Data Provenance for Attributes:
Attribute Lineage

Dennis Dosso
University of Padua

Abstract

In this paper we define a new kind of data provenance for
database management systems, called attribute lineage for
SPJRU queries, building on previous works on data prove-
nance for tuples.

We take inspiration from the classical lineage, metadata
that enables users to discover which tuples in the input are
used to produce a tuple in the output. Attribute lineage is
instead defined as the set of all cells in the input database that
are used by the query to produce one cell in the output.

It is shown that attribute lineage is more informative than
simple lineage and we discuss potential new applications for
this new metadata.

1 Introduction

In the past, data was stored in curated databases or in other
trusted sources of information kept under centralized con-
trol [2]. With the advent of the Internet, this assumption is no
longer valid [5]. Data are today created, shared, copied, cited,
reported, moved around, and combined indiscriminately.

On the other hand, data management is growing in com-
plexity [6] also thanks to new algorithms, applications, and
larger storage capacity.

In such an environment, it becomes more and more difficult
to keep track of the origins, the reliability, and the process of
elaboration of data used in research. One way to face such
challenges is the deployment of data provenance [2].

Data provenance is information attached to data that de-
scribes its origin and the process which created it. It can also
be seen as metadata pertaining to the derivation history of the
data. It is particularly useful to help users to understand where
data are coming from, and the process they went through.

Data provenance has been widely studied in different areas
of data management. In this paper, we focus on provenance in
the database management systems environment. For further
details on data provenance, please refer to surveys like [2]
and [6].

Susan B. Davidson
University of Pennsylvania

Gianmaria Silvello
University of Padua

Many different notions of provenance have been proposed
in the literature for data in database management systems [1,
3,4], describing different kinds of relationships between data
in the input and the output of a query. As reported in [2], these
provenances, beyond the intrinsic information on how queries
work, have been used in a number of applications, as the study
of annotation propagation and view update.

In this paper, we focus on one of the earlier notions of prove-
nance: lineage. First defined in [3], the data lineage problem
consists in determining the source data which produced the
output of a query and its process. Some applications of lin-
eage are: (i) finding the data that originated specific views in
scientific databases; (ii) finding faulty data in a huge dump
generated from network monitors in the context of diagno-
sis systems; (iii) helping to translate view updates into the
corresponding updates performed on the base data.

Lineage is defined in different ways. Here, we refer to the
definition given in [2]. Given a database instance I, a query
0, and a tuple r € Q(I), the lineage of ¢ is the set of all and
only the tuples in / that were used in Q to produce it. We call
these the relevant tuples.

In this paper, we propose a different kind of provenance
called attribute lineage, which takes inspiration from lineage.
To make a clear distinction, the classical lineage is tuple based
that is, it tells the provenance of one tuple of the output. We
also call it ruple lineage. Attribute lineage, on the other hand,
is attribute based: it tells the provenance of one attribute in
one output tuple. Informally, we define the attribute lineage
of an output cell (a value in one output tuple) as the set of all
and only the cells in / that were used to produce it.

This new lineage is more informative than tuple lineage
since it not only indicates the relevant tuples, but also the
relevant attributes inside these tuples. As such, it allows for
an even higher understanding of the origin of data. This un-
derstanding can be useful in the tasks where a higher degree
of granularity is required in the study of the provenance of
data. One example is the identification of “hotspots” in a rela-
tional database. Given a set of queries over the same database
instance, the more an attribute is used, the more frequently it

will appear in the lineages. It can, therefore, be considered a
hotspot of the database, i.e. information that is used frequently
and is therefore particularly important in the context of these
queries.

The paper is organized as follows: in Section 2 we report
the related works; Section 3 presents definitions that are used
in this paper; Section 4 defines the attribute lineage and shows
how it can be connected to the classical tuple lineage; finally,
Section 5 reports our conclusions and the future works.

2 Related Work

In [2] four main data provenance types for database manage-
ment systems are discussed: lineage [3], why-provenance [1],
how-provenance [4] and where-provenance [1].

Why-, how- and where- provenance are all tuple-based:
Given a database instance /, a query Q and the result Q(D),
consider one tuple ¢ of the output. The provenance of 7 is infor-
mation about the generation of this tuple using the provenance
of the input tuples used by Q. Different types of provenance
convey different levels of information.

Lineage is defined as the set of all (and only) tuples that
are used in the query, i.e. the tuples that are relevant to its
generation.

Why-provenance is based on the notion of witness set. A
witness is a set of relevant tuples that guarantee the existence
of 7 in Q(D). Lineage is therefore an example of witness. The
why-provenance of a tuple # is a particular set of witnesses —
described in [1] — that are computed from the query, called
the witness basis. A witness basis may consist of more than
one witness. Therefore, why-provenance contains more in-
formation than lineage, since it describes alternative ways in
which the same output may be generated.

How-provenance takes the form of a polynomial, called
the provenance polynomial, where variables are taken from
the set of identifiers of the tuples and coefficients are taken
from N. As suggested by the name, this provenance also
conveys information on how the input tuples are used in Q.
For example, when two tuples are combined in a join, their
provenance is also combined in the polynomial using the
- operator. When two or more tuples become equivalent in
a union or a projection, the corresponding monomials are
combined using the + operator. It has been shown in [2] that
how-provenance is the most general and informative of the
three, and contains both why- and where-provenance.

Where-provenance is attribute-based. Given a tuple ¢t and
an attribute A of Q(I), the where-provenance of the value r e A
is the set of cells in 7 from which ¢ e A has been copied. In this
sense, where-provenance describes from where an attribute is
coming.

The attribute lineage presented in this paper is attribute-
based as in where-provenance, and gives the set of all and
only the relevant cells used in the input / to build one cell 7 - A
of the output.

3 Preliminaries

The notation that we use here is largely taken from [2]. Let
D be a finite domain of data values {d,...,d,} and U a
collection of field names (also called attribute names). We use
the symbols U,V to indicate finite subsets of U.

A tuple 7 is a function U + D, written as (A1 : dy,...,A,:
dy,). A tuple assigning values to each field name in U is called
U-tuple. We write Tuple for the set of all tuples, U-Tuple for
the set of all U-tuples. We write ¢ @ A for the value of the A-
field of 7 and ¢[U] for the restriction of tuple # over U C V to
field names in U. We write ¢[A — B] for the result of renaming
field A to B in ¢ (assuming B is not already present in ¢).

A relation or table r : U is a finite set of tuples over U. We
call R a finite collection of relation names. A schema R is
amapping (R; : Uy,...,R, : U,) from R to a finite subset of
U (assigning to every relation name a set of attributes). A
database or instance I is a function I : (Ry : Uy,...,R, : Uy)
mapping each R; : U; € R to a relation r; over U;.

We call tuple location a tuple tagged with its relation name,
written (R,t). TupleLoc = R_x Tuple is the set of all tuple
locations. A database instance / can equivalently be seen as a
finite set of tuple locations {(R,7)|t € I(R)}.

Similarly, a field location, or cell, refers to a particular
field of a tagged tuple. Such a field is a triple (R,7,A) €
R x Tuples x U. FieldLoc is the name of the set of all field
locations.

In our notation for relational algebra queries we use the
selection Gy to filter a relation by retaining tuples satisfying
some predicate 6. The form of predicates is left unspecified.
Typically it includes quality tests (A = B, A = d) or inequality
tests (A > d). We write A € 0 as a way to indicate that the
attribute A is used in some test of 0.

Special Operators Taking inspiration from what is done
in [2], we define attribute lineage as a function which maps a
field location to a set of input field locations or to a special
constant L, meaning undefined. In particular, we need to take
into consideration two possible scenarios:

1. A cell has empty lineage provided it is present in the
output but it was constructed by the query, e.g. using a
constant expression.

2. A cell has no lineage provided it is not present in the
output of the query.

The symbol @ denotes empty lineage, and L denotes no lin-
eage (or undefined).

The possibility of no lineage (L) means that we need to be
careful when combining lineages in join, union and projec-
tion.

First, consider a query Q1 x Q. A cell c = (Q X 02,1,A)
has as lineage the union of set of attributes, as we shall see.
These sets are computed from the information contained in

the tuples ¢[U,] € Q) and t[U,] € Q». However, if one of these
two tuples is actually undefined (L), then ¢ cannot be in the
result, so its lineage should also be L.

We handle joins using a strict union operation [2], defined
as follows:

lUusX= XUsl =1
XUgY =XUY (X#L#Y)

For the union operation, consider a query Q; U Q». If a
tuple ¢ is in both Q; and Q, then the lineage of ¢ = (Q; U
0»,t,A) is the union of the lineages in the subqueries (and
the union with other sets, as we shall show). If ¢ is defined
only in one subquery, then the lineage of ¢ is derived only
from the subquery in which ¢ is defined. The lineage of c is
undefined only if # is undefined in both subqueries. To handle
this behavior, we use a lazy union operation [2]:

luX= XUl =X
XUrY =XUY (X#L#Y)

For projection, if 7 is not in the query result, or if A ¢ U,
the lineage of the field location ¢ = (Q(I),7,A) is L. On the
contrary, if multiple tuples 7 project to #[U] and A € U, then
we want to combine their lineages in a lazy way. The lazy
flattening operation is defined as follows:

U0=1
Ux} =X

ULXUY)=U,XuLULY

Similarly, the strict flattening operation is defined as follows:

Usm:J_

X ifX#1,VX
1 otherwise

Us{X} = {

Us(XUY) =UsX UsUsY

Sometimes we also write J* instead of | J; when the sub-
script is already occupied by some condition. Now that we
have adopted these auxiliary definitions, we are ready to de-
fine the lineage for one relational operator.

4 Attribute Lineage

In this section, an operational definition of attribute lineage for
one relational operator is first given. Then, the same definition
for a more complex query composed by a series of SPJRU
queries is proposed. This is an operational definition due to
the fact that the lineage is defined via annotation-propagation
behavior of each relational operator independently.

We extend the definition of lineage given in [2] by taking
into consideration the fact that attribute lineage needs to con-
tain all the attributes used by a query. Each relational operator
uses the attributes in a different way.

Definition 4.1. Attribute Lineage for a relational opera-
tor Given a database instance I, a query Q, a tuple 1:U € Q(I)
and a field location ¢ = (Q,t,A), A € V, we say that the lin-
eage of ¢, written as Lin(Q,t,A), is an element of the set
P(FieldLoc), defined as:

0 ift=u

1 otherwise

1. Lin({u},t,A) = {

R.t,A ifr € I(R
2. Lin(R,t,A):{{(HA) ifr € I(R)
otherwise

UscoLin(R,t,B) if (t)
1 otherwise

3. Lin(ce(R),1,A) = {

4. Lin(ny (R),1,A) = Uficgqp) sy Lin(Rt',A)
5. Lin(pasg(R),1,C) = Lin(R,t[B — A],C[B — A))

6. Lil’l(R] X Rz,l‘,A) =
Lin(Ry,t[U,],A") Us Lin(Ry,t[Us],A"), where Uy, U, are
the sets of attributes of Ry, R, respectively, and A’ €
Uy NU, (A’ is the attribute used for the natural join).

7. Lin(Ry URy,t,A) = Lin(Ry,t,A) Uy Lin(Ry,t,A).
In the case A ¢ V, then Lin(Q(I),t,A) = L.

This definition works for only one operator and represents
the base definition for the lineage of an attribute. We now
define the notion of lineage for an attribute in a view obtained
by a combination of queries.

In the next definition, we use the where-provenance (de-
fined in [1]) as an auxiliary function for our definition of
Attribute Lineage. Here we report a compositional definition
of where-provenance adapted from the one given in [2]. The
difference is that while [2] considers all the attributes of an
output tuple, in our definition we limit to consider only one
attribute at the time.

Definition 4.2. Where-Provenance Given a database in-
stance I, an SPJRU query Q', a tuple +:U € Q'(I) and an
attribute A € U, the where-provenance of the field location ¢
in ¢ is defined as follows:

0 ift=u
1 otherwise

1. Where({u},t,A) = {

{(Rr.A)} ifrel(R)
2. Where(R,t,A) = {L otherwise

Where(Q(I),t,A) if 0(z)
1 otherwise

3. Where(co(Q),t,A) :{

4, WhErE(TEU(Q),t,A) = UIC"=(Q,[’,A)‘t'[U]=t Where(c/).

5. Where(pa—p(Q),t,C[A — B]) = Where(Q,t[B
A],C[B — A)).

6. Where(Q1 ™ Q0»,t,A) = Where(Q1,t[U1],A) Us
Where(Qz7 [Us],A).

7. Where(Q1 U Qa,t,A) = Where(01,t[U1],A) UL
Where(Q2,t[Us],A).

If A ¢ U, then Where(Q',t,A) = L.

Now, we can use this definition of where-provenance as a
function in the next definition.

Definition 4.3. Attribute Lineage for arbitrary queries
Given a database I, a SPJRU query Q' over I, a tuple 1:U €
Q(I) and an attribute location ¢ = (Q',#,A) with A € U, then
the lineage of c according to Q' and I, denoted as Lin(Q’,,A)
is an element of P(FieldLoc), defined as follows:

1. L zn(Ge(),t,A) =

5 (0..8)Beo(Where(c Y UsLin(c")) if0(r)
otherwise

n(ny(Q),t,A) =

5<QWAVWFAWWww@UUSUn@u)

3. Lin(pas(Q),t,C) = Lin(Q(I),1[B — A],C[B — A]) Us
Where(Q,t[B s A],A).

4. Lin(Q] X QQ,Z‘,A) =
Where(c1) Us Lin(c1) Us Where(cz) Us Lin(cz), where
c1 = (Qi(1),1[th],A"),c2 = (Q2(I),1[Ua], A").

5. Lin(Q1UQs,1,A) =
(Where(c1) Us Lin(c1)) U
where ¢; = (Ql(l),l,A),Cz =

IfA ¢ U, then Lin(Q',t,A) = L.

(Where(cp) Us Lin(cz)),
(QZ(I)ﬂth)'

4.1 Relating the Two Lineages

We now show that attribute provenance contains more infor-
mation than tuple-oriented provenance, and how the latter can
be derived from the former.

Consider the algebraic structure defined in [2]:

Kpin = {P(TupleLoc),1,0,Ur,Us}

Consider also the following semiring structure defined for
the attribute lineage:

K, = {P(FieldLoc),1,0,Ur,Us}

Construct a homomorphism /4 : Ky, — K], such that:

(L) = h(0) = 0
h(xUrLy) = h(x)ULh() h(xUsy) = ()

h({(R,1,A)}) ={R;t} h(Where(c))

Note that the last operation maps an attribute location to
the corresponding tuple location that contains it. This ho-
momorphism simply discards the information provided by
where-provenance.

We show in the next proposition that this function provides
a mapping from the elements of the attribute lineage of a cell
t o A to the elements of the tuple lineage of the tuple ¢. In this
way, given the attribute lineage, it is always possible to build
the corresponding tuple lineage.

()

Proposition 4.1. Let Q be an SPJRU query over the database
instance 7, :U€ Q([), and the field location ¢ = (Q,¢,A), with
A € U. Then h(Lin(Q,t,A)) = Lin(Q,1,t).

Proof. The proof is done by induction over Q. We use the
definitions of lineage for tuples given in [2]. We start from
the base case, where Q is composed by only one relational
operator:

= Lin(Q,1,{u})

1 otherwise

{@ ifr=u
h

2. h(Lin(R,1,A)) =
h({(R,t,A)}) ift€I(R)
h(L) otherwise
F@Miﬂﬂ@mm“)
1 otherwise
3. h(Lin(cg(R),t,A)) =
h(Ujeo Lin(R,t,B)) if 6(z)
h(L) otherwise
Ubeo h(Lin(R,t,B)) if 8(t)
1L otherwise
Useo Lin(Q,1,t) if 8(t)
1 otherwise
Lin(Q,1,t) if8(r) .
{J_ otherwise Lin(0o(R),1,4)
4. h(Lin(ny (R),t,A)) =

(UﬁeR(I),t’[U]=tLin(Rat/aA)) =
v h(Lin(R.1',A)) =
_, Lin(R,1,1') = Lin(my (R),1,1)

Uticr
UﬁER(I),t'[U]

5. h(Lin(pa-s(R),1,C)) =
h(Lin(R,1[B — A],C[B + A])) =
Lin(R,1,t[B — A]) = Lin(pas,1,t)

6. h(Lin(R; Ry,1,A)) =
h(Lin(Ry,t[U1],A")) Us h(Lin(Ry
Lin(Ry,t[U1]) Us Lin(Ry,t[Us])

1[Un],A")) =
= Lin(Ry X Ry,1,1)

7. h(Lin(Ry URy,1,A)) =
h(Lin(R1,1,A)) Uy h(Lin(Ra,1,A)) =
= Lin(Ry,1,t) Uy Lin(Ry,1,t) = Lin(R{ URy,1,t)

Where points 3, 4, 5, 6, and 6 use point 2. We can now go
to the inductive step:

1 h(Lin(G0(0).1,4)) =
h(Up— (0,15 peo(Where(c) UsLin(c")) if0(r)

,= (0..8)|peo M(Where(c") Us h(Lin(c") if 8(7)

Uf/ (013 peo0Us Lin(Q.1,1) if6(1)
L otherwise
Lin(Q,1,t) if6(r)

= Lin(c .t
1 otherwise (06(0))

2. h(Lm(JtU(Q) tA)) -
(U I=(Q." A [U (here(/) USLlI’l()
Uc’— (0.4 A)'[U] z(Where(c') Us h(Lin(c")) =

U;’eQ(U)| U= Lin(Q,1,1") =

3. h(Lln(pAHB(Q),t,C) =
h(Lin(Q,t[B — A],C[B — A]) Us Where(Q,t[B
A].,A))

4. h(Lin(Q1 ® Q2,t,A)) =
h(Where(Q1,t[U1],A")) Us h(Lin(Q1,t[U1],A")) U
h(Where(Qz,t[Uz],A’))Ugh(Lm(Qz, [U2],A7)) =
QUSLin(Ql,I,t[Ul]) UsOUs Lin(Q2,1, t[Uz]) =
Lin(Q1 X QQ,I,I)

5. h(Lin(Ql UQQ,Z‘,A)) =
[h(Where(Q:(I),1,A)) Us h(Lin(Q(I),1,A))] UL
W(Where(Qx(1).1.4)) Us h(Lin(Qx(1),1,4))] =
:@ULLin(Ql,I,t)ULQULLin(Ql,I,l‘):
Lin(Q1UQs,1,t)

h(L otherwise

otherwise

5 Conclusions and Future Work

In this paper we presented attribute lineage, a new kind of
provenance for data at the attribute level that enables users
to know which cells in the input database were used to pro-
duce an output cell. Attribute lineage is more informative
than tuple-oriented lineage since it not only gives informa-
tion about which tuples are relevant to the creation of the
cell but also which attributes inside these tuples were used in
the query. We also gave a homomorphism between attribute
lineage and tuple lineage, showing that the former is more
general than the letter.

In future work, we will follow two directions. first, build-
ing on the ideas in this paper for attribute lineage (where-
provenance), we will propose two new attribute provenances:
attribute why-provenance and attribute how-provenance. We
will show how these provenances are respectively more gen-
eral than their tuple-based counterparts, and how the attribute
how-provenance is more general than both the attribute why-
provenance and the attribute lineage. Second, we will study
the computational complexity of computing attribute prove-
nance, considering both time and space. To do so, we will
consider synthetic datasets of different sizes and compute at-
tribute provenances of tuples produced by different queries.
In this way, we will record the required time to compute these
lineages and the space required to store them.

References

[1] P. Buneman, S. Khanna, and W. C. Tan. Why and where:
A characterization of data provenance. In Database The-
ory - ICDT 2001, 8th International Conference, pages
316-330, 2001.

[2] J. Cheney, L. Chiticariu, and W.C. Tan. Provenance in
databases: Why, how, and where. Foundations and Trends
in Databases, 1(4):379-474, 2009.

[3] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage
of view data in a warehousing environment. ACM Trans.
Database Syst., 25(2):179-227, 2000.

[4] T. J. Green, G. Karvounarakis, and V. Tannen. Prove-
nance semirings. In Proceedings of the twenty-sixth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 31-40. ACM, 2007.

[5] C. A. Lynch. When documents deceive: Trust and prove-
nance as new factors for information retrieval in a tangled
web. Journal of the American Society for Information
Science and Technology, 52(1):12-17, 2001.

[6] Y. Simmhan, B. Plale, and D. Gannon. A survey of data
provenance in e-science. SIGMOD Record, 34(3):31-36,
2005.

Appendix
A Example

In this section we report an example to describe how attribute
lineage works. Figure 1 reports a simple database composed
by two tables, originally taken from [2]. The first table is
called Agencies, the second one External Tours. Every tuple
and every cell present a unique identifier.

tId Name BasedIn phone
ay BayTours (aj,1) San Francisco (a1,2) | 415-1200 (a1,3)
ay || HarborCruz (as1) Santa Cruz (az,2) 831-3000 (asz,3)

tId Name Destination type price

€1 BayTours (e1,1) | San Francisco (e1,2) | car (e13) | 50 (e1.4)
e BayTours (ez;1) Santa Cruz (ez2) bus (e2,3) | 100 (e2.4)
€3 BayTours (e31) Santa Cruz (es2) | boat (es3) | 250 (e3.4)
€4 BayTours (e4,1) Monterey (e4,2) boat (e4,3) | 400 (eq,4)
es || HarborCruz (es1) Monterey (e5,2) boat (e5,3) | 200 (e5.4)
e¢ || HarborCruz (eq1) Carmel (eg,2) train (eg3) | 90 (eg.4)

Figure 1: A simple online travel database composed by two
relations: Agencies (above) and ExternalTours (below). Every
tuple and attribute is uniquely identified by a unique id.

Consider now Figure 2. The query Q; asks for all the agen-
cies in the database that perform boat tours and their phone
numbers. The output of the query, called Rz, is also shown in
Figure 2. We report two tables. The first one, table a, is the
one actually obtained from the query Q1. The second, table b,
is obtained if we do not use the DISTINCT operator.

We focus on the first tuple of table a, 01, and on the value
of the attribute phone, 415 — 1200. We call this field location
o1,2. Its coordinates are 01> = (R3,01, phone). Note that, if
we use set semantic, 01 7 is actually the product of a merge
between two other attributes, highlighted in table b, due to
the projection. We want to know the attribute lineage of this
attribute.

To do this, we consider, step by step, the different opera-
tions performed by the query, going backward from the output
relation R3.

()1 : SELECT DISTINCT a.name, a.phone

FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND e.type = ’boat’

R3 = TName,Phone(R2)

t1d Name Phone tId Name Phone

01 BayTours (01,1) [415-1200 (01,2) 01 BayTours (01,1) [A15-1200 (o1,2)
0y HarborCruz (03,1) | 831-3000 (02,2 o} BayTours (0} ;) | [415-1200 (0)|
02 HarborCruz (02,1) | 831-3000 (02,2)

a b

Figure 2: The query Q; and its result, table R3 — represented
with and without the set semantics — with identifiers for each
cell.

Considering O, we can decompose it in three operations:
join, selection and projection, performed in this order. Starting
backward, R3 is the output of the last operation, a projection,
performed on a table R;, presented in Figure 3.

Ra = 0type=rboar' (R1)

Td Name Basedln phone Destination Type price
51 BayTours (1,1, €3.1) co (ar,2) Santa Oruz (e3 2) | boat (eas) | 250 (e34)
B2 BayTours (a1,1,€4,1) ncisco (a,2) Monterey (e4,2) boat (es,3) | 400 (es.4)
43 || HarborCruz (as.i.es.1) | Santa Cruz (as.) Monterey (e5.) | boat (es.a) | 200 (e5.4)

Figure 3: Intermediate step reporting R;, before the projection
and after the selection. Every cell is annotated with its where-
provenance.

Now the question is “how did the cell 01 » = (R3, 01, phone)
end up in R3?”. This was possible thanks to the presence of
the two cells highlighted in Figure 3. The projection was
performed on the attributes name and phone, but since we are
asking the lineage of o1 », only the attribute phone is relevant.
By definition, the lineage of o1 7 is given by the union of the
lineages of the two cells highlighted in R; in purple with the
where-provenance of those same two cells, as per formula
reported in Figure 4.

Lineage(Rj3, 01, Phone) =W here(Rs, 61, Phone) U Lineage(Rz, 61, Phone)
UWhere(R3, 62, Phone)U Lineage(Rs, 62, Phone)
= U Lineage(Ry, 61, Phone) U U Lineage(Ry, 62, Phone)

Figure 4: Formulas for the lineage of 01, computed at the
level of the table Rj3.

The where-provenance tells us which cells from / are used,
while the recursive application on the lineage formula is nec-
essary to unfold the whole process that brought o1 > in its
place. We call the two used cells ¢; = (Ry,d;, Phone) and
c2 = (R, 2, Phone). We now proceed recursively for the lin-
eage of these two.

Ry = Agencies x ExternalTours

Td Name Basedin phone

5 BayTours (ar.17¢1.1) i Y | 415-1200 (a1

o BayTours (a1.152,1)) | 415-1200 (ai's)

63 || BayTours (ar1.:e5.1)) | 415-1200 (a1's)
)

price
50 (e1.4)
100 (e2,4)
250 (e3,4)

o4 BayTours (a1,1;€4,1) San Francisco (a1, 415-1200 (ay,3) 400 (e4,4)
o5 HarborCruz (as,1;e5,1) Santa Cruz (az,2) 831-3000 (az,3) 200 (e5,4)
%6 HarborCruz (as.1; €g.1) Santa Cruz (as.2) 831-3000 (as,3) 90 (eq.4)

Lineage(Ry, 61, Phone) =[Where(Ra, o3, type)|U Lineage(Ry, o3, type)

=|{es,3, J U Lineage(Ry, 03, type)

Figure 5: Table R obtained after the join, and the formula for
the attribute lineage of (Ry,d1,type).

Focus now only on cy, the purple cell (the lineage of c; is
computed similarly). In Figure 5 we represent Rj, the table
from which R; is created through the selection. “How that
cell was able to end up in R»?” It was because the previous op-
eration was a selection on the attribute type. In particular, the
cell that guaranteed the presence of ¢; was ¢z = (Ry,03,type)
(the yellow one in Figure 5). The lineage of c; is therefore
given by the why-provenance of c3 united to its lineage, as
reported in the formula of Figure 5.

The last step of the computation is represented in Figure
6. Here we are asking how c¢3 was able to be present in R;. It
was because the cells aq,1 and e3 1, highlighted in the figure,
were used in the natural join. The lineage of c¢3 is therefore
the union of the identifier of these two cells. Here we reached

tId Name BasedIn phone

ay BayTours (a;,1)] | San Francisco (a;2) | 415-1200 (ay 3)

ay || HarborCruz (as,1) Santa Cruz (as2) 831-3000 (asz,3)
tId Name Destination type price
e BayTours (e1,1) | San Francisco (e1,2) | car (e13) 50 (€1,4)
e BayTours (e2,1) Santa Cruz (es,2) bus (e2,3) | 100 (ez4)
e3 Santa Cruz (e3,2) boat (es3,3) | 250 (e3,4)
ey BayTours (e4,1) Monterey (e4,2) boat (es,3) | 400 (e4,4)
es || HarborCruz (es1) Monterey (es2) boat (e53) | 200 (es5.4)
e || HarborCruz (eg 1) Carmel (eg2) train (eg3) | 90 (e,4)

Lineage(Ry, 03, type) = [Activity, a;, Name} U [ExternalTours, e3, Name}]

= {adles}

Figure 6: The tables Activity and ExternalTours, before the
join, and the formula for the lineage of (Ry,0d1,type).

the base case, with no more lineages to unfold. These sets
thus discovered can be substituted on the previous equations,
going up the recursive tree to compute the original lineage of
CQ.

It is easy to see how the lineage of 01, is thus the set
{a171 ,a173,e371,e3.3,e4,1,e4)3}. With similar computations, it
can be found that the attribute 01, has attribute lineage
{ai1,e3.1,e33,€e41,es3}. The two lineages are different: the
second one does not contain a; 3, since it is never used by the
projection to obtain oy .

It is also easy to see how the lineage of the tuple o, where
01, is contained, is the set {a;,e3,e4}. As we can see, all the
attributes in the attribute lineage belong to one tuple of the
tuple lineage. A surjective function can be defined from the
attribute lineage to the tuple lineage simply discarding the
information about the column. Thus, intuitively, the attribute
lineage “covers” the tuple lineage, since it only contains cells
from tuples of the tuple lineage, and all the tuples of the tuple
lineage are represented. This intuition is actually confirmed
by Proposition 4.1.

	Introduction
	Related Work
	Preliminaries
	Attribute Lineage
	Relating the Two Lineages

	Conclusions and Future Work
	Example

