
Reproducibility of the Neural Vector Space
Model via Docker?

Nicola Ferro[0000−0001−9219−6239], Stefano Marchesin[0000−0003−0362−5893],
Alberto Purpura[0000−0003−1701−7805], and Gianmaria

Silvello[0000−0003−4970−4554]

Department of Information Engineering
University of Padua

Padua, Italy
{name.surname}@unipd.it

Abstract. In this work we describe how Docker images can be used to
enhance the reproducibility of Neural IR models. We report our results
reproducing the Vector Space Neural Model (NVSM) and we release a
CPU-based and a GPU-based Docker image. Finally, we present some
insights about reproducing Neural IR models.

1 Introduction

Reproducibility of models and systems is central for the verification of scien-
tific results ans it is one of the cornerstones of the system of sciences. In the
field of Information Retrieval, reproducibility has been the object of thorough
analyses and efforts; only in the last two years we have seen the rise of many
reproducibility-oriented events like the CENTRE evaluations at CLEF [2], NT-
CIR [7] and TREC [8], the SIGIR task force to implement ACM’s policy on
artifact review and badging and the Open-Source IR Replicability Challenge at
SIGIR 2019 (OSIRRC 2019).

In this paper, we advocate OSIRRC 2019’s vision that is to build Docker-
based1 infrastructures to replicate results on standard IR ad hoc test collections.
Docker is a tool that allows for the creation and deployment of applications
via images containing all the required dependencies. Relying on a Docker-based
infrastructure to replicate the results of existing systems, helps researchers to
avoid all the issues related to system requirements and dependencies. Indeed,
Information Retrieval (IR) platforms such as Anserini, Terrier, or text matching
libraries such as MatchZoo rely on a set of software tools, developed in Java or
Python and based on numerous libraries for scientific computing, which have all
to be available on the host machine in order for the applications to run smoothly.

We explore the use of Docker images for the reproducibility of Neural IR
(NeuIR) models, which is a challenging domain that has seen only a few repro-
ducibility efforts so far [1, 5]. NeuIR models are particularly hard to reproduce

? The full paper has been originally presented at the OSIRRC@SIGIR workshop [3]
1 https://www.docker.com/.



2 N. Ferro et al.

because they are highly sensitive to parameters, hyper-parameters, and pre-
processing choices. Also, these models are usually compatible only with specific
versions of the libraries that they rely on (e.g., Tensorflow) because these frame-
works are constantly updated. The use of Docker images is a possible solution
to avoid these deployment issues on different machines as it already includes all
the libraries required by the contained application.

For this reason, (i) we propose a Docker architecture that can be used as a
framework to train, test, and evaluate NeuIR models; and, (ii) we show how this
architecture can be employed to build a Docker image that replicates the Neural
Vector Space Model (NVSM) [9], a state-of-the-art unsupervised neural model
for ad hoc retrieval.

2 Background

Repeatability, replicability, and reproducibility are fundamental aspects of com-
putational sciences, both in supporting desirable scientific methodology as well
as sustaining empirical progress. These concepts have been discussed and an-
alyzed in depth in [4], that focuses on the core issues and approaches to re-
producibility in several fields of computer science. Relevant to these concepts
is the Platform, Research goal, Implementation, Method, Actor and Data (PRI-
MAD) model, which tackles reproducibility from different angles. The PRIMAD
paradigm has been adopted by the IR community, where it has been adapted to
the context of IR evaluation – both system-oriented and user-oriented. In this
context, our contribution lies between replicability and reproducibility. Indeed,
we rely on the NVSM implementation available at [6] and described in [5] to
replicate the results of a reproduced version of NVSM.

NVSM is a state-of-the-art unsupervised model for ad hoc retrieval. The
model achieves competitive results against traditional lexical models and outper-
forms state-of-the-art unsupervised semantic retrieval models, like the Word2Vec-
based models. NVSM jointly learns distinct word and document representations
by optimizing an unsupervised loss function which minimizes the distance be-
tween sequences of n-grams and the documents containing them. Such opti-
mization objective imposes that n-grams extracted from a document should be
predictive of that document. After training, the learned word and document
representations are used to perform retrieval. Queries are seen as n-grams and
matched against documents in the feature space. Documents are then ranked in
decreasing order of the cosine similarity computed between query and document
representations.

3 Docker Image Architecture

We developed two Docker images reproducing NVSM, one CPU-based and an-
other GPU-based.

The CPU-based version of NVSM is written in Python and relies on Tensorflow

v.1.13.1. For this reason, we developed a Docker image based on the official



Reproducibility of the Neural Vector Space Model via Docker 3

Python 3.5 runtime container, on top of which we install the Python packages
required by the algorithm – such as Tensorflow, Python NLTK, and Whoosh –
we also install a C compiler, i.e. gcc, in order to use the official trec eval pack-
age2 to evaluate the retrieval model during training. Since this docker image still
relies for some functions (i.e. random number generation) on the host machine,
despite being very similar, the results are not exactly the same across different
computers – while they are consistent on the same machine.

The GPU-based version of NVSM is based on Tensorflow, which is a ma-
chine learning library that allows us to employ the GPU on the host machine
in order to perform operations more efficiently. There are many advantages of
employing GPUs for scientific computations, but their usage makes a sizable
difference especially when training deep learning models. The training of such
models requires in fact to perform a large number of matrix operations that can
be easily parallelized and do not require powerful hardware.

In our experiments, we observed that nvsm gpu does not produce fully con-
sistent results on the same machine. In fact, TensorFlow uses the Eigen library,
which in turn uses CUDA atomic functions to implement reduction operations,
such as tf.reduce sum etc. Those operations are non-deterministic and each op-
eration can introduce small variations. Despite this problem, we still believe that
the advantages brought by the usage of a GPU in terms of reduction of computa-
tional time – combined with the fact that we detected only very small variations
in the Mean Average Precision at Rank 1000 (MAP), Normalized Discounted
Cumulative Gain at Rank 100 (nDCG@100), Precision at Rank 10 (P@10), and
Recall – make this implementation of the algorithm a valid alternative to the
CPU-based one.

4 Evaluation

To test our docker image we consider the Robust04 collection, which is composed
of TIPSTER corpus Disk 4&5 minus CR. The collection counts 528,155 docu-
ments, with a vocabulary of 760,467 different words. The topics considered for
the evaluation are topics 301-450, 601-700 from Robust04. Only the field title of
topics is used for retrieval. The set of topics is split into validation (V) and test
(T) sets. Relevance judgments are restricted accordingly. The execution times
and memory occupation statistics were computed on an 2018 Alienware Area-51
with an Intel Core i9-7980XE CPU @ 2.60GHz with 36 cores, 64GB of RAM
and two GeForce GTX 1080Ti GPUs.

To train the NVSM model, we set the following parameters and hyper-
parameters: word representation size kw = 300, number of negative examples
z = 10, learning rate α = 0.001, regularization lambda λ = 0.01, batch size
m = 51200, dimensionality of the document representations kd = 256 and n-
gram size n = 16. We train the model for 15 iterations over the document col-
lection and we select the model iteration that performs best in terms of MAP.

2 https://github.com/usnistgov/trec eval.



4 N. Ferro et al.

When comparing the nvsm cpu image and the nvsm gpu image, we observe is
that the CPU Docker image takes less space on disk than the GPU one. This is
because the former does not need all of the drivers and libraries required by the
GPU version of Tensorflow. In fact, these libraries make the nvsm gpu image
three times larger than the other one.

In Table 1, we report the retrieval results obtained with the two shared
Docker images. From these results, we observe that there are small differences,
always within ±0.01, between the runs obtained with nvsm gpu on the same
machine and with the ones obtained with nvsm cpu on different machines.

MAP nDCG@100 P@10 Recall

CPU (run 0) 0.138 0.271 0.285 0.6082

GPU (run 0) 0.137 0.265 0.277 0.6102

GPU (run 1) 0.138 0.270 0.277 0.6066

GPU (run 2) 0.137 0.268 0.270 0.6109

Table 1: Retrieval results on the Robust04 (T) collection computed with the two
shared Docker images of NVSM.

The MAP, nDCG@100, P@10, and Recall values obtained with the images are
all very similar, and close to the measures reported in the original NVSM paper
[9]. Indeed, the absolute difference between the reported MAP, nDCG@100, and
P@10 values in [9] and our results is always less than 0.02. As a side note, the
MAP values obtained by NVSM are low when compared to the other approaches
on Robust04 that can be found in the OSIRRC 2019 library – even 10% lower
than some methods that do not apply re-ranking.

In order to further evaluate the performance differences between the runs,
we begin computing the RMSE considering the MAP, nDCG@100, and P@10
measures. The RMSE gives us an idea of the performance difference between two
runs – averaged across the considered topics. We first compute the average values
of MAP, nDCG@100, and P@10 over the three nvsm gpu runs on each topic.
Then, we compare these averaged performance measures, for each topic, against
the corresponding ones associated to the CPU-based NVSM run we obtained
on our machine. These results are reported in Table 2. From the results of this

NVSM GPU (average)

RMSE (MAP) 0.034

RMSE (nDCG@100) 0.054

RMSE (P@10) 0.140

Table 2: RMSE between the NVSM CPU Docker image and the average of the 3 runs
computed with the NVSM GPU Docker image.

evaluation we can observe that the average performance difference across the



Reproducibility of the Neural Vector Space Model via Docker 5

considered 196 topics is very low when considering the MAP and nDCG@100
measures, while it grows when we consider the top part of the rankings (P@10).
In conclusion, the RMSE value is generally low, hence we can confidently say
that the models behave in a very similar way in terms of MAP, nDCG@100, and
P@10 on all the considered topics.

In Table 3, we report the Kendall’s τ measures associated to each pair of runs
that we computed. This measure shows us how much the considered rankings
are similar to each other. In our case, the runs appear to be quite different from
each other, since the Kendall’s τ values are all close to 0. In other words, when
considering the top 100 results in each run, the same documents are rarely in the
same positions in the selected rankings. This result, combined with the fact that
the runs achieve all similar MAP, nDCG@100, P@10, and Recall values, leads to
the conclusion that the relevant documents are ranked high in the rankings, but
are not in the same positions. In other words, NVSM performs a permutation
of the documents in the runs, maintaining however the relative order between
relevant and non-relevant documents.

GPU (run 0) GPU (run 1) GPU (run 2) CPU

GPU (run 0) 1.0 0.025 0.025 0.018

GPU (run 1) 0.025 1.0 0.089 0.014

GPU (run 2) 0.025 0.089 1.0 0.009

CPU 0.018 0.014 0.009 1.0

Table 3: Kendall’s τ correlation coefficient values between the NVSM GPU and
NVSM CPU runs.

5 Final Remarks

In this work, we performed a replicability study of the Neural Vector Space Model
(NVSM) retrieval model using Docker. First, we presented the architecture and
the main functions of a Docker image designed for the replicability of Neural
IR (NeuIR) models. Secondly, we described the image components and the en-
gineering challenges to obtain deterministic results with Docker using popular
machine learning libraries such as Tensorflow. We also share two Docker images
of the NVSM model: the first, which relies only on the CPU of the host machine
to perform its operations, the second, which is able to also exploit the GPU of
the host machine, when available.

We observed some differences between the runs computed by the nvsm cpu

Docker images on different machines and between the runs computed by the
nvsm cpu and nvsm gpu Docker images on the same machine. The differences be-
tween nvsm cpu images on different machines are related to the non-determinism
of the results, as Docker relies on the host machine for some basic operations



6 N. Ferro et al.

which influence the model optimization process through the generation of dif-
ferent pseudo-random number sequences. On the other hand, the differences
between nvsm gpu images on the same machine are due to the implementation
of some functions in the CUDA and Tensorflow libraries. We observed that
these operations influence in a sizeable way the ordering of the same documents
across different runs, but not the overall distribution of relevant and non-relevant
documents in the ranking. Similar differences, that are even more accentuated,
can be found between nvsm cpu and nvsm gpu images on the same machine.
Therefore, even though these differences may seem marginal in offline evalua-
tion settings, where the focus is on average performance, they are extremely
relevant for user-oriented online settings – as they can have a sizeable impact on
the user experience and should thus be taken into consideration when deciding
whether to use NeuIR models in real-world scenarios.

References

1. Dür, A., Rauber, A., Filzmoser, P.: Reproducing a Neural Question Answer-
ing Architecture Applied to the SQuAD Benchmark Dataset: Challenges and
Lessons Learned. pp. 102–113 (2018). https://doi.org/10.1007/978-3-319-76941-7 8,
https://doi.org/10.1007/978-3-319-76941-7 8

2. Ferro, N., Fuhr, N., Maistro, M., Sakai, T., Soboroff, I.: Overview of CEN-
TRE@CLEF 2019: Sequel in the Systematic Reproducibility Realm. In: Experi-
mental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of
the Tenth International Conference of the CLEF Association (CLEF 2019) (2019)

3. Ferro, N., Marchesin, S., Purpura, A., Silvello, G.: A Docker-Based Replica-
bility Study of a Neural Information Retrieval Model. In: Proc. of the Open-
Source IR Replicability Challenge co-located with 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval,
OSIRRC@SIGIR 2019. vol. 2409, pp. 37–43. CEUR-WS.org (2019), http://ceur-
ws.org/Vol-2409/docker05.pdf

4. Freire, J., Fuhr, N., Rauber, A.: Reproducibility of Data-Oriented
Experiments in e-Science (Dagstuhl Seminar 16041). Dagstuhl Re-
ports 6(1), 108–159 (2016). https://doi.org/10.4230/DagRep.6.1.108,
http://drops.dagstuhl.de/opus/volltexte/2016/5817

5. Marchesin, S., Purpura, A., Silvello, G.: Focal Elements of Neural Information Re-
trieval Models. An Outlook through a Reproducibility Study. Information Process-
ing & Management in print, 34 (2019)

6. Marchesin, S., Purpura, A., Silvello, G.: A neural vector space model implementation
repository (2019), https://github.com/giansilv/NeuralIR/

7. Sakai, T., Ferro, N., Soboroff, I., Zeng, Z., Xiao, P., Maistro, M.: Overview of the
NTCIR-14 CENTRE Task. In: Proceedings of the 14th NTCIR Conference on Eval-
uation of Information Access Technologies. Tokyo, Japan (2019)

8. Soboroff, I., Ferro, N., Sakai, T.: Overview of the TREC 2018 CENTRE Track. In:
The Twenty-Seventh Text REtrieval Conference Proceedings (TREC 2018) (2018)

9. Van Gysel, C., de Rijke, M., Kanoulas, E.: Neural Vector Spaces for Unsupervised
Information Retrieval. ACM Trans. Inf. Syst. 36(4), 38:1–38:25 (2018)


