all the leaf nodes contain at least one
keyword, and all of the query keywords are contained in the
answer. In our work, we do not give a structural definition
of an answer, but we look for a more user-oriented one. Our
focus is not only on the presence of all the keywords inside
the answer graph or in a particular structure but rather on its
ability to cover the user’s information need.

VOLUME 8, 2020 14091

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

Keyword search systems usually employ some advanced
heuristics to speed up the computations required to deal with
such large and complex graph structures. Even so, in many
cases, they cannot query a database within a reasonable time
and according to memory limits, as shown by [7]. In the
latter, most of the state-of-the-art RDB search systems were
assessed against a shared test collection. Even though the
evaluation effort attracted some criticism [31] (i.e., most of
the queries consist of a single keyword, the datasets employed
are modest in size, and the evaluation metrics are often
inadequate to evaluate schema-based approaches), it remains
the only shared testbed available to evaluate keyword search
systems. Worth noting, the latter evaluates the effectiveness
(quality of the ranking) and the efficiency (time and required
memory) of the systems. This evaluation has shed light on the
scalability problems that affect all the systems tested and on
the query execution time, which grows with the number of
keywords considered.

Most virtual document-based systems work for RDB and
need to be revised to work with data graphs [24]. RDF graphs
are very different from the graphs inferred from RDB. RDF
nodes and edges are IRIs or literals, usually containing few
keywords, while a node in an RDB graph may contain the
text derived from the DB metadata and tuples. Hence, RDB
graphs enable the creation of longer textual documents than
those generated from RDF graphs. Moreover, the edges of
RDB graphs are not labeled as in RDF, where they play a
central role in searching.

Only a few search systems work on RDF graphs, or that
can be easily adapted to work with them. The most relevant
one is [14] – i.e., theMarkov Random Fields-Keyword Search
(MRF-KS) system – which leveraged on the ‘‘virtual docu-
ments’’ approach in searching data graphs. It also obtained
the best effectiveness and efficiency performances against
the state-of-the-art systems tested on the shared relational
benchmark proposed by [7]. This approach leverages on
the graph structure inferred from a relational database and
adopts advanced IR techniques to index and rank. We use
this system as a competing baseline for comparison with our
systems. Since the MRF-KS system was originally designed
for RDB, we adapted it to work with RDF, as described in
Section V-B.

The Structured Language Model (SLM) system [13] is
among the few native RDF search systems. It starts the
searching process from the triples that match at least one of
the query keywords and then produces answers by seeking
connected components in the graph. SLM is based on virtual
documents and employs IRmodels (statistical language mod-
els) for retrieval. SLM returns a ranking of RDF subgraphs to
the user and not virtual text documents as in [9], [10].

SUMM [15] is a native RDF search system. The core idea
behind this system is to produce a first partition of the whole
graph through a BFS-based greedy algorithm. The partitions
are edge-disjointed but are connected one to the other through
nodes called portal nodes. Once given the keyword query,
a backtracking algorithm similar to BANKS [27] is deployed

to find connected subgraphs containing all the keywords.
On these subgraphs, a different backtracking algorithm sim-
ilar to BLINKS [10] is used to produce tree-shaped answer
graphs whose leaves are nodes containing one keyword each.
The systems use indexes and particular stopping conditions
to speed-up the execution.

Virtual document-based systems have the potential to scale
more than schema- and graph-based systems, but they are
often limited by the graph exploration strategies they employ
that do not scale effectively when the database size increases.
In this paper, we discuss the limitations of current keyword
search systems over RDF and analyze why they cannot scale
to real-world datasets.

III. PRELIMINARIES
In this section, we present some basics on RDF, SPARQL
and keyword search. For a more detailed description on
RDF-related concepts, refer to [32]–[34].

The Resource Description Framework (RDF) is a family of
specifications developed and supported by the W3C4 to rep-
resent information on the Web. In particular, RDF is mainly
used to publish and interlink data on the Web, allowing a
definition of statement about any kind of resource. RDF
statements have a <subject, predicate, object>
triple-based structure. In a triple, subject and object are
resources, whereas the predicate is a string defining the
type of relationship.

RDF resources are classified into IRIs(Internationalized
Resource Identifier), literals and blank nodes. An IRI5 is
a string used to uniquely identify a resource on the Web
(it is a generalization of URIs which can also contain
UNICODE characters). In the RDF syntax, an IRI can either
be a subject, an object or a predicate. A literal is a
basic value associated with a data type, e.g. string, boolean,
integer, and date.When a data type is not specified, the default
is ‘‘string’’. Literals can only beobjects of a triple. A blank
node is a resource without a global identifier. A blank node
can be a subject or an object of a triple.
Definition 1: Let I , B and L be three pairwise disjoint

sets of IRIs, blank nodes and literals, respectively. We define
(s, p, o) ∈ (I∪B)×I×(I∪B∪L) to be anRDF triple. An RDF
dataset G = {I ,B,L} is defined as a set of RDF triples.

We can represent an RDF dataset as an edge-labeled
directed graph where the subjects and objects are the nodes,
and the edges are the predicates; the direction of the edges is
always from the subject to the object. Hence, an RDF dataset
can also be called RDF graph.

SPARQL6 is a structured language for querying RDF
datasets that allows the retrieval and processing of triples.
Definition 2: Let V be a set of query variables, disjoint

from I ,B and L, and (I ∪B∪V) × (I ∪V) × (I ∪B∪L ∪V)
be the set of triple patterns. We define a SPARQL query to be

4https://www.w3.org/TR/rdf11-primer
5https://tools.ietf.org/html/rfc3987
6https://www.w3.org/TR/sparql11-overview

14092 VOLUME 8, 2020

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

FIGURE 1. A sample RDF graphs derived from LinkedMDB.

a tuple of the form:

(query-type, pattern P, solution-modifier).

The pattern P contains the triple patterns that have to be
matched onto the RDF data. It is the syntactic part of a
SPARQL query because it searches for specific subgraphs in
the input RDF dataset. Its result is a (multi-)set of mappings
(M) that match the pattern to the data. The actual output of
a query is determined by the query-type that is one of four
types: (i) select that returns projections of mappings from
M ; (ii) construct that returns a new set of triples based on
the mapping inM ; (iii) ask that returns true if the pattern P
is matched in the input dataset or false otherwise; and, (iv)
describe that returns a set of triples that represent the IRIs
and blank nodes found in M . Finally, the solution-modifier
allows aggregation, grouping, sorting and duplicate removal.
Definition 3: The SPARQL queries that have in their pat-

tern P only triple patterns and contain only the AND oper-
ator (in SPARQL written with a dot) are called conjunctive
queries. They are generated by the following grammar:

P ::= tp | P1 AND P2

where tp is a triple pattern.
A SPARQL conjunctive query presents a pattern P com-

posed of triple patterns each connected to create an RDF
graph. This graph is then matched against the data to retrieve
the triple sets satisfying structure and content of the pattern.

In subsequent parts of this paper, we only consider
SPARQL conjunctive queries with construct as query
type. The query returns as answer a subgraph taken from
the dataset which results from the matching pattern P to the
dataset structure. This graph is called answer graph. One
example of query that we used can be found in Example 1.

Keyword search is the foremost approach for information
search which is being studied extensively in the IR field [35].
Retrieving information from documents is intrinsically dif-
ferent from querying databases, which are typically accessed

through structured queries. A key difference is that the result
set of a keyword search system is not ‘‘exact’’. In fact,
the system performs queries, knowing that they may not
precisely correspond to the user’s information need. It must
also disambiguate search terms and rank the results of the
search considering the relevance for the user [31]. A typical
keyword-based search process starts by considering the user’s
information needs. From this point, a query composed by one
or more keywords is derived and submitted to a search system
which returns a list of results (e.g., documents for unstruc-
tured search, tuples for relational DBs or set of triples for RDF
datasets) ranked accordingly to their estimated relevance for
the user. The ordered list of results returned is what we call
ranking.

IV. RUNNING EXAMPLE
Let us consider a simple RDF graph (Figure 1) derived from
the LinkedMDB dataset.7 The main classes of entities are
film (F), director (D), actor (A), profession (P) and genre (G).
In a real RDF graphs the entities belonging to these classes are
identified by their IRI or by atype predicate. In the example,
these entities are identified by a simple synthetic IRI, like
A1 for the actor ‘‘Samuel L. Jackson’’ or D2 for the director
‘‘Robert Rodriguez.’’ A directed and labeled edge connects
each pair of nodes.
Example 1: Given the RDF graph in Figure 1, a possible

information need is: The title of the films directed by Quentin
Tarantino. A conjunctive SPARQL query Qs, producing the
RDF graph of the exact answer shown in Figure 2, is:
CONSTRUCT
WHERE {
?director_iri <name> <‘‘Quentin Tarantino’’>.
?director_id <directed> ?film_iri.
?film_id <name> ?film_name. };

The pattern of the query matches five triples, identifying
the director ‘‘Quentin Tarantino" with its IRI D1 and the

7http://www.linkedmdb.org

VOLUME 8, 2020 14093

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

FIGURE 2. Exact answer to the SPARQL query reported in Example 1.

two films (F1 and F3). All the triples in the answer graph
are relevant to the user, and there are no noisy (i.e., not-
relevant) triples. Note that the query uses the construct
type because we want the answers of the system to be graphs.

As we can see, writing a SPARQL query is not straight-
forward: it requires knowing the syntax of the language,
the structure of the dataset, and also the IRIs used inside
the graphs to correctly formulate the pattern P. On the other
hand, to query this graph with a keyword search system is
straightforward, but the system needs to: (i) match the query
keywords to the entities of the knowledge base; (ii) generate
the connected subgraphs that include the matching entities by
browsing the graph and also adding triples to the answer that
do not necessarily match any keyword; and (iii) rank them by
relevance to the user information need [4].
Example 2: Let us consider the SPARQL query Qs in

Example 1, that we can reformulate as a keyword query Qk ,
such as: ‘‘Films directed by Quentin Tarantino.’’ The ‘‘exact’’
answer graph for this query is shown in Figure 2.

Nevertheless, keyword search systems work under the best
match assumption and return a ranking of candidate answers.
Hence, a possible output from a hypothetical system is shown
in Figure 3, where there is a ranking of three answer graphs
ordered by relevance to the query: A, B and C. We can see that
no answer matches the exact one in Figure 2. In particular,
the answer graph A contains all of the required triples, but
it adds two additional triples (<D1, profession, P2>
and <D1, year, 1994>) that are not strictly relevant and
can thus be labeled as noise. The answer graph B is only
partially relevant, given that it contains only a subset of the
exact answer. Moreover, the triples in B are also returned
by A. This means that a user, looking at this ranking, will
find no additional relevant data in B compared to A. In this
case, we say that B is not essential since it contains redundant
triples.

The answer graph C is not relevant since it is about a
film directed by ‘‘Robert Rodriguez’’ and not by ‘‘Quentin
Tarantino.’’ In this case, the system returned this answer
because the subgraphmatches all the query keywords, and the
system could not differentiate the actor ‘‘Quentin Tarantino’’
from the director.

V. BASELINE KEYWORD-BASED SEARCH SYSTEMS
Keyword search systems based on the virtual documents
approach take an RDF graph G and a user keyword query
Qk as input. They produce a set of textual documents DG,
combining the strings extracted from IRIs and literals. They
then apply a retrieval model onDG, returning a set of answer
documents. They transform them into answer graphs, rank

them according to their relevance to Qk and return the final
ranking to the user.

We define a general framework for virtual document-based
keyword search system composed of four main modules,
as shown in Figure 4:

1) Subgraph Extraction Module: creates a set of sub-
graphs fromG using a custom graph extracting function
that may exploit some heuristics (e.g., keyword match-
ing, topic modeling, clustering).

2) Data Extraction Module: extracts support data from G
such as the textual content of the nodes, their in-degree
and out-degree, and the structure of nodes neighbor-
hood.

3) Document Creation Module: creates the textual (vir-
tual) documents by using the RDF subgraphs and the
support data. Generally, a unique text document is cre-
ated from a single RDF subgraph by linking the strings
stripped from their IRIs and literals.

4) Matching and Ranking Module: retrieves the virtual
documents relevant to the query, transforms them back
into RDF graphs, merges/prunes/separates the graphs,
and returns the ranking of answer graphs to the user.

The main differences between the proposed keyword
search system and those in the literature are centered on all
of the modules depicted in Figure 4 except the document
creation module, which stays the same for all the keyword
search systems we considered.

Another critical aspect differentiating keyword search sys-
tems, one from the other, is when they take into account
the user query. Figure 4 illustrates the way a user query can
be used starting from the subgraph extraction, the document
creation, or the matching and ranking module. The use of
the query determines when the on-line phase begins – the
response time perceived by the user – and when the off-line
phase ends. SLM performs most of the work on-line, while
MRF-KS and SUMMbalance the two phases. In the next sec-
tions, we describe the baseline systems functioning according
to the presented framework in order to ease their comparison.

A. SLM
SLM is a native RDF keyword search system based on vir-
tual documents proposed in [13]. The example presented
in Figure 5 describes the functioning of SLM.
The SLM on-line phase consists in the creation of one

virtual document per triple in the graph G and in the indexing
of these documents. Thus it is generally completed in a short
time.

The SLM on-line phase takes as input the index of the
triples virtual documents and a keyword query Qk . It then
creates a single RDF subgraph called ‘‘Query Graph’’ E com-
posed of all of the triples in G, matching at least one keyword
inQk . Without loss of generality, let us considerQk =‘‘Films
directed by Quentin Tarantino’’. Given the graph G shown
in Figure 1, the matching words are ‘‘directed’’ and ‘‘Quentin
Tarantino.’’

14094 VOLUME 8, 2020

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

FIGURE 3. Ranking of answer graphs generated starting from the keyword query Films directed by Quentin Tarantino. The words matching the query
keywords are circled in red.

FIGURE 4. Overview of a general keyword search system based on the ‘‘virtual documents’’ approach.

FIGURE 5. Example of how the SLM system works, based on the RDF graph shown in Figure 1.

The ‘‘subgraphs extraction’’ module extracts from G all
the triples containing at least one of the query words. In our
example, E is composed of three disconnected components,
as shown in Figure 5.

Given the query graph E , the ‘‘subgraphs extraction’’
module builds the answer graphs that will be ranked by the
ranking function. These subgraphs need to satisfy the fol-
lowing two properties: (i) uniqueness and maximality: every

subgraph retrieved should not be a subset of any other sub-
graph retrieved; (ii) diversity: the subgraphs should contain
triples matching different sets of keywords – that is, if two
triples match the same set of keywords, they must be part of
two different answers. Finally, one text document is derived
from each one of the answer subgraphs.

Text documents are used as proxies to determine the sim-
ilarity between the answer subgraphs and the query. The

VOLUME 8, 2020 14095

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

FIGURE 6. Example of how the MRF-KS system works, based on the RDF graph shown in Figure 1.

document-query similarity is determined using a ranking
function based on a language model (LM). An LM ranks
the documents using the query likelihood or the probability
of generating the query Qk given a document D. In this
case, the system cannot use a standard LM since it would
merely consider the frequency of the words within a text
document. Hence, the graph structure to solve possible ambi-
guities present in the document must also be considered,
since the probability of a term belonging to a triple does
not only depend on the nodes, but also on the predicate
connecting them. In our example, G2 and G3 are ranked
before G1 because they both contain the predicates ‘‘name’’
and ‘‘directed’’. This is considered shared evidence that G2
andG3 are about a director name, and not about an actor name
as was the case for G1.

The RDF-based LM defined for SLM considers the fre-
quency of a predicate within a graph along with the subjects
and objects that it usually connects. Thus, SLM weights the
similarity of a graph with the query by considering both text
and graph-based syntactical properties.

B. MRF-KS
MRF-KS was introduced in [14] to perform keyword search
on data graphs. It was tested on the shared evaluation col-
lection reported in [12] and achieved the best performances
amongst all the state-of-the-art systems for keyword search
on RDB.

We use the example shown in Figure 6 to describe the way
it works. Given a node v ∈ G, we call the support graph of v
the graph composed of the nodes connected to v by a pathwith

length τ ∈ N+, where τ is a tunable parameter of the system.
The aim of the MRF-KS off-line phase is to extract a set of
support graphs, one for each node in RDF dataset G, and their
corresponding virtual documents (graphs G1, G2 and G3 in
the Figure). In this phase, the system also retrieves the nodes’
degree, their text content, and the neighborhood.

In Figure 6, we show only three of the support graphs cre-
ated from the sample graph shown in Figure 1. In particular,
the support graph G1 is created starting from node A3, G2
from node D2, and G3 from node D1, with τ = 1.

The ‘‘subgraphs extraction module’’ takes the support
graphs, the associated text documents, and the user query as
inputs. Then, it selects the support graphs containing all the
keywords and prunes them by keeping only the nodes within
the paths between the root node v and a terminal node con-
taining at least a query keyword. Hence, the answer graphs
produced by MRF-KS are trees. In our example, the answer
graphs GA1, GA2, GA3 are generated from G1, G2 and G3,
respectively, following this strategy.

To rank the candidate answer graphs, MRF-KS employs a
Markov random field model [36]. Built from a given graph,
this model considers the nodes as random variables, while it
uses the edges to define the independence semantics between
them. It enables the incorporation of arbitrary text features
as evidence. In particular, it considers the occurrences of
unigrams (single words) and unordered bigrams (word pairs).
It also incorporates a query-independent feature, i.e., the prior
of an answer graph. This prior is computed from the multi-
plication of factors. Each factor is the ratio between the node
degree and the sum of the nodes’ degrees in the parent node

14096 VOLUME 8, 2020

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

FIGURE 7. Functioning of the SUMM system based on the RDF graph shown in Figure 1 with keyword query ‘‘Films directed Quentin
Tarantino’’.

neighborhood. In this sense, the prior considers the structure
of the answer graph. In particular, the prior function gives
higher scores to smaller trees awarding precision over recall.

In our example, the graphs GA3 is ranked at the top thanks
to the presence of more query keywords (both grouped as
unigrams and unordered bigrams) within shorter paths from
the root.

C. SUMM
SUMM is a native RDF search system presented in [15]
which scales over large RDF datasets. An example of its
functioning is shown in Figure 7.
Given a keyword search query q = {w1, . . . ,wm} against

an RDF dataset G = {V , E}, a candidate answer to the query
is a tree T induced by the set of vertices t = {r, l1, . . . , lm} ∈
V , where r is the root of the tree and a node li is a leaf of
the tree. The set t is called qualified candidate to the query.
A qualified candidate has to satisfy these properties: (i) the
root answer node r is reachable by li ∀i ∈ [1,m]; and (ii) the
vertex li contains the keyword wi (i ∈ [1,m]). In our imple-
mentation one leaf node can contain one or more keywords.
One qualified candidate can generate, through different paths,
one or more candidate answers.

Let C(q) be the set of all the qualified answers for a query
q. The answer to q is given by: A(q) = argminT∈C(q) s(T),
where s(T) =

∑
li∈T ,i =1,...,m d(r, vi) and d(r, vi) is the

distance between the root r and a leaf node vi in the tree T .
That is, the answer of a keyword query is the candidate answer

tree of minimum weight, where the weight is computed by
the sum of distances between the root and the leaves. A top-k
version of this problem is about the retrieval of the top-k
candidate from C(q), that is, the first k answer trees with
minimum weight.

An IRI node is considered together with all the literals
surrounding it and the object nodes connected through the
type predicate: this forms what we call a ‘‘meta-node’’.

During the off-line phase (phase 1, Figure 7), the algo-
rithm divides the graph in an edge-disjointed partition using
a BFS-based (Breadth First Search) algorithm. The nodes
that belong to two or more partitions are called portal nodes.
An index of the words in every node in the partitions is kept,
together with an index of the partitions keeping track of the
portal nodes connecting the different subgraphs. This index is
used later in the on-line phase to navigate from one partition
to the other.

In the first part of the on-line phase (phase 2, Figure 7),
the algorithm seeks all the partitions containing at least one
query keyword. All these partitions are the starting point
of a backtracking algorithm that aims to find a subgraph
composed of partitions containing all the keywords. In this
backtracking, the portal nodes are the gateways from one
partition to the other. The aim is to find groups of partitions
connected among them, which contain all the keywords.
Together, the partitions form a connected subgraph ofG. Once
one such subgraph is found, another backward algorithm,
inspired to BLINKS [10], is applied in order to build a

VOLUME 8, 2020 14097

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

candidate answer. In Phase 3 of Figure 7, we see how key-
words contained in the subgraphs are used to build an answer
tree (nodes F1 and G1 are portal nodes).

A stopping condition is used with the help of different
data structures (a list of min heaps) to stop the execution
without exploring all the space of possible answers. When
the estimated weight of the tree (which still needs to contain
all of the keywords) with the minimum weight is bigger than
the weight of the k-th tree in the ranking produced so far,
the stopping condition is met since new trees will always have
bigger weight and will not end up in the top-k positions.

In the end, the algorithm produces k (or less) candidate
weighted answer trees. The ranking function of SUMM sim-
ply orders the trees in ascending order of weight (phase 4,
Figure 7), where the weight is computed summing the lengths
of all the paths in the tree.

SUMM scales over big databases thanks to the design
of its off-line phase, which is in part based on the virtual
document strategy. Moreover, the use of a first backward
phase over the partitions instead of over the single nodes
resolves the limitations of previous algorithms, e.g. BANKS
and BLINKS, where the backtracking strategy was instead
applied directly to every node.

Note that since SUMM provides a definition of what an
exact answer is, the analysis of the algorithm presented in [15]
only covers the efficiency aspect of the system. SUMM,
however, has some drawbacks for the end-users. In particular,
since the system takes into consideration the top-k qualified
candidate trees, these trees often differ in only one branch
that leads to a different node containing the same keyword.
Hence, the ranking often contains redundant trees, with many
overlapping triples. Moreover, these trees also have the same
score, which results in a non-discriminating ranking. This is
often the case with query keywords used in a dataset like
’actor’ or ’director’ for a database like LinkedMDB.

We re-implemented SUMM in order to have a new
benchmark to perform keyword search system over bigger
databases. We did not focus on efficiency-oriented aspects of
the algorithm (e.g. the homomorphism among graphs used
exploited to meet earlier the stopping condition), so our algo-
rithm may be slightly slower in the on-line phase. However,
the graphs building procedure is the same, hence the results
in terms of effectiveness are the same as the original version
of SUMM.

VI. TSA+VDP: DESCRIPTION AND FUNCTIONING
In this section, we describe the keyword search system we
propose. This section expands and better describes the ideas
already presented in [37] and [38].

A. OFF-LINE-PHASE - TSA
TSA (Topological Semantical Aggregator) is a virtual
document-based approach that works off-line to build doc-
uments by aggregating RDF triples containing close con-
cepts. TSA mimics the ‘‘clustering hypothesis’’ defined
in IR, which dictates that triples characterized by similar

Algorithm 1 TSA
Input : RDF dataset G, source set S, terminal set T ,

list L, integer radius τ
Output: list sbgr of representative subgraphs

1 sbgr ← ∅
2 Q← ∅
3 foreach s ∈ S do
4 if s.color = white then
5 Q.enqueue(s)
6 s.τ ← τ

7 G← new Graph()
8 while Q 6= ∅ do
9 v← Q.dequeue()
10 v.color ← black
11 radius← v.τ − 1
12 foreach u ∈ N−(s) do
13 if u /∈ S ∧ u /∈ T then

// Accessory node
14 G.addTriple((s, u))

15 if u ∈ T then
// terminal node

16 G.addTriple((s, u))
17 foreach w ∈ N−(u) do
18 if

w.isLiteral()∨ (w /∈ S∧w /∈ U)
then

19 G.addTriple((u,w))

20 if (p(s, u) ∈ L) ∧ (radius >
0) ∧ (u.color 6= black) then

21 if u ∈ S ∧ u /∈ T then
22 u.τ ← radius
23 Q.enqueue(u)
24 G.addTriple((v, u))

25 sbgr .add(G)

26 return sbgr

concepts will cluster together. This concept is realized by
the ‘‘subgraphs extraction module’’, which takes an RDF
graph as input and creates subgraphs without considering
the user query. It builds a subgraph around a single ‘‘topic’’
which characterizes the graph semantics. Within the scope
of our example, a topic may be a film, an actor, or a
director.
Definition 4: Let G be an RDF graph where v ∈ G is a

node, δ−(v) be the out-degree of v, δ+(v) its in-degree, and
λin, λout ∈ N be two threshold values. Then, all the nodes
v ∈ G | δ−(v) ≥ λout are called source nodes and all the
nodes v ∈ G | δ+(v) ≥ λin are called terminal nodes. The
nodes that are neither source nor terminal nodes are called
accessory nodes. We call out-neighbourhood of v ∈ G, the set
N−(v) of the nodes at distance one from v.

14098 VOLUME 8, 2020

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

Algorithm 1 reports the pseudocode of TSA detailing the
critical aspects of the algorithm in building the topic sub-
graphs. TSA takes an RDF graph G, the sets of source and
terminal nodes in G (i.e., S, T), a custom parameter τ ∈
N+ defining the subgraphs radius, a list L containing all
the predicates in G with a frequency higher than a given
threshold (ignoring rare predicates in the database) as inputs.
The output of TSA is a list of RDF subgraphs.

TSA iterates over the source nodes such that every node
s ∈ S becomes the starting point to create a subgraph using
a BFS-like strategy. Given a source node s (extrapolated at
random from S), TSA includes in the corresponding graph
all the literals connected to s and all the neighboring terminal
nodes along with their connected literals. Then the algorithm
traverses all the edges to other source nodes. In particular,
only the edges labeled with predicates that are contained in
the list L are traversed. The exploration does not go beyond
a certain radius τ user-defined, which controls the dimension
of the subgraphs. Once the subgraph of s has been created
(i.e., there are no more nodes satisfying the conditions), TSA
colors s and all the other visited source nodes in black,
meaning that they cannot be visited anymore, it then proceeds
to build a new subgraph starting from the next non-black node
in S. TSA stops when it has visited all the nodes in S. The
resulting subgraphs are called representative graphs and the
set containing them is called the representative collection of
G.
Example 3: Figure 8 shows an overview of TSA (left part)

working on the running example.We set the following param-
eters: λin = 1, λout = 4, τ = 1. With these parameters,
the source nodes are: F1, F3, A1, D1.

The representative graph G1 is then created starting from
the node F3, the first one extracted from the set S, and then
collecting its literals and terminal neighbours. Since there are
no more source nodes at one hop from F3, TSA stops there
and F3 is coloured in black. G2 is created starting from D1
and including its literal node ‘‘Quentin Tarantino’’ and the
terminal node P2. F3 is a source node (already in G1), but
since λin = 1, here it is considered as a terminal node and thus
added to the graph. Then, within the radius of 1, TSA finds
the source nodeF1 and adds it toG2 alongwith its literals and
terminal nodes. G3 is created with the same procedure. After
it, there are no more source nodes left in the input graph with
an out-degree greater or equal to λout = 4 and TSA ends.

The choice of the parameters λin, λout and τ affect the
output representative collection. A big τ leads to big sub-
graphs because more source nodes will be inserted in the
same subgraph. As a consequence, there will be fewer graphs
in the representative collection. A big λout implies fewer
source nodes, hence fewer subgraphs. A big λin leads to fewer
terminal nodes to be added to the subgraphs and, therefore,
to smaller graphs.

The on-line phase (right part of Figure 8) starts after the
creation of the representative collection when the user query
is taken into account. The on-line phase is composed of
four steps. In step 1, we create an initial ranking of the

virtual documents derived from the representative graphs by
matching query keywords with the terms in the documents
and determining the query-document similarity using the
BM25 function. BM25 is one of the most effective probabilis-
tic weighting schema used in IR. It is largely used for news
retrieval and Web search.

Note that the first ranking may contain thousands of doc-
uments, especially if the input RDF graph is big, but we
generally consider only the top part of the ranking, inside
a certain threshold (usually equal to 10000). In this way,
we use BM25 to retrieve the most promising (i.e., relevant)
documents for a given query swiftly. This step is pivotal to
lower the running time of the on-line phase because it allows
the system to focus only on a small and promising set of
candidate answers: the ones contained in the first ranking.
From the selected documents, the system fetches the corre-
sponding representative graphs and then processes them with
amerging function (step 2), that seeks for overlapping triples.
The merging function considers two subgraphs G1 and G2 as
sets of triples. If the value |G1 ∩ G2| is greater than a certain
threshold percentage h (e.g. h =30%), the two graphs are
merged in a single one via set-based union.
Example 4: In Figure 8 we see that the cardinality of the

intersection between G1 and G2 is of four triples. G2 is the
smaller graph, with 6 triples in total. So 2

3 of its triples are
overlapping. These graphs are merged by the system into
G1+G2.

The merging algorithm proceeds as follows: it starts from
the first graph of the ranking and considers the first l next
graphs of the first ranking. The first graph is compared with
the second. If the percentage of overlap is higher than h,
then the algorithm merges the two graphs and removes them
from the first ranking. With the new produced merged graph,
the algorithm proceeds to the following graph in the ranking.
This process is iterated for all the first l graphs of the ranking.
Once this first iteration ends, the merged graphs are added to
a new collection of Merged Graphs. The next iteration starts
with the first graph, which was not merged to any other, until
all the elements of the first ranking are considered or until the
list of newly merged graphs reaches the dimension of 1000.

B. ON-LINE PHASE
Once the merged graphs collection is produced, we create the
collection of virtual documents associated with these merged
graphs. Then, we perform a second ranking using BM25 on
these documents. We return the user the list of subgraphs in
the ranking order produced by the BM25 function. We call
this pipeline TSA+BM25, and it is composed by the TSA
off-line phase and the on-line phase. The latter is composed
of the merging function, followed by the ranking through
BM25. This pipeline is quite fast in its on-line execution since
it never requires to explore the graphs, but only relies on
the algorithms of extraction of virtual documents and on the
BM25 function.

The second pipeline is called Virtual Document
Pruning (VDP). It starts after the completion of the

VOLUME 8, 2020 14099

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

FIGURE 8. Functioning of the TSA+VDP system based on the RDF graph shown in Figure 1.

TSA+BM25 pipeline. Given the merged graphs collec-
tion and the order provided by BM25 at the end of the
TSA+BM25 pipeline, VDP considers the first n graphs of
this ranking. These first n graphs are then considered together
in a unique graph. The result of their set-based union is called
query graph E . This graph is not necessarily connected. The
parameter n allows a trade-off between effectiveness and
efficiency in the ranking function. A big n leads to a bigger
query graph E , which increases the probability of finding
useful information at the expense of a longer running time.

VDP then starts a BFS from every subject node inside the
query graph E . This BFS is limited to a radius τ and produces
subgraphs. Of these subgraphs, only the ones containing all
the keywords are kept, producing a new collection, called
the best candidates collection. As these candidates are built
from the query graph E and contain all the keywords, it is
probable that they also contain a high number of relevant
triples. Since the BFS exploration could have introduced
many non-relevant triples, the next step is a pruning algorithm
over these candidate graphs. The pruning proceeds inward,
removing all the triples that do not contain at least one key-
word, starting from the nodes with the highest distance from
the source node.
Example 5: Figure 9 shows an example of how the pruning

algorithm operates. It returns a smaller graph where triples
not containing a keyword are removed. Keywords are high-
lighted in red. The numbers indicate the order in which the
triples are removed from the graph, starting from the nodes
with the highest radius from the source node where the BFS
algorithm started (D1). The algorithm starts from a node and

proceeds inward until the source node is reached or a triple
containing at least one keyword is found. A triple, which is
a component of a path from the root to a keyword, is not
removed.

Step 4 of VDP produces the final ranking returned to
the user. VDP employs the Markov Random Field mod-
ule adapted from the one used in MRF-KS, described in
Section V-B. Here, we consider unigrams and bigrams within
the graph and the distance of the words from the root, but,
differently from MRF-KS, we do not employ any prior, and
we do not consider fields for the nodes. The score given to
a subgraph g provided a query Q is given by the following
Markov Random Field-based formula, derived from [14]:

score(g,Q) =
∑
qi∈Q

fU (qi, g)+
∑

{qi,qi+1}∈Q

fB(qi, qi+1, g)

where fU and fB are the functions for unigrams and
unordered bigrams, respectively. For the unigrams, the func-
tion becomes:

fU (qi, g) = ln[(1− αU)P(qi|g∗)+ αUP(qi|C)]

where g∗ is the virtual document obtained from the graph g
andC is the collection of virtual documents obtained from the
graphs of the representative collection. αU is the Dirichlet’s
Smoothing factor, computed as µ

µ+|g∗| , where µ is the aver-
age length of the virtual documents from the representative
collection.

14100 VOLUME 8, 2020

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

FIGURE 9. Example of the VDP pruning function. The numbers on the predicates
indicate the order in which the algorithm removes the triples.

By using the Maximum Likelihood Estimation, the first
and second probabilities become:

P(qi|g∗) =
wtf (qi, g∗)∑
d∈C wtf (qi, d∗)

P(qi|C) =

∑
u∈C tf (qi, u

∗)∑
u∈C,w∈u∗ tf (w, u∗)

where wtf is a weighted term frequency that keeps into
consideration not only the frequency of the term in the virtual
document but also the position of the node where the word
is contained in the graph. In turn, tf (qi, g∗) is the term fre-
quency of the word qi in the virtual document g∗. The wtf is
based on the term frequency combined with a discount factor
(a Gaussian kernel) considering the node position from the
graph center. It is computed as follows:

wtf (qi, g∗) =
∑
v∈g

e
−(ws(g∗,v)−ws(g∗,sg))

2σ2 tf (qi, v∗)

where g is a graph, g∗ is its virtual document, v is a node
in g, v∗ its associated document; sg is a node in g which is
considered the center of the graph (e.g. the starting node in
the BFS exploration that created the graph); σ is a parameter
that controls the spread of the kernel. Here σ = 1. The sum is
over all the nodes v in g. The value ws(g∗, v) is called relative
static weight of the node v in g∗, and is the minimum weight
over all paths from sg to v in g, that is:

ws(g∗, v) = minpsg→v∈gws(psg→v)

The value ws(psg→v) is called static weight of the path
psg→v from sg to v. This weight is computed as follows:

ws(psg→v) =
∑
e∈p

wes(e)+
∑
x∈p

wns(x)

Here wes(e) is the static weight of the edge e, and is usually
set to 1, while wns(x) is the static weight of the node x,
determined as:

wns(x) =
1

ln(e+ δ−(u))

The bigram potential function is computed in a similar way.

Once all the nodes of the query graph E have been
explored, the returned candidate answers are ranked using
score(g,Q) defined above and returned to the user.

VII. EVALUATION METHODOLOGY
The effectiveness and efficiency of keyword search systems
need to be assessed. Effectiveness concerns the quality of the
rankings returned to the user, whereas efficiency is about the
off-line time required to index the dataset, the on-line time
to execute a query and to return the final ranking to the user,
the disk space occupied by the support data structures and the
central memory required to answer a query.

The effectiveness of a keyword search system is usu-
ally evaluated using the Cranfield framework. The Cranfield
framework adopts shared experimental collections expressed
as a triple C = {D,T ,GT } composed of a dataset D, a set of
topics T , which simulate actual user information needs, and
the ground truths GT , i.e. a kind of ‘‘correct’’ answers, where,
for each topic, the relevant data are determined.

There are some critical differences between standard text
retrieval and document-based approaches to keyword search
over structured data. First of all, in standard text retrieval,
the collection D of documents is fixed, and it is the same for
all systems. In the document-based approach over structured
data, the documents are created dynamically with different
strategies. Hence, we cannot assess the relevance of a docu-
ment to a query in advance aswe do for standard text retrieval.
We can, however, assess the relevance of a given answer
only when the system returns it. An immediate consequence
of this implies that, while within the Cranfield framework
the ground truth GT is usually manually built by human
assessors that establish whether a document is relevant for
a given topic, in keyword search over structured data this is
not possible since the documents to be judged are created
on the fly and vary with the query and the search system
employed.

We, therefore, need to find a way to automatically build
a reliable GT that enables an assessment of whether a
dynamically produced document is relevant or not after its
generation.

VOLUME 8, 2020 14101

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

As a consequence, a keyword query can be rewritten as a
SPARQL query by a domain and RDF expert. A SPARQL
query returns the ‘‘exact’’ answer to a topic, and this answer
can be identified as a ‘‘ground truth’’ for the given topic. So
a SPARQL query Qtk associated to a given topic tk ∈ T ,
returns the ‘‘perfect answer graph’’ – i.e. the ground truth
graph Gtk – to the topic. We deem as ‘‘relevant’’ to the topic
tk all the triples in the answer graph Gtk . Conversely, all the
triples outside Gtk are deemed as ‘‘not-relevant’’.
Definition 5: Let Qk be a keyword query derived from the

topic tk ∈ T and submitted to a keyword search system and
let Gtk be the ground truth graph of tk . We define the ranking
returned by the system as Rk = [ap1, ap2, . . . , apn], where
api = (Gi, simi) ∈ Rk , i ∈ [1, n] is called answer pair s.t. Gi
is the RDF answer graph at rank i and simi ∈ R is a degree
indicating the similarity of Gi to Gtk .

For every couple of answer pairs < api, apj > in Rk s.t.
i < j, it holds that simi ≥ simj.
Hence, a sound keyword search system should return a

ranking that is: (i) top-heavy: the answer graphs ranked at top
ranks contain more relevant triples than noisy triples; and, (ii)
essential: the answer graphs ranked at the bottom should not
contain any triples (relevant or not relevant) already returned
by the graphs ranked at the top (i.e., redundant triples spoil
the ranking quality).

First of all, it is necessary to establish when a graph is
relevant. One possibility is to consider the number of relevant
and non-relevant triples inside it.
Definition 6: Given a topic tk ∈ T , a ranking Rk and the

ground truth graph Gtk , we define the Signal-to-Noise Ratio
(SNR) of Gi ∈ Rk as

SNR(Gi) =
|(Gi ∩ Gtk) \ S|

|Gi|
where S is the union set of all the relevant triples in
Gj ∈ Rk ,∀j ∈ [1, i[.
The SNR of a graphGi rewards precise and essential graphs

as it decreases whenever the graph contains non-relevant
triples. The SNR proxies a sort of precision since the numer-
ator is equal to the number of relevant triples found for the
first time in the ranking, while the denominator is the total
number of triples of the graph. We can say that a graph is
relevant to the information need of a user when its SNR is
bigger or equal to a threshold value of λ ∈ [0, 1].We call λ the
relevance parameter, which describes the quality of a graph
to be relevant. In this evaluation framework, the relevance is
not an absolute, fixed concept, but it varies based on the task
at hand. In some cases, relevance can be strictly determined
(high λ); in others, it can be more slack (low λ).

Once a graph is deemed relevant or non-relevant, we can
consider different metrics to evaluate the quality of a ranking.
This paper considers three evaluation metrics, as defined
below.
Definition 7: The recall of a ranking Rk is defined as:

recall(Rk) =
|
⋃

Gi∈Rk | SNR(Gi)≥λ(Gi ∩ Gtk)|
|Gtk |

The recall is obtained by the ratio between the total number
of relevant triples found in the relevant graphs in a ranking
and the cardinality of the GT. It describes the system’s ability
to extrapolate the relevant triples from the database to be
searched. It does not penalize relevant lower-ranked triples
and does not provide any information about the quantity of
noise that is present in the relevant answer graphs. In the
following, we always use a recall computed over the first
1000 answer graphs of the rankings produced by the systems.
In some cases when the rankings have less than 1000 graphs,
the recall will be computed over all the returned answer
graphs.
Definition 8: The precision of a ranking Rk is defined as:

precision(Rk) =
|
⋃

Gi∈Rk | SNR(Gi)≥λ(Gi ∩ Gtk)|
|
⋃

Gi∈Rk Gi|

Precision is the ratio between the total number of triples
found in the relevant graphs of a ranking and the total number
of distinct triples in the ranking. Precision also takes into
account the noise in the ranking. The higher the number of
non-relevant retrieved triples, the bigger the denominator, and
thus the smaller the precision. A good ranking yields graphs
that are well-tailored around relevant triples that are with as
few non-relevant triples as possible, and with all the relevant
triples in the top positions.

Since the denominator is the number of all of the distinct
triples contained in the ranking graphs and the numerator can
reach at max the cardinality of the GT, the values assumed by
the precision can quickly tend to 0when hundreds of elements
compose the ranking.

Precision is thus estimated at different levels of cut-off, that
is, only considering the top c elements of the ranking.
Definition 9: We define the prec@c the precision com-

puted at level of cut-off c:

prec@c(Rk) =
|
⋃

Gi∈Rk | SNR(Gi)≥λ ∧ i∈[1,c])(Gi ∩ Gtk)|
|
⋃

Gi∈Rk | i∈[1,c] Gi|

In particular, we study prec@1 and prec@5. While
prec@1 only considers the first graph of the ranking,
prec@5 considers only the top 5. These two precisions
describe the system’s ability to extrapolate relevant triples
without too much noise in the top positions. A system that
inserts too much noise, or that does not rank graphs contain-
ing relevant triples in the top positions, will determine low
values of precision.

Both of these two measures are not top-heavy. They, there-
fore, do not weight the position of the relevant triples within
the ranking.
Definition 10: We define the Graph Relevance Weight

(GRW) of Gi ∈ Rk as

GRW (Gi) =
|(Gi ∩ Gtk) \ S|
|Gtk |

where S is the union set of all the relevant triples in
Gj ∈ Rk ,∀j ∈ [1, i[.

14102 VOLUME 8, 2020

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

The GRW is a weighting function that rewards the graphs
that contain many relevant triples seen for the first time in the
ranking – i.e., GRW rewards the essentialness of a graph.

We use GRW as the central component of a new measure,
called triple-based Discounted Cumulative Gain (tb-DCG).
It awards the top-heaviness and the essentialness of a ranking
and is a variation of the DCG measure [39] widely-used in
text retrieval (especially for Web search tasks).
Definition 11: Let tk ∈ T be a topic, Rk a ranking with

length n ∈ N+, λ ∈ [0, 0.1, 0.2, . . . , 1] be a threshold value
and b ∈ N+ a logbase value. We define the Relevance Gain
(RG) of Gi ∈ Rk as

RGb(Gi) =

GRW (Gi) if i ≤ b ∧ SNR(Gi) > λ,
GRW (Gi)
logb i

if i > b ∧ SNR(Gi) > λ,

0 if SNR(Gi) ≤ λ.

The triple-based Discounted Cumulative Gain (tb-DCG) of
the ranking Rk is defined as

tb-DCGb(Rk) =
n∑
i=1

RGb(Gi)

We can see that the graphs returned to top positions (i.e. i ≤ b)
provide a full informative gain to the user (i.e. GRW (Gi)).
In turn, the gain provided by the graphs down in the ranking
is discounted by a factor growing with the position rank (i.e.
logb i). The logbase b models the probability that a user will
consult (or click) an answer graph returned at a given position
i; the higher the i rank of a graph, the lower the probability
a user will consult the graph and thus the lower the overall
usefulness of the search system. tb-DCG is within the [0, 1]
interval, where 0 indicates a system returning no relevant
triple to the user and 1 indicates a system returning the ground
truth graph within the first b positions of the ranking.
Example 6: With reference to query Q of Example 1. Its

ground truth is the graph G in Figure 2. As we can see,
|G| = 5.

Now consider Figure 10.We see the ground truth graphGT
and three graphs ranked by a system in this order: GA1, GA2,
GA3.We consider λ = 0.7 and b = 2.GA1 presents 3 relevant
triples, so its SNR is 0.75. The graph is considered relevant.
Its RG is 3

5 = 0.6. Graph GA2 yields one relevant triple (A-E)
and a second triple (A-C), in blue, which is already contained
in GA1. Thus it is not counted as relevant. GA2 presents a
SNR of 0.5, below the threshold λ. Its RG is therefore 0.
The last graph, GA3, contains two relevant triples that are not
contained in GA1. Thus its SNR is 1. Its RG is given from the
ratio 2/5

log23
≈ 0.25. The division by logarithm is the discount,

due to the third position in the ranking. This ranking has an
overall tb-dcg2 of 0.6+ 0+ 0.25 = 0.85.

If GA3 were put in the second position of the ranking, its
RG would have been 2

5 , and so the tb-DCG of the ranking
would have been 1. This means that in a best-case scenario,
that is, when all the relevant triples are covered by the first b
graphs of the ranking, the tb-DCG sums to 1, meaning that

FIGURE 10. Example of a ranking.

the ranking is optimal: it provides to users all the required
information inside the first b graphs. The value of the SNR
describes the quality of the required answers, i.e., how much
noise the user can accept inside a graph. The value of b
represents the user’s patience: the bigger b, the longer the
user is willing to look into the list for relevant triples. When
a relevant graph is placed in rank beyond the threshold b, its
relevance suffers the discount.

VIII. EXPERIMENTAL SETUP
As discussed above, [7] defines a shared test collection to
evaluate the effectiveness of search systems over relational
data based on three datasets, but there are no shared test
collections for RDF. Hence, we have created test collections
based on real and synthetic RDF datasets.

A. REAL DATABASES
As real databases, we employed LinkedMDB [40], IMDB8

(also adopted in [7]) and a subset of DBPedia as defined
in [41] for entity search.

LinkedMDB is a native RDF database of approximately
7M triples. Whereas, IMDB is a relational database that we
converted into an RDF dataset of about 116M triples.9

For LinkedMDB and IMDb, we designed 100 topics where
half were used for training and a half for testing. A topic is
composed of three fields: the title, the dsc (description)
and the SPARQL query. The title is a short string of
text which summarizes the information need with few key-
words, used as keyword query. The dsc is a detailed descrip-
tion of the information need used to characterize it better.
The SPARQL query contains the SPARQL that returns the
‘‘correct’’ answer graph to answer the information need. All
queries return an RDF graph built by using the construct
SPARQL query type.

Regarding DBPedia, we have drawn a subgraph of the
dataset following the procedure described by [41].10 Specif-
ically, the DBPedia subgraph is composed of the DBPedia
Ontology, the Ontology Infobox Types, the Titles subset,
the Short Abstract subset, and the Raw Infobox Properties
subset. The resulting RDF graph has about 70M triples. As
for the queries, we considered 50 topics from the classes
QALD2_te and QALD2_tr used by [41].11 These two

8https://datasets.imdbws.com/
9We selected a subset of the files provided in the IMDB web-

page, namely name.basics, title.basics, title.crews and
title.principals.

10https://wiki.DBPedia.org/data-set-37
11https://iai-group.github.io/DBPedia-Entity/

VOLUME 8, 2020 14103

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

TABLE 1. Name of the databases used with their dimension in (millions)
of triples and the number of queries used in our experiments.

classes of queries are in natural language form and are used
in [41] for an entity search task. Given that these topics and
their associated ground truth work for entity search tasks,
we cannot use them directly for a keyword search. We man-
ually mapped them into construct SPARQL queries and
derived the corresponding keyword queries to use them in our
evaluation framework.

B. SYNTHETIC DATABASES
Regarding the synthetic databases, we used the Lehigh Uni-
versity Benchmark (LUBM)12 [42] and the Berlin SPARQL
Benchmark (BSBM)13 [43]. LUBM is a database about uni-
versities, professors and students developed by the Lehigh
University to facilitate the evaluation of Semantic Web
Repositories in a standard and systematic way. The bench-
mark currently provides 14 SPARQL test queries.14 We took
these queries, converted them in construct versions, and
produced their equivalent keyword query, extrapolating dis-
tinct keywords from the words contained in the SPARQL
query.

BSBM is a database built on an e-commerce use case,
where different vendors with posted reviews offer a set
of products. BSBM defines three use cases with different
queries that focus on different aspects of the SPARQL query
language. We used the Explore use case,15 with 13 dif-
ferent SPARQL queries. We converted these queries into
construct SPARQL queries as we did for LUBM.

The APIs of these databases served to create versions of
datasets of different dimensions. We created two versions for
each of the two synthetic datasets of 1 and 10 millions of
triples each.

Table 1 reports information about the databases used with
their number of triples and the number of queries we used
as a test set. As we can see, the datasets can be divided into
three categories based on the magnitude of their dimensions.
We refer to these categories as 1M, 10M, and 100M.

12http://swat.cse.lehigh.edu/projects/lubm/
13http://wifo5-03.informatik.uni-mannheim.de/bizer/

berlinsparqlbenchmark/
14http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt
15http://wifo5-03.informatik.uni-mannheim.de/bizer/

berlinsparqlbenchmark/spec/ExploreUseCase/index.html

C. EXPERIMENTAL SETTINGS
All our experiments are run on a Linux/4.8.13-100.fc23.
x86_64 amd64 Intel(R) Xeon(R) CPU X5680 with 3.33GHz
Family 6Model 44 Stepping 2, GenuineIntel and 24 CPU. All
the code is written in Java. We use Blazegraph16 to manage
the RDF graphs, PostgreSQL 10.517 to manage additional
data extracted from graphs and Terrier v4.218 [44] as indexing
and retrieval methods.

Each RDF dataset is represented with a relational table in
PostgreSQL, made of three fields: subject, predicate, object.
One index is applied to the field subject for a quick explo-
ration of the graph. We preferred PostgreSQL because it
showed better performances than Blazegraph when exploring
the graphs. The Blazegraph library was used to perform the
SPARQL queries that produced the GT, to build the smaller
answer graphs in central memory, and to read/write them in
the secondary memory. Finally, Terrier is used for its state-
of-the-art implementation of BM25 and indexing methods in
different phases of our pipelines.

In general, we set a maximum off-line execution time
of 48 hours and a max on-line execution time of 1000 sec-
onds, unless otherwise specified. If the system has not con-
cluded within the time limits, we stop its execution and mark
it with a timeout exception.

For reproducibility purposes, the source code of the search
systems, the scripts to obtain the test datasets (both full
and reduced) and the code to run the experiments along
with the topics and the keyword queries, are available at the
URL: https://bitbucket.org/account/user/
keywordsearchrdfproject/projects/TSAC.

IX. EXPERIMENTAL EVALUATION
This Section is composed of three parts based on the database
size considered: small (1M), medium (10M), and big (100M)
datasets. We examine the performances of the five keyword
search systems described in Section V. We measure their
effectiveness with the measures of tb-DCG, recall, prec@1,
and prec@5 computed on average over all the queries.
To evaluate the efficiency, wemeasure the off-line and on-line
execution time and the central memory employed by the
systems.

A. SMALL DATASETS (1M TRIPLES)
Table 2 reports the values of tb-DCG, recall, prec@1,
prec@5, on-line time, and memory for the five systems on
the four databases of 1 M triples.

Let us start with the real databases LinkedMDB 1M
and IMDB 1M. All the evaluation metrics reported in this
Section for these databases were computed using λ = 0.1.
Regarding tb-DCG, we can see how the top-performing sys-
tems are TSA+VDP and MRF-KS, whereas TSA+BM25,
SUMM, and SLM present marked lower performances.

16https://www.blazegraph.com/
17https://www.postgresql.org/
18http://terrier.org/docs/v4.2/

14104 VOLUME 8, 2020

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

TABLE 2. Performances of the algorithms on the 1M databases. † indicates the top performing systems with α < 0.01 accordingly to the Tukey’s HSD test.
The best system is in bold.

In particular, the difference between TSA+VDP and
TSA+BM25 shows the critical contribution of the pruning
algorithm and ranking function of VDP. We can see that for
both LinkedMDB 1M and IMDB 1M, TSA+VDP shows
a remarkable improvement in the performance compared
to the ones obtained by TSA+BM25. This improvement
results from the VDP strategy, which is particularly use-
ful in real datasets. MRF-KS works well with LinkedMDB
1M without a significant statistical difference compared to
TSA+VDP. Nevertheless, it performs substantially worse for
IMDB 1M, and similarly to TSA+BM25. Moreover, while
the two TSA-based systems improved their performance,
passing from LinkedMDB 1M to IMDB 1M,MRF-KS shows
a lower tb-DCG. In LinkedMDB1M, the systems TSA+VDP
and MRF-KS belong to the top group, while for IMDB 1M,
TSA+VDP is the only system in the top group. In IMDB
1M, MRF-KS decreased its value of tb-DCG and is in the
same class as TSA+BM25. Not all queries could finish in
time for this system in this database. This was due to a more
connected structure, which on average, requires more time to
complete the execution of the Dijkstra algorithm. The same
experiments were performed without a time limit, and in this
case, MRF-KS scores a tb-DCG equal to 0.434, yielding a
noteworthy improvement in performance, but still way below
that of TSA+VDP.

TSA+BM25, SLM, and SUMM do not obtain the same
results as our two top-performing systems. TSA+BM25 does
not perform any pruning on the ranking obtained by
the BM25 function, resulting in noisier and non-relevant
graphs. Moreover, the ranking function works only on vir-
tual documents and does not exploit the graph nature of
the answers. This has repercussions on the quality of the
ranking.

Regarding SLM, its graph building strategy relies toomuch
on matching words from the keyword queries with words in
the triples. During the process, a new triple is added to an
answer graph only if it contains a set of keywords that differ
from the ones of the other triples in the graph. In this way,
the answer graphs are often small, with overlapping triples,
and they do not contain all of the keyword queries. This leads
to a poor ranking.

Regarding SUMM, the results are determined by its
answer-building and ranking strategy. The tree answer graphs
produced by SUMM can be potentially very similar to each
other, with many overlapping paths from the root to the
leaves. This leads to a significant overlap within the system
answers, that is, redundancy among the answers. Moreover,
since the weighting function of SUMM relies only on the
distances of the paths, often, this value is non-discriminant.

In considering the recall for the two real datasets,
TSA+BM25 has the highest values among all of the systems,
with a recall above 0.7. TSA+VDP comes close in the second
position, but statistically speaking is in the top group. MRF-
KS, in this case, is in the third position. This shows how
TSA+BM25 extracts many relevant triples from Linked-
MDB 1M on average. If we compare this result to its tb-DCG,
it appears that TSA+BM25 extracts many relevant triples,
but it is less effective in ordering the graphs containing them.
TSA+VDP, in comparison, extracts less relevant triples, but
it returns a better ranking.

Moving to IMDB 1M, TSA+VDP now presents the high-
est recall and is the only one in the top-performing group.
TSA+BM25 and MRF-KS present lower results, which are
now similar one to the other. This is new evidence that high-
lights how the nature of the database can genuinely change
the performance of a system. In this case, the pruning ability

VOLUME 8, 2020 14105

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

of TSA+VDP removes irrelevant triples from the returned
graphs, ensuring a higher SNR. This, in turn, implies that
the number or answer graphs considered relevant is greater
and, therefore, the overall number of relevant triples found is
higher.

Focusing now on prec@1, the best performing system for
both the real databases is SUMM. The high precision of this
system can be directly associated with its answer-building
strategy. SUMM builds answer trees with keyword nodes as
leaves. In this way, the number of non-relevant triples is usu-
ally minimal, while the number of relevant ones is maximal.
This strategy causes much redundancy in the answers of the
ranking, as explained in Section V-C. Consequently, it is not
the best whenever we are searching for high recall values.
On the other hand, it is the most suited when we are searching
for high precision in our answers. When considering the
values of tb-DCG, which also takes into consideration the
redundancy of the answers and their ranking, SUMM has the
lowest values after SLM. This means that a user can find
precise answers at the top of the ranking, but will not find all
the relevant triples required to satisfy her information need
since they are scattered down in the ranking or are lost in
noisy answer graphs.

The answer-building strategy of MRF-KS is still based on
the idea of building answer trees. It is, therefore, unsurprising
to see high values of prec@1 for this system on both real
databases. In particular, on LinkedMDB 1M, SUMM is in
the top-performing group together with TSA+VDP, whose
pruning strategy guarantees excellent precision. Whereas, for
IMDB 1M, SUMM is in the top group together with MRF-
KS. Generally speaking, the TSA-based algorithms work
with lower precisions because they create bigger answer
graphs than those of SUMM. This results in lower prec@1,
but in higher recall and, thanks to the ranking function, also
in higher tb-DCG.

Performances are similar if we consider prec@5. SUMM is
still the top-performing algorithm on both the real databases.
The performances of MRF-KS now decreases on IMDB,
making SUMM the only system in the top-performing group.

In considering the time required on average to answer
a query, we can see that SLM and TSA-BM25 are the
fastest algorithms on both the real databases. They always
belong to the top-performing group. The high efficiency
of SLM is obtained thanks to its strategy in generating
answer graphs, which limits their number. TSA+BM25 is
fast because it relies on the state-of-the-art implementa-
tion of BM25 and does not employ time-consuming on-line
algorithms on graphs. TSA+VDP requires more time than
TSA+BM25 since it operates a re-ranking of the first ranking
obtained by the previous system. The system compensates
the higher execution time (which is still limited thanks to the
parameter n, which controls the space of possible answers)
with higher tb-DCG in its results.MRF-KS creates the answer
graphs on the fly using the Dijkstra algorithm, which usually
requires time. Note that while in [15] the parameter k was set
to 5, here we set it to 1000. This explains the higher on-line

execution time. SUMM is always the slowest algorithm since
its stopping condition is not always met: many queries incur
in the 1000s time limit.

Now let us consider the synthetic datasets. Here we use
λ = 0 as evaluation parameter. In this way, we do not
negatively weigh the noise in the answers of the systems, and
thus, every answer containing at least one relevant triple is
considered relevant. The synthetic databases are harder for all
of the systems, and the values of effectiveness quickly flatten
to 0 when λ increases. The nature of the synthetic datasets
explains this. These graphs consist of a limited lexicon in
their nodes and edges. LUBM builds nodes and edges using
incremental numbering.We, therefore, have nodes containing
words like ‘Universityx’ and ‘Professory’ where x and y
are numbers incremented automatically. BSBM uses a lim-
ited database of words to build synthetic names of products
and their reviews. Since all of the studied systems rely on
the query-subgraph word matching, a limited lexicon has
a significant impact on the overall quality of the output.
Consider, for example, the query ‘Student attending Uni-
versity0’ for LUBM 1M, which asks for all the students
attending the university called University0. The keyword
‘student’ is often used in LUBM and is found in many vir-
tual documents and answer graphs produced by the systems.
Even the non-relevant graphs contain the keyword ‘Student,’
sometimes with high frequency. This limited lexicon leads
to answer graphs of lower quality since they contain many
non-relevant triples. For both these reasons, the quality of the
rankings decreases rapidly when λ increases, since fewer and
fewer graphs are considered relevant. Thus, we use λ = 0 to
highlight differences among systems.

In LUBM 1M, TSA+BM25 and TSA+VDP are the two
top-performing systems in terms of tb-DCG. The other sys-
tems are now far below with lower values.

TSA+BM25 performs even better on average on BSBM.
It is in the top class with TSA+VDP. In this case, we do not
have data for MRF-KS since the system did not finish the
off-line phase in time.

Let us consider recall and precision. SLM is the
top-performing system for recall, in the first-class together
with MRF-KS. TSA+BM25 is in the third position, behind
MRF-KS. This indicates how the SLM strategy, in this
database, retrieves more relevant triples in the ranking. How-
ever, as seen with the values of tb-DCG, the system does not
rank them appropriately to meet the user needs.

On the other hand, TSA+VDP has the lowest recall among
all the systems. Despite its low performance, the rank-
ing function yields a good ranking, generating a good tb-
DCG, second only to TSA+BM25.

For BSBM 1M, the situation is quite different.
TSA+BM25 obtains a high recall close to 0.85, and it is the
only one in the top-performing group. TSA+VDP is the other
top-performing system, with a value of 0.439. The execution
of all other systems produced much lower values of recall.

Concerning prec@1, for LUBM 1M, all the systems,
except for MRF-KS, which gets a 0, perform similarly.

14106 VOLUME 8, 2020

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

TABLE 3. Report of the off-line times required by different algorithms on
the 1M datasets.

TSA+VDP is the top system, followed by SLM and
TSA+BM25. Considering prec@5 for the same database,
we see an increase in values for TSA+VDP and SLM. These
systems retrieve more relevant triples in the top 5 positions.
The others, TSA+25, SUMM, andMRF-KS, show no signif-
icant changes when passing from prec@1 to prec@5. Worth
noting that MRF-KS is a strategy that does not retrieve rele-
vant triples in the top 5 positions on this database. This is also
reflected in the low tb-DCG obtained by the system.

In considering now BSBM 1M, the situation changes
slightly. SUMM now becomes the top system for prec@1,
followed by TSA+VDP, SLM, and TSA+BM25. Moving
to prec@5, the value of precision of SUMM decreases,
slightly below TSA+VDP: the introduction of too many
triples reduces the precision.

Concerning time, TSA+BM25 is still the fastest algorithm
on both of the synthetic databases: in the top-performing
group together with SLM in LUBM and with TSA+VDP for
BSBM.

The last information presented in Table 2 is the average
memory required by the systems. As we can see, all of
them maintain the same quantity of memory throughout the
first three databases, while, interestingly, BSBM 1M requires
much more memory for TSA+BM25 and TSA+VDP. This
is due to the higher number of potential answer documents
found by BM25. Once again, this may be an effect of the high
repetition of certain words in the BSBM database.

Table 3 reports the off-line time required by the differ-
ent algorithms on the various 1M datasets. As we can see,
the fastest algorithm is always SLM, requiring only 1 minute.
SLM, in its off-line phase, only converts all the triples of the
graph into virtual documents and index them. This can be
done efficiently with the state-of-the-art implementations in
Terrier.

TSA is always the second fastest algorithm. Exploring
the graph by using the BFS based algorithm described in
Section VI proved to be very fast. It completed the creation
and indexing of the representative collection with its vir-
tual documents in tens of minutes. Interestingly, LUBM 1M

requires more time than the other three databases, probably
due to its more connected structure.

SUMM is the third algorithm in terms of off-line time.
Even if its strategy is still BFS-based, it requires keeping track
of information such as the portal nodes and the partitions
connected by them, with the help of a relational database. We
did not implement the indexing algorithm for the subgraphs
described in [15] based on homomorphism among graphs.
This version of the algorithm is, therefore, probably faster
off-line and slower on-line.

MRF-KS appears to be the slowest system in the off-line
phase since the numerous Dijkstra explorations required time
to build virtual documents and obtain information on dis-
tances among nodes. This can be assumed as the main reason
why MRF-KS cannot be used over bigger databases. The
creation of the virtual documents would require many days,
if not months, over real word databases.

B. MEDIUM DATASETS (10M TRIPLES)
In this section, we report the results obtained with the exper-
iments on LinkedMDB 7M, LUBM 10M, and BSBM 10M.

Table 4 reports the results from the three databases.
Only three systems scale to this dimension: TSA+BM25,
TSA+VDP, and SUMM. All three are based on the
virtual-document approach. We use the parameter λ = 0
to estimate the relevance of the ranking and show the sys-
tems’ different behavior over these datasets. For the synthetic
databases, the justification is the same as the one provided in
the previous section. In the real database LinkedMDB, which
is is not a subgraph like LinkedMDB 1M, the level of con-
nectivity among the nodes is higher. On average, the answer
graphs extracted by TSA and SUMM are bigger and contain
more noisy triples.

Starting from LinkedMDB 7M and tb-DCG, we see
that TSA+VDP is the top-performing system and the only
one in the top-performing statistical group. The values of
TSA+BM25 and SUMM are far below. At this dimension,
the pruning and re-ranking heuristics of TSA+VDP work
very well, with high results of tb-DCG.

SUMM, on the contrary, is quite ineffective, scoring a
tb-DCG of 0.049. A bigger database implies greater redun-
dancy in the set of potential answers trees produced by the
algorithm and in overlap among the paths. This effect was
already discussed for the 1M databases, but here it is exacer-
bated by the bigger dimension.

Moving to the values of recall, TSA+BM25 presents
a value of 0.916. The system is the only one in the
top-performing group. This means that most of the relevant
triples are retrieved and that the dataset dimension does not
hinder the information extraction process. TSA+VDP has a
lower value of recall for the very same reason as discussed in
the previous session: in fact, it only works on the top n = 100
graphs of the ranking of TSA+BM25. For SUMM, the recall
is lower due to the high overlap of triples in the ranking.

If we consider now the values of prec@1, TSA+VDP
shows the highest value and is in the same groupwith SUMM.

VOLUME 8, 2020 14107

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

TABLE 4. Performances of the algorithms on the 10M databases. Relevance decided with λ = 0. † indicates the systems in the top performing group with
α < 0.01. The best system is in bold.

This performance may be reconducted to the pruning strategy
of the algorithm. The values are, however, quite low because
of the high number of noisy triples in these first answers. In
the case of prec@5, the situation does not change much, with
TSA+VDP still as the top-performing system within the top
group with SUMM.

Focusing now on the synthetic databases, in LUBM 10M,
TSA+BM25 is the top-performing system, with TSA+VDP
quite close and in the same group. Going now to the recall,
TSA+BM25 is still the top-performing system, in the same
group with TSA+VDP. SUMM is down below, once again,
due to the redundancy in its answers.

SUMM presents the highest value of prec@1, thanks to
its answer-building strategy, followed by TSA+VDP. In this
case, all of the systems are in the same statistical group. For
prec@5, TSA+VDP is the top-performing system thanks to
its pruning strategy, which reduces the number of retrieved
triples.

For BSBM 10M, TSA+BM25 is once again the system
which obtains the greatest tb-DCG, in the same group of
TSA+VDP. It is also the top-performing system concerning
the recall. TSA+VDP is in the same statistical group of
TSA+BM25, but the pruning heuristic and the limit of the
parameter n significantly lowered the recall of the system.
SUMM appears to be particularly ineffective with this mea-
sure.

For prec@1, TSA+VDP is the top-performing system,
once again thanks to its pruning heuristic. The second system
is TSA+BM25, and the third is SUMM. On this database,
the strategy of SUMM does not seem to be enough to guar-
antee a high prec@1. Similar observations can be made for
the prec@5.

Observing time, TSA+BM25 is the fastest algorithm on
all three datasets. TSA+VDP follows. On LinkedMDB,
TSA+VDP requires muchmore time than TSA+BM25, with
an average of 425 seconds against 87. On the two synthetic
databases, the time required is much more limited. Once
again, SUMM proves to be the system that requires the
highest average time, often because it meets the time limit
of 1000s.

Finally, the required memory is often around tens of MB
for all three systems. An exception to this is BSBM 10M,
in the same way, BSBM 1M was an exception in its class of
databases. The nature of this database is therefore confirmed
even when its dimension scales.

TABLE 5. Report of the off-line times required by the different algorithms
on the 10M datasets.

In Table 5, we report the off-line time required by the two
systems TSA and SUMM over the 10M databases. As we
can see, TSA behaves very well in all the databases. In
the synthetic ones, it performs three times slower than on
LinkedMDB 7M, but it still outperforms SUMM, which is
four to five times slower than TSA.

This is due to the more efficient subgraph extraction and
virtual-document creation strategy followed by the first algo-
rithm.

C. BIG DATASETS (100M TRIPLES)
In this section we report the results of the experiments on
the set of 100M datasets, comprising a version of DBPedia
of 70M triples and the whole IMDB dataset of roughly 116M
triples. TSA+BM25 and TSA+VDP are the only systems
that scale to this size. Results are presented in Table 6.

Starting with IMDB 100M, TSA+BM25 performs poorly,
while TSA+VDP performs much better. From this, we infer
that the low performance of the first system is due primarily to
the low quality of the ranking created by the BM25 method.
Considering the recall we see that TSA+BM25 has 0.273,
meaning that it retrieves relevant triples, but it is not very
useful in the ranking phase. This is the same phenomenon
seen in the experiments of Section IX-B. The dimension
of the database has a significant impact on the final result,
becoming more and more evident as the database grows.

Considering prec@1 and prec@5, the values are low for
both systems. This is a consequence of the big dimension of
the retrieved graphs as well as of the small number of relevant
triples ranked at the top stemming from the high database
level of ‘‘noise’’.

Let us consider DBpedia. TSA+VDP andTSA+BM25 fea-
ture similar tb-DCG values, with TSA+BM25 performing
better than TSA+VDP in this case. In particular, the recall
of TSA+BM25 is very high in this case (i.e., 0.851). Once

14108 VOLUME 8, 2020

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

TABLE 6. Performances of the algorithms on the 100M databases. tb-DCG computed with λ = 0. The best system is in bold. † indicates the best
statsystem through a t-test with α < 0.01.

TABLE 7. Report of the off-line time required by the only algorithm able
to scale TSA on the 100M databases.

again, this confirms the system’s ability to extract subgraphs
with relevant triples, but this also reflects its ranking limits.

In contrast, TSA+VDP obtains a low recall value, as the
top n graphs of the BM25 ranking do not contain many
relevant triples. In this particular circumstance, we also note
that this low value of tb-DCG stems from the fact that the
algorithm often exceeds the time-limit of 1000s, without
finishing its execution. This is due to the high connectivity
within the dataset, which requires more time for the creation,
exploration, and pruning of the final answer graphs.

The vales of precision are quite low for both systems. The
reason is the high number of noisy triples in the answers.
TSA+BM25 obtains 0 for the values of precision but has a
big recall. This means that the system can find many relevant
triples, but cannot rank them adequately for the end-user. On
the other hand, TSA+VDP cannot exploit the high recall
produced by TSA+BM25, because the number of relevant
triples contained in graphs goes beyond the n threshold.
Thus, if we consider the ability to retrieve relevant triples,

DBPedia is handled quite easily by the TSA-based systems.
On the other hand, the ranking phase requires some adjust-
ments. In particular, it is recommended to improve the sys-
tem’s ability to reduce the level of noise within the answer
graph.

In Table 7, we report the time required off-line for IMDB
and DBPedia. The required time is much higher compared
to the one required for the smaller databases. This is due to
the dimension of the database. DBPedia requires a little less
than one day, while IMDB 100M requires a little more than
two days. It exceeds our time limit, even though we made an
exception to obtain useful results. We estimated that the other
system, SUMM, could not accomplish the task in less than
eighteen days on both datasets, based on its progress after
48 hours. We, therefore, consider it unable to scale to these
dimensions.

X. CONCLUSIONS
In this paper, we described the problem of keyword search
over large RDF graphs. We proposed a system whose input
is a query composed of just a few keywords, and the output
is a ranking of connected subgraphs ranked by a similarity
score with the query. To face it in a reproducible manner,

we proposed a new evaluationmethodology based on the con-
cept of information need. We express an information need as
a keyword and SPARQL query. The first is used in the typical
best-match search scenario, while the second is employed in
an exact-match search scenario. The keyword queries are the
input of the search systems we have developed and tested; the
SPARQL queries are evaluated to produce the Ground Truth –
aka the correct answers to user information needs. Moreover,
we developed a new evaluation framework based on three real
databases: LinkedMDB, IMDB and DBPedia, and two syn-
thetic databases: LUBM and BSBM. We considered datasets
with different sizes, i.e., small (1M triples), medium (10M
triples), and big (100M triples).

We designed and developed two effective, efficient,
and scalable keyword search systems based on the
virtual-document approach, called TSA+BM25 and
TSA+VDP. We compared these two methods with other
state-of-the-art keyword systems, namely: SLM, MRF-KS,
and SUMM. In doing so, we extended and re-implemented
MRF-KS to work on RDF graphs, providing a simplified
implementation of SUMM, which guarantees the same per-
formance in terms of effectiveness.

We evaluated the systems based on two criteria: efficiency
(i.e., off-line and on-line execution time and required mem-
ory) and effectiveness (i.e., overall quality of the answers).

We showed that the TSA-based systems obtain the highest
values of tb-DCG and recall over the small datasets. In par-
ticular, TSA+VDP is well-suited to work with real datasets,
while TSA+BM25 is the best performing system with syn-
thetic datasets. This was also confirmed with the medium
size datasets. TSA+VDP is the top-performing system on
LinkedMDB, while TSA+BM25 is the best system with
synthetic databases. Considering the big datasets, with IMDB
TSA+VDP is the top-performing system in terms of tb-DCG,
while TSA+BM25 obtains the highest tb-DCG on DBpedia.

TSA-based systems have always proven to be a right choice
in terms of tb-DCG and recall, obtaining good values in all
the tested settings and scenarios. TSA+BM25, in particular,
is always amongst the fastest systems, both off-line and on-
line, while TSA+VDP introduces a trade-off between effi-
ciency and effectiveness, even though it is faster than most of
the state-of-the-art systems considered.

MRF-KS also obtains good values of tb-DCG on small
real databases but does not scale to bigger databases. SLM
features a graph-building strategy that often produces poor
quality graphs and, consequently, a poor ranking. Moreover,
performing most of its operations on-line, it does not scale to
medium/big databases. The only other system that scales to

VOLUME 8, 2020 14109

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

medium datasets is SUMM that builds tree-shaped answers.
In this way, it creates rankings that usually get a high preci-
sion; but it also has many overlapping, redundant triples in
the answers, resulting in low values of tb-DCG. Moreover,
the TSA-based systems always perform better than SUMM
on the medium datasets. TSA+VDP obtains a higher tb-DCG
on LinkedMDB, while TSA+BM25 always results as the
top-performing systems in terms of tb-DCG and recall using
synthetic datasets.

Overall, TSA-based systems have overcome the other sys-
tems limitations and have proved to be the top-performing
systems or in the top-performing group in any scenario.

Regarding efficiency, TSA is up to one order of magnitude
faster than MRF-KS in the off-line phase on small databases.
It is usually in the same class of efficiency as SUMM. The
only other system which is faster off-line is SLM, which
only indexes the triples in the database. However, the on-line
strategy of SLM is a real bottleneck of the system, which
limits its ability to scale to bigger datasets. In the on-line
phase, TSA+BM25 consistently proved to be one of the
fastest systems in the statistically top-performing group.

We also showed how TSA-based systems scale to medium
and big databases. Such results are promising in terms of
future endeavors: TSA-based systems provide a solid ground
to improve on-line efficiency.

As a future direction of research, we seek to investigate
how the function that transforms a graph in a document can
help the ranking performances function without damaging
on-line efficiency. For example, one possible implementation
could include words from the IRIs of the nodes and edges
of the graph or the creation of fields within the virtual doc-
uments. Moreover, there is room to explore the best ways
to efficiently produce the virtual documents on very large
datasets (i.e., billions of triples). Another line of research
would be to analyze how document-based systems work in a
dynamic environment characterized by frequent updates (e.g.,
in the biomedical domain).

REFERENCES
[1] J. Pound, P. Mika, and H. Zaragoza, ‘‘Ad-hoc object retrieval in the Web

of data,’’ in Proc. 19th Int. Conf. World Wide Web (WWW). New York, NY,
USA: ACM, 2010, pp. 771–780.

[2] S. Sahu, A.Mhedhbi, S. Salihoglu, J. Lin, andM. T. Özsu, ‘‘The ubiquity of
large graphs and surprising challenges of graph processing,’’ Proc. VLDB
Endowment, vol. 11, no. 4, pp. 420–431, 2017.

[3] W.Wu, ‘‘Proactive natural language search engine: Tapping into structured
data on the Web,’’ in Proc. Joint EDBT/ICDT Conf. New York, NY, USA:
ACM, 2013, pp. 143–148.

[4] H. Bast, B. Buchhold, and E. Haussmann, ‘‘Semantic search on text and
knowledge bases,’’ FNT Inf. Retr., vol. 10, no. 1, pp. 119–271, 2016.

[5] A. Kopliku, K. Pinel-Sauvagnat, andM. Boughanem, ‘‘Aggregated search:
A new information retrieval paradigm,’’ ACMComput. Surv., vol. 46, no. 3,
pp. 1–31, Jan. 2014.

[6] J. X. Yu, L. Qin, and L. Chang, ‘‘Keyword search in relational databases:
A survey,’’ IEEE Data Eng. Bull., vol. 33, no. 1, pp. 67–78, Mar. 2010.

[7] J. Coffman and A. C. Weaver, ‘‘An empirical performance evaluation
of relational keyword search systems,’’ IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 1, pp. 30–42, 2014.

[8] H. Arnaout and S. Elbassuoni, ‘‘Effective searching of RDF knowledge
graphs,’’ J. Web Semantics, vol. 48, pp. 66–84, Jan. 2018.

[9] Q. Su and J. Widom, ‘‘Indexing relational database content offline
for efficient keyword-based search,’’ in Proc. 9th Int. Database Eng.
Appl. Symp. (IDEAS). Washington, DC, USA: IEEE Computer Society,
Oct. 2006, pp. 297–306.

[10] H. He, H. Wang, J. Yang, and P. S. Yu, ‘‘BLINKS: Ranked key-
word searches on graphs,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data (SIGMOD). New York, NY, USA: ACM, 2007, pp. 305–316.

[11] C. V. Gysel, M. De Rijke, and E. Kanoulas, ‘‘Neural vector spaces for
unsupervised information retrieval,’’ ACM Trans. Inf. Syst., vol. 36, no. 4,
pp. 1–25, Jun. 2018.

[12] J. Coffman and A. C. Weaver, ‘‘A framework for evaluating database
keyword search strategies,’’ in Proc. 19th ACM Int. Conf. Inf. Knowl.
Manage. (CIKM). New York, NY, USA: ACM, 2010, pp. 729–738.

[13] S. Elbassuoni and R. Blanco, ‘‘Keyword search over RDF graphs,’’ inProc.
20th ACM Int. Conf. Inf. Knowl. Manage. (CIKM). New York, NY, USA:
ACM, 2011, pp. 237–242.

[14] Y. Mass and Y. Sagiv, ‘‘Virtual documents and answer priors in keyword
search over data graphs,’’ in Proc. Workshops EDBT/ICDT Joint Conf.,
vol. 1558. Bolzano, Italy: CEUR-WS.Org, 2016.

[15] W. Le, F. Li, A. Kementsietsidis, and S. Duan, ‘‘Scalable keyword search
on large RDF data,’’ IEEE Trans. Knowl. Data Eng., vol. 26, no. 11,
pp. 2774–2788, Nov. 2014.

[16] S. Bergamaschi, F. Guerra,M. Interlandi, R. Trillo-Lado, andY.Velegrakis,
‘‘QUEST: A keyword search system for relational data based on semantic
and machine learning techniques,’’ Proc. VLDB Endowment, vol. 6, no. 12,
pp. 1222–1225, Aug. 2013.

[17] F. Li and H. V. Jagadish, ‘‘Constructing an interactive natural language
interface for relational databases,’’ Proc. VLDB Endowment, vol. 8, no. 1,
pp. 73–84, Sep. 2014.

[18] J. A. Nasir, I. Varlamis, and S. Ishfaq, ‘‘A knowledge-based semantic
framework for Query expansion,’’ Inf. Process. Manage., vol. 56, no. 5,
pp. 1605–1617, Sep. 2019.

[19] D. Garigliotti, F. Hasibi, and K. Balog, ‘‘Identifying and exploiting target
entity type information for ad hoc entity retrieval,’’ Inf. Retr. J., vol. 22,
nos. 3–4, pp. 285–323, Aug. 2019.

[20] Z. Liu, C. Wang, and Y. Chen, ‘‘Keyword search on temporal graphs,’’
IEEE Trans. Knowl. Data Eng., vol. 29, no. 8, pp. 1667–1680, Aug. 2017.

[21] X. Lian, L. Chen, and Z. Huang, ‘‘Keyword search over probabilistic RDF
graphs,’’ IEEE Trans. Knowl. Data Eng., vol. 27, no. 5, pp. 1246–1260,
May 2015.

[22] A. Balmin, Y. Papakonstantinou, V. Hristidis, T. Wang, D. Srivastava, and
N. Koudas, ‘‘A system for keyword proximity search on XML databases,’’
in Proc. VLDB Conf. San Mateo, CA, USA: Morgan Kaufmann, 2003,
pp. 1069–1072.

[23] S. Agrawal, S. Chaudhuri, and G. Das, ‘‘DBXplorer: A system for
keyword-based search over relational databases,’’ in Proc. 18th Int. Conf.
Data Eng., Jun. 2003, pp. 5–16.

[24] Y. Luo, W. Wang, X. Lin, X. Zhou, J. Wang, and K. Li, ‘‘SPARK2: Top-k
Keyword Query in relational databases,’’ IEEE Trans. Knowl. Data Eng.,
vol. 23, no. 12, pp. 1763–1780, Dec. 2011.

[25] T. Tran, P. Cimiano, S. Rudolph, and R. Studer, ‘‘Ontology-based inter-
pretation of keywords for semantic search,’’ in Proc. Semantic Web, 6th
Int. Semantic Web Conf., 2nd Asian Semantic Web Conf. (ISWC ASWC),
Busan, South Korea: Springer, Nov. 2007, pp. 523–536.

[26] J. Pound, A. K. Hudek, I. F. Ilyas, and G. Weddell, ‘‘Interpreting key-
word queries over Web knowledge bases,’’ in Proc. 21st ACM Int.
Conf. Inf. Knowl. Manage. (CIKM). New York, NY, USA: ACM, 2012,
pp. 305–314.

[27] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan,
‘‘Keyword searching and browsing in databases using BANKS,’’ in Proc.
18th Int. Conf. Data Eng.Washington, DC, USA: IEEE Computer Society,
2002, pp. 431–440.

[28] A. Simitsis, G. Koutrika, and Y. Ioannidis, ‘‘Précis: From unstructured
keywords as queries to structured databases as answers,’’ VLDB J., vol. 17,
no. 1, pp. 117–149, Nov. 2007.

[29] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin, ‘‘Finding top-
k min-cost connected trees in databases,’’ in Proc. IEEE 23rd Int. Conf.
Data Eng. Washington, DC, USA: IEEE Computer Society, Apr. 2007,
pp. 836–845.

[30] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and G. Weikum,
‘‘STAR: Steiner-tree approximation in relationship graphs,’’ in Proc. IEEE
25th Int. Conf. Data Eng.Washington, DC, USA: IEEE Computer Society,
Mar. 2009, pp. 868–879.

14110 VOLUME 8, 2020

D. Dosso, G. Silvello: Search Text to Retrieve Graphs: Scalable RDF Keyword-Based Search System

[31] S. Bergamaschi, N. Ferro, F. Guerra, and G. Silvello, ‘‘Keyword-based
search over databases: A roadmap for a reference architecture paired
with an evaluation framework,’’ Trans. Comput. Collective Intell., vol. 21,
pp. 1–20, 2016.

[32] J. Pérez, M. Arenas, and C. Gutierrez, ‘‘Semantics and complexity
of SPARQL,’’ ACM Trans. Database Syst., vol. 34, no. 3, pp. 1–45,
Aug. 2009.

[33] F. Picalausa and S. Vansummeren, ‘‘What are real SPARQL queries like?’’
inProc. Int. Workshop SemanticWeb Inf. Manage. (SWIM). New York, NY,
USA: ACM, 2011, pp. 7:1–7:6.

[34] A. Bonifati, W. Martens, and T. Timm, ‘‘An analytical study of
large SPARQL Query logs,’’ Proc. VLDB Endowment, vol. 11, no. 2,
pp. 149–161, Oct. 2017.

[35] S. Büttcher, C. L. A. Clarke, and G. V. Cormack, Information Retrieval:
Implementing and Evaluating Search Engines. Cambridge, MA, USA:
MIT Press, 2010.

[36] D. Metzler and W. B. Croft, ‘‘A Markov random field model for term
dependencies,’’ in Proc. 28th Annu. Int. ACM SIGIR Conf. Res. Develop.
Inf. Retr. (SIGIR), 2005, pp. 472–479.

[37] D. Dosso, ‘‘Keyword search on RDF datasets,’’ in Proc. 41st Eur. Conf. IR
Res. (ECIR). Springer, 2019, pp. 332–336.

[38] D. Dosso and G. Silvello, ‘‘A scalable virtual document-based keyword
search system for RDF datasets,’’ in Proc. 42nd Int. ACM SIGIR Conf.
Res. Develop. Inf. Retr. (SIGIR). New York, NY, USA: ACM, 2019,
pp. 965–968.

[39] K. Järvelin and J. Kekäläinen, ‘‘Cumulated gain-based evaluation of IR
techniques,’’ ACM Trans. Inf. Syst., vol. 20, no. 4, pp. 422–446, Oct. 2002.

[40] O. Hassanzadeh and M. P. Consens, ‘‘Linked movie data base,’’ in Proc.
WWW Workshop Linked Data Web (LDOW) vol. 538. Bolzano, Italy:
CEUR-WS.Org, 2009.

[41] K. Balog and R. Neumayer, ‘‘A test collection for entity search in DBpe-
dia,’’ in Proc. 36th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr. (SIGIR).
New York, NY, USA: ACM, 2013, pp. 737–740.

[42] Y. Guo, Z. Pan, and J. Heflin, ‘‘LUBM: A benchmark for OWL knowledge
base systems,’’ J. Web Semantics, vol. 3, nos. 2–3, pp. 158–182, Oct. 2005.

[43] C. Bizer and A. Schultz, ‘‘The berlin SPARQL benchmark,’’ Int. J. Seman-
tic Web Inf. Syst., vol. 5, no. 2, pp. 1–24, 2009.

[44] C. Macdonald, R. McCreadie, R. L. T. Santos, and I. Ounis, ‘‘From puppy
tomaturity: Experiences in developing terrier,’’ inProc. OSIR SIGIR, 2012,
pp. 60–63.

DENNIS DOSSO received the B.S. degree in com-
puter science engineering and the M.S. degree in
computer science engineering from the Depart-
ment of Information Engineering, University of
Padua, Italy, in 2014 and 2016, respectively, where
he is currently pursuing the Ph.D. degree in infor-
mation engineering.

His current research interests include keyword
search and data citation.

GIANMARIA SILVELLO (Member, IEEE) is cur-
rently a Computer Engineer and an Assistant
Professor (tenure-track) with the Department of
Information Engineering, University of Padua. His
research spans information retrieval, databases,
digital libraries, and data citation. He has pub-
lished over 120 scientific papers in national and
international peer-reviewed venues.

VOLUME 8, 2020 14111

