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Abstract
Data-driven algorithms are studied and deployed in diverse domains to support critical
decisions, directly impacting people’s well-being. As a result, a growing community
of researchers has been investigating the equity of existing algorithms and propos-
ing novel ones, advancing the understanding of risks and opportunities of automated
decision-making for historically disadvantaged populations. Progress in fair machine
learning and equitable algorithm design hinges on data, which can be appropriately
used only if adequately documented. Unfortunately, the algorithmic fairness commu-
nity, as a whole, suffers from a collective data documentation debt caused by a lack
of information on specific resources (opacity) and scatteredness of available infor-
mation (sparsity). In this work, we target this data documentation debt by surveying
over two hundred datasets employed in algorithmic fairness research, and producing
standardized and searchable documentation for each of them. Moreover we rigor-
ously identify the three most popular fairness datasets, namely Adult, COMPAS, and
German Credit, for which we compile in-depth documentation. This unifying doc-
umentation effort supports multiple contributions. Firstly, we summarize the merits
and limitations of Adult, COMPAS, and German Credit, adding to and unifying recent
scholarship, calling into question their suitability as general-purpose fairness bench-
marks. Secondly, we document hundreds of available alternatives, annotating their
domain and supported fairness tasks, along with additional properties of interest for
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fairness practitioners and researchers, including their format, cardinality, and the sen-
sitive attributes they encode. We summarize this information, zooming in on the tasks,
domains, and roles of these resources. Finally, we analyze these datasets from the per-
spective of five important data curation topics: anonymization, consent, inclusivity,
labeling of sensitive attributes, and transparency. We discuss different approaches and
levels of attention to these topics, making them tangible, and distill them into a set of
best practices for the curation of novel resources.

Keywords Algorithmic fairness · Datasets · Documentation debt

1 Introduction

Following the widespread study and application of data-driven algorithms in con-
texts that are central to people’s well-being, a large community of researchers has
coalesced around the growing field of algorithmic fairness, investigating algorithms
through the lens of justice, equity, bias, power, and harms. A line of work gaining trac-
tion in the field, intersecting with critical data studies, human–computer interaction,
and computer-supported cooperative work, focuses on data transparency and standard-
ized documentation processes to describe key characteristics of datasets (Gebru et al.
2018;Holland et al. 2018; Bender and Friedman 2018;Geiger et al. 2020; Jo andGebru
2020; Miceli et al. 2021). Most prominently, Gebru et al. (2018) and Holland et al.
(2018) proposed two complementary documentation frameworks, called Datasheets
for Datasets and Dataset Nutrition Labels, to improve data curation practices and
favour more informed data selection and utilization for dataset users. Overall, this line
of work has contributed to an unprecedented attention to dataset documentation in
Machine Learning (ML), including a novel track focused on datasets at the Confer-
ence on Neural Information Processing Systems (NeurIPS), an initiative to support
dataset tracking in repositories for scholarly articles,1 and dedicated works producing
retrospective documentation for existing datasets (Bandy and Vincent 2021; Garbin
et al. 2021), auditing their properties (Prabhu and Birhane 2020) and tracing their
usage (Peng et al. 2021).

In recent work, Bender et al. (2021) propose the notion of documentation debt, in
relation to training sets that are undocumented and too large to document retrospec-
tively. We extend this definition to the collection of datasets employed in a given field
of research. We see two components at work contributing to the documentation debt
of a research community. On one hand, opacity is the result of poor documentation
affecting single datasets, contributing to misunderstandings and misuse of specific
resources. On the other hand, when relevant information exists but does not reach
interested parties, there is a problem of documentation sparsity. One example that
is particularly relevant for the algorithmic fairness community is represented by the
German Credit dataset (UCI Machine Learning Repository 1994), a popular resource
in this field. Many works of algorithmic fairness, including recent ones, carry out
experiments on this dataset using sex as a protected attribute (He et al. 2020b; Yang

1 https://medium.com/paperswithcode/datasets-on-arxiv-1a5a8f7bd104.
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et al. 2020a; Baharlouei et al. 2020; Lohaus et al. 2020; Martinez et al. 2020; Wang
et al. 2021; Perrone et al. 2021; Sharma et al. 2021), while existing yet overlooked
documentation shows that this feature cannot be reliably retrieved (Grömping 2019).
Moreover, the mere fact that a dataset exists and is relevant to a given task or a given
domain may be unknown. The BUPT Faces datasets, for instance, were presented
as the second existing resource for face analysis with race annotations (Wang and
Deng 2020). However several resources were already available at the time, including
Labeled Faces in theWild (Han and Jain 2014), UTKFace (Zhang et al. 2017b), Racial
Faces in the Wild (Wang et al. 2019e), and Diversity in Faces (Merler et al. 2019).2

To tackle the documentation debt of the algorithmic fairness community, we survey
the datasets used in over 500 articles on fair ML and equitable algorithmic design,
presented at seven major conferences, considering each edition in the period 2014–
2021, and more than twenty domain-specific workshops in the same period. We find
over 200 datasets employed in studies of algorithmic fairness, for which we produce
compact and standardized documentation, called data briefs. Data briefs are intended
as a lightweight format to document fundamental properties of data artifacts used in
algorithmic fairness, including their purpose, their features, with particular attention
to sensitive ones, the underlying labeling procedure, and the envisioned ML task, if
any. To favor domain-based and task-based search from dataset users, data briefs also
indicate the domain of the processes that produced the data (e.g., radiology) and list
the fairness tasks studied on a given dataset (e.g. fair ranking). For this endeavour,
we have contacted creators and knowledgeable practitioners identified as primary
points of contact for the datasets. We received feedback (incorporated into the final
version of the data briefs) from 79 curators and practitioners, whose contribution is
acknowledged at the end of this article. Moreover, we identify and carefully analyze
the three datasets most often utilized in the surveyed articles (Adult, COMPAS, and
German Credit), retrospectively producing a datasheet and a nutrition label for each
of them. From these documentation efforts, we extract a summary of the merits and
limitations of popular algorithmic fairness benchmarks, a categorization of domains
and fairness tasks for existing datasets, and a set of best practices for the curation of
novel resources.

Overall, we make the following contributions.

• Unified analysis of popular fairness benchmarks. We produce datasheets and
nutrition labels for Adult, COMPAS, and German Credit, from which we extract
a summary of their merits and limitations. We add to and unify recent scholarship
on these datasets, calling into question their suitability as general-purpose fairness
benchmarks due to contrived prediction tasks, noisy data, severe coding mistakes,
and age.

• Survey of existing alternatives. We compile standardized and compact documen-
tation for over two hundred resources used in fair ML research, annotating their
domain, the tasks they support, and the roles they play in works of algorithmic
fairness. By assembling sparse information on hundreds of datasets into a sin-
gle document, we aim to support multiple goals by researchers and practitioners,

2 Hereafter, for brevity, we only report dataset names. The relevant references and additional information
can be found in Appendix A.
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including domain-oriented and task-oriented search by dataset users. Contextually,
we provide a novel categorization of tasks and domains investigated in algorithmic
fairness research (summarized in Tables 2 and 3).

• Best practices for the curation of novel resources. We analyze different
approaches to anonymization, consent, inclusivity, labeling, and transparency
across these datasets. By comparing existing approaches and discussing their
advantages, we make the underlying concerns visible and practical, and extract
best practices to inform the curation of new datasets and post-hoc remedies to
existing ones.

The rest of this work is organized as follows. Section2 introduces related works.
Section3 presents the methodology and inclusion criteria of this survey. Section4 ana-
lyzes the perks and limitations of the most popular datasets, namely Adult (Sect. 4.1),
COMPAS (Sect. 4.2), and German Credit (Sect. 4.3), and provides an overall sum-
mary of their merits and limitations as fairness benchmarks (Sect. 4.4). Section5
discusses alternative fairness resources from the perspective of the underlying domains
(Sect. 5.1), the fairML tasks they support (Sect. 5.2), and the roles they play (Sect. 5.3).
Section6presents important topics in data curation, discussing existing approaches and
best practices to avoid re-identification (Sect. 6.1), elicit informed consent (Sect. 6.2),
consider inclusivity (Sect. 6.3), collect sensitive attributes (Sect. 6.4), and document
datasets (Sect. 6.5). Section7 summarizes the broader benefits of our documentation
effort and envisioned uses for the research community. Finally, Sect. 8 contains con-
cluding remarks and recommendations. Interested readers may find the data briefs in
Appendix A, followed by the detailed documentation produced for Adult (B), COM-
PAS (C), and German Credit (D).

2 Related work

2.1 Algorithmic fairness surveys

Multiple surveys about algorithmic fairness have been published in the literature
(Mehrabi et al. 2021; Caton and Haas 2020; Pessach and Shmueli 2020). These works
typically focus on describing and classifying important measures of algorithmic fair-
ness and methods to enhance it. Some articles also discuss sources of bias (Mehrabi
et al. 2021), software packages and projects which address fairness in ML (Caton
and Haas 2020), or describe selected sub-fields of algorithmic fairness (Pessach and
Shmueli 2020).Datasets are typically not emphasized in theseworks,which is also true
of domain-specific surveys on algorithmic fairness, focused e.g. on ranking (Pitoura
et al. 2021), Natural Language Processing (NLP) (Sun et al. 2019) and computational
medicine (Sun et al. 2019). As an exception, Pessach and Shmueli (2020) and Zehlike
et al. (2021) list and briefly describe 12 popular algorithmic fairness datasets, and 19
datasets employed in fair ranking research, respectivey.

123



Algorithmic fairness datasets: the story so far

2.2 Data studies

The work most closely related (and concurrently carried out) to ours is Le Quy et al.
(2022). The authors perform a detailed analysis of 15 tabular datasets used in works
of algorithmic fairness, listing important metadata (e.g. domain, protected attributes,
collection period and location), and carrying out an exploratory analysis of the prob-
abilistic relationship between features. Our work complements it by placing more
emphasis on (1) a rigorous methodology for the inclusion of resources, (2) a wider
selection of (over 200) datasets spanning different data types, including text, image,
timeseries, and tabular data, (3) a fine-grained evaluation of domains and tasks asso-
ciated with each dataset, and (4) the analysis and distillation of best practices for data
curation. It will be interesting to see how different goals of the research community,
such as selection of appropriate resources for experimentation and data studies, can
benefit from the breadth and depth of both works.

Other works analyzing multiple datasets along specific lines have been published
in recent years. Crawford and Paglen (2021) focus on resources commonly used as
training sets in computer vision, with attention to associated labels and underlying
taxonomies. Fabbrizzi et al. (2021) also consider computer vision datasets, describing
types of bias affecting them, along with methods for discovering and measuring bias.
Peng et al. (2021) analyze ethical concerns in three popular face and person recognition
datasets, stemming from derivative datasets and models, lack of clarity of licenses,
and dataset management practices. Geiger et al. (2020) evaluate transparency in the
documentation of labeling practices employed in over 100 datasets about Twitter.
Leonelli and Tempini (2020) study practices of collection, cleaning, visualization,
sharing, and analysis across a variety of research domains. Romei and Ruggieri (2014)
survey techniques and data for discrimination analysis, focused on measuring, rather
than enforcing, equity in human processes.

Adifferent, yet related, family of articles provides deeper analyses of single datasets.
Prabhu and Birhane (2020) focus on Imagenet (ILSVRC 2012) which they analyze
along the lines of consent, problematic content, and individual re-identification. Kizh-
ner et al. (2020) study issues of representation in the Google Arts and Culture project
across countries, cities and institutions. Some works provide datasheets for a given
resource, such as CheXpert (Garbin et al. 2021) and the BookCorpus (Bandy and
Vincent 2021). Among popular fairness datasets, COMPAS has drawn scrutiny from
multiple works, analysing its numerical idiosyncrasies (Barenstein 2019) and sources
of bias (Bao et al. 2021). Ding et al. (2021) study numerical idiosyncrasies in the Adult
dataset, and propose a novel version, for which they provide a datasheet. Grömping
(2019) discuss issues resulting from coding mistakes in German Credit.

Our work combines the breadth of multi-dataset and the depth of single-dataset
studies. On one hand, we survey numerous resources used in works of algorithmic
fairness, analyzing themacrossmultiple dimensions.On the other hand,we identify the
most popular resources, compiling their datasheet and nutrition label, and summarize
their perks and limitations. Moreover, by making our data briefs available, we hope to
contribute a useful tool to the research community, favouring further data studies and
analyses, as outlined in Sect. 7.
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2.3 Documentation frameworks

Several data documentation frameworks have been proposed in the literature; three
popular ones are described below. Datasheets for Datasets (Gebru et al. 2018) are a
general-purpose qualitative framework with over fifty questions covering key aspects
of datasets, such as motivation, composition, collection, preprocessing, uses, dis-
tribution, and maintenance. Another qualitative framework is represented by Data
statements (Bender and Friedman 2018), which is tailored for NLP, requiring domain-
specific information on language variety and speaker demographics.Dataset Nutrition
Labels (Holland et al. 2018) describe a complementary, quantitative framework,
focused on numerical aspects such as the marginal and joint distribution of variables.

Popular datasets require close scrutiny; for this reason we adopt these frame-
works, producing three datasheets and nutrition labels for Adult, German Credit,
and COMPAS. This approach, however, does not scale to a wider documentation
effort with limited resources. For this reason, we propose and produce data briefs,
a lightweight documentation format designed for algorithmic fairness datasets. Data
briefs, described in Appendix A, include fields specific to fair ML, such sensitive
attributes and tasks for which the dataset has been used in the algorithmic fairness
literature.

3 Methodology

In this work, we consider (1) every article published in the proceedings of domain-
specific conferences such as the ACM Conference on Fairness, Accountability, and
Transparency (FAccT), and the AAAI/ACM Conference on Artificial Intelligence,
Ethics and Society (AIES); (2) every article published in proceedings of well-known
machine learning and data mining conferences, including the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), the Conference on Neural
Information Processing Systems (NeurIPS), the International Conference onMachine
Learning (ICML), the International Conference on Learning Representations (ICLR),
the ACMSIGKDD International Conference on Knowledge Discovery and DataMin-
ing (KDD); (3) every article available fromPast Network Events andOlderWorkshops
and Events of the FAccT network.3 We consider the period from 2014, the year of the
first workshop on Fairness, Accountability, and Transparency in Machine Learning,
to June 2021, thus including works presented at FAccT, ICLR, AIES, and CVPR in
2021.4

To target works of algorithmic fairness, we select a subsample of these articles
whose titles contain either of the following strings, where the star symbol represents
the wildcard character: *fair* (targeting e.g. fairness, unfair), *bias* (biased,
debiasing), discriminat* (discrimination, discriminatory), *equal* (equality,
unequal), *equit* (equity, equitable), disparate (disparate impact), *parit* (par-

3 https://facctconference.org/network/.
4 We are working on an update covering more recent work, including articles presented at the ACM
conference on Equity and Access in Algorithms, Mechanisms, and Optimization.
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ity, disparities). These selection criteria are centered around equity-based notions of
fairness, typically operationalized by measuring disparity in some algorithmic prop-
erty across individuals or groups of individuals. Through manual inspection by two
authors, we discard articles where these keywords are used with a different mean-
ing. Discarded works, for instance, include articles on handling pose distribution bias
(Zhao et al. 2021), compensating selection bias to improve accuracy without attention
to sensitive attributes (Kato et al. 2019), enhancing desirable discriminating properties
of models (Chen et al. 2018a), or generally focused on model performance (Li et al.
2018; Zhong et al. 2019). This leaves us with 558 articles.

From the articles that pass this initial screening, we select datasets treated as impor-
tant data artifacts, either being used to train/test an algorithm or undergoing a data
audit, i.e., an in-depth analysis of different properties. We produce a data brief for
these datasets by (1) reading the information provided in the surveyed articles, (2)
consulting the provided references, and (3) reviewing scholarly articles or official
websites found by querying popular search engines with the dataset name. We discard
the following:

• Word Embeddings (WEs). We only consider the corpora they are trained on, pro-
vided WEs are trained as part of a given work and not taken off the shelf;

• toy datasets, i.e., simulations with no connection to real-world processes, unless
they are used in more than one article, which we take as a sign of importance in
the field;

• auxiliary resources that are only used as a minor source of ancillary information,
such as the percentage of US residents in each state;

• datasets for which the available information is insufficient. This happens very
seldomwhen points (1), (2), and (3) outlined above result in little to no information
about the curators, purposes, features, and format of a dataset. For popular datasets,
this is never the case.

For each of the 226 datasets satisfying the above criteria, we produce a data brief,
available in Appendix A with a description of the underlying coding procedure. From
this effort, we rigorously identify the three most popular resources, whose perks and
limitations are summarized in the next section.

4 Most popular datasets

Figure1 depicts the number of articles using each dataset, showing that dataset uti-
lization in surveyed scholarly works follows a long tail distribution. Over 100 datasets
are only used once, also because some of these resources are not publicly available.
Complementing this long tail is a short head of nine resources used in ten or more
articles. These datasets are Adult (118 usages), COMPAS (81), German Credit (35),
Communities and Crime (26), Bank Marketing (19), Law School (17), CelebA (16),
MovieLens (14), and Credit Card Default (11). The tenth most used resource is the
toy dataset from Zafar et al. (2017c), used in 7 articles. In this section, we summarize
positive and negative aspects of the three most popular datasets, namely Adult, COM-
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Fig. 1 Utilization of datasets in fairness research follows a long tail distribution

PAS, and German Credit, informed by extensive documentation in Appendices B, C,
and D.

4.1 Adult

The Adult dataset was created as a resource to benchmark the performance of machine
learning algorithms on socially relevant data. Each instance is a person who responded
to theMarch 1994 US Current Population Survey, represented along demographic and
socio-economic dimensions, with features describing their profession, education, age,
sex, race, personal, and financial condition. The dataset was extracted from the census
database, preprocessed, and donated to UCI Machine Learning Repository in 1996 by
Ronny Kohavi and Barry Becker. A binary variable encoding whether respondents’
income is above $50,000 was chosen as the target of the prediction task associated
with this resource.

Adult inherits some positive sides from the best practices employed by the US
Census Bureau. Although later filtered somewhat arbitrarily, the original sample was
designed to be representative of the US population. Trained and compensated inter-
viewers collected the data. Attributes in the dataset are self-reported and provided by
consensual respondents. Finally, the original data from the US Census Bureau is well
documented, and its variables can be mapped to Adult by consulting the original doc-
umentation (US Dept. of Commerce Bureau of the Census 1995), except for a variable
denominated fnlwgt, whose precise meaning is unclear.

A negative aspect of this dataset is the contrived prediction task associated with it.
Income prediction from socio-economic factors is a task whose social utility appears
rather limited. Even discounting this aspect, the arbitrary $50,000 threshold for the
binary prediction task is high, and model properties such as accuracy and fairness are
very sensitive to it (Ding et al. 2021). Furthermore, there are several sources of noise
affecting the data. Roughly 7% of the data points have missing values, plausibly due to
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issues with data recording and coding, or respondents’ inability to recall information.
Moreover, the tendency in household surveys for respondents to under-report their
income is a common concern of the Census Bureau (Moore et al. 2000). Another
source of noise is top-coding of the variable “capital-gain” (saturation to $99,999) to
avoid the re-identification of certain individuals (US Dept. of Commerce Bureau of
the Census 1995). Finally, the dataset is rather old; sensitive attribute “race” contains
the outdated “Asian Pacific Islander” class. It is worth noting that a set of similar
resources was recently made available, allowing more current socio-economic studies
of the US population (Ding et al. 2021).

4.2 COMPAS

This dataset was created for an external audit of racial biases in the Correctional
OffenderManagement Profiling for Alternative Sanctions (COMPAS) risk assessment
tool developed by Northpointe (now Equivant), which estimates the likelihood of a
defendant becoming a recidivist. Instances represent defendants scored by COMPAS
in Broward County, Florida, between 2013–2014, reporting their demographics, crim-
inal record, custody and COMPAS scores. Defendants’ public criminal records were
obtained from theBrowardCountyClerk’sOfficewebsitematching thembased ondate
of birth, first and last names.Thedatasetwas augmentedwith jail records andCOMPAS
scores provided by the Broward County Sheriff’s Office. Finally, public incarcera-
tion records were downloaded from the Florida Department of Corrections website.
Instances are associated with two target variables (is_recid and is_violent_recid), indi-
cating whether defendants were booked in jail for a criminal offense (potentially
violent) that occurred after their COMPAS screening but within two years.

On the upside, this dataset is recent and captures some relevant aspects of the
COMPAS risk assessment tool and the criminal justice system in Broward County.
On the downside, it was compiled from disparate sources, hence clerical errors and
mismatches are present (Larson et al. 2016). Moreover, in its official release (ProP-
ublica 2016), the COMPAS dataset features redundant variables and data leakage due
to spuriously time-dependent recidivism rates (Barenstein 2019). For these reasons,
researchers must perform further preprocessing in addition to the standard one by
ProPublica. More subjective choices are required of researchers interested in counter-
factual evaluation of risk-assessment tools, due to the absence of a clear indication of
whether defendants were detained or released pre-trial (Mishler et al. 2021). The lack
of a standard preprocessing protocol beyond the one by ProPublica (ProPublica 2016),
which is insufficient to handle these factors, may cause issues of reproducibility and
difficulty in comparing methods. Moreover, according to Northpointe’s response to
the ProPublica’s study, several risk factors considered by the COMPAS algorithm are
absent from the dataset (Dieterich et al. 2016). As an additional concern, race cate-
gories lack Native Hawaiian or Other Pacific Islander, while Hispanic is redefined as
race instead of ethnicity (Bao et al. 2021). Finally, defendants’ personal information
(e.g. race and criminal history) is available in conjunction with obvious identifiers,
making re-identification of defendants trivial.
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COMPAS also represents a case of a broad phenomenon which can be termed data
bias. With terminology from Friedler et al. (2021), when it comes to datasets encoding
complex human phenomena, there is often a disconnect between the construct space
(what we aim to measure) and the observed space (what we end up observing). This
may be especially problematic if the difference between construct and observation
is uneven across individuals or groups. COMPAS, for example, is a dataset about
criminal offense. Offense is central to the prediction target Y , aimed at encoding
recidivism, and to the available covariates X , summarizing criminal history. However,
the COMPAS dataset (observed space) is an imperfect proxy for the criminal patterns
it should summarize (construct space). The prediction labels Y actually encode re-
arrest, instead of re-offense (Larson et al. 2016), and are thus clearly influenced by
spatially differentiated policing practices (Fogliato et al. 2021). This is also true of
criminal history encoded inCOMPAScovariates, againmediated by arrest andpolicing
practices which may be racially biased (Bao et al. 2021; Mayson 2018). As a result,
the true fairness of an algorithm, just like its accuracy, may differ significantly from
what is reported on biased data. For example, algorithms that achieve equality of true
positive rates across sensitive groups on COMPAS are deemed fair under the equal
opportunity measure (Hardt et al. 2016). However, if both the training set on which
this objective is enforced and the test set on which it is measured are affected by
race-dependent noise described above, those algorithms are only “fair” in an abstract
observed space, but not in the real construct space we ultimately care about (Friedler
et al. 2021).

Overall, these considerations paint a mixed picture for a dataset of high social rel-
evance that was extremely useful to catalyze attention on algorithmic fairness issues,
displaying at the same time several limitations in terms of its continued use as a
flexible benchmark for fairness studies of all sorts. In this regard, Bao et al. (2021)
suggest avoiding the use of COMPAS to demonstrate novel approaches in algorithmic
fairness, as considering the data without proper context may lead to misleading con-
clusions, which could misguidedly enter the broader debate on criminal justice and
risk assessment.

4.3 German credit

The German Credit dataset was created to study the problem of computer-assisted
credit decisions at a regional Bank in southern Germany. Instances represent loan
applicants from 1973 to 1975, whowere deemed creditworthy andwere granted a loan,
bringing about a natural selection bias.Within this sample, bad credits are oversampled
to favour a balance in target classes (Grömping 2019). The data summarizes applicants’
financial situation, credit history, and personal situation, including housing and number
of liable people. A binary variable encoding whether each loan recipient punctually
payed every installment is the target of a classification task. Among the covariates,
marital status and sex are jointly encoded in a single variable. Many documentation
mistakes are present in the UCI entry associated with this resource (UCI Machine
Learning Repository 1994). A revised version with correct variable encodings, called
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South German Credit, was donated to UCI Machine Learning Repository (2019) with
an accompanying report (Grömping 2019).

The greatest upside of this dataset is the fact that it captures a real-world application
of credit scoring at a bank. On the downside, the data is half a century old, significantly
limiting the societally useful insights that can be gleaned from it. Most importantly,
the popular release of this dataset (UCI Machine Learning Repository 1994) comes
with highly inaccurate documentation which contains wrong variable codings. For
example, the variable reporting whether loan recipients are foreign workers has its
coding reversed, so that, apparently, fewer than 5% of the loan recipients in the dataset
would beGerman. Luckily, this error has no impact on numerical results obtained from
this dataset, as it is irrelevant at the level of abstraction afforded by raw features, with
the exception of potentially counterintuitive explanations in works of interpretability
and exploratory analysis (Le Quy et al. 2022). This coding error, along with others
discussed in Grömping (2019) was corrected in a novel release of the dataset (UCI
Machine Learning Repository 2019). Unfortunately and most importantly for the fair
ML community, retrieving the sex of loan applicants is simply not possible, unlike
the original documentation suggested. This is due to the fact that one value of this
feature was used to indicate both women who are divorced, separated, or married, and
men who are single, while the original documentation reported each feature value to
correspond to same-sex applicants (either male-only or female-only). This particular
coding error endeduphaving anon-negligible impact on the fairMLcommunity,where
many works studying group fairness extract sex from the joint variable and use it as a
sensitive attribute, even years after the redacted documentation was published (Wang
et al. 2021; Le Quy et al. 2022). These coding mistakes are part of a documentation
debt whose influence continues to affect the algorithmic fairness community.

4.4 Summary

Adult, COMPAS, and German Credit are the most used datasets in the surveyed algo-
rithmic fairness literature, despite the limitations summarized in Table 1. Their status
as de facto fairness benchmarks is probably due to their use in seminal works (Pedreshi
et al. 2008; Calders et al. 2009) and influential articles (Angwin et al. 2016) on algo-
rithmic fairness. Once this fame was created, researchers had clear incentives to study
novel problems and approaches on these datasets, which, as a result, have become
even more established benchmarks in the algorithmic fairness literature (Bao et al.
2021). On close scrutiny, the fundamental merit of these datasets lies in originating
from human processes, encoding protected attributes, and having different base rates
for the target variable across sensitive groups. Their use in recent works on algorithmic
fairness can be interpreted as a signal that the authors have basic awareness of default
data practices in the field and that the data was not made up to fit the algorithm. Over-
arching claims of significance in real-world scenarios stemming from experiments on
these datasets should be met with skepticism. Experiments that claim extracting a sex
variable from the German Credit dataset should be considered noisy at best. As for
alternatives, Bao et al. (2021) suggest employing well-designed simulations. A com-
plementary avenue is to seek different datasets that are relevant for the problem at hand.
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We hope that the two hundred data briefs accompanying this work will prove useful
in this regard, favouring both domain-oriented and task-oriented searches, according
to the classification discussed in the next section.

5 Existing alternatives

In this section, we discuss existing fairness resources from three different perspectives.
In Sect. 5.1 we describe the different domains spanned by fairness datasets. In Sect. 5.2
we provide a categorization of fairness tasks supported by the same resources. In
Sect. 5.3 we discuss the different roles played by these datasets in fairness research,
such as supporting training and benchmarking.

5.1 Domain

Algorithmic fairness concerns arise in any domainwhereAutomatedDecisionMaking
(ADM) systems may influence human well-being. Unsurprisingly, the datasets in our
survey reflect a variety of areaswhereADMsystems are studied or deployed, including
criminal justice, education, search engines, online marketplaces, emergency response,
social media, medicine, and hiring. In Fig. 2, we report a subdivision of the surveyed
datasets in differentmacrodomains.5 Wemostly follow the area-category taxonomy by
Scimago,6 departing from it where appropriate. For example, we consider computer
vision and linguistics macrodomains of their own, for the purposes of algorithmic
fairness, as much fair ML work has been published in both disciplines. Below we
present a description of each macrodomain and its main subdomains, summarized in
detail in Table 2.

Computer Science. Datasets from this macrodomain are very well represented,
comprising information systems, social media, library and information sciences, com-
puter networks, and signal processing. Information systems heavily feature datasets
on search engines for various items such as text, images, worker profiles, and real
estate, retrieved in response to queries issued by users (Occupations in Google
Images, Scientist+Painter, Zillow Searches, Barcelona Room Rental, Burst, TaskRab-
bit, Online Freelance Marketplaces, Bing US Queries, Symptoms in Queries). Other
datasets represent problems of item recommendation, covering products, businesses,
and movies (Amazon Recommendations, Amazon Reviews, Google Local, Movie-
Lens, FilmTrust). The remaining datasets in this subdomain represent knowledge bases
(Freebase15k-237,Wikidata) and automated screening systems (CVs from Singapore,
Pymetrics Bias Group). Datasets from social media that are not focused on links and
relationships between people are also considered part of computer science in this sur-
vey. These resources are often focused on text, powering tools, and analyses of hate
speech and toxicity (Civil Comments, Twitter Abusive Behavior, Twitter Offensive
Language, Twitter Hate Speech Detection, Twitter Online Harassment), dialect (Twit-

5 The total exceeds 226 due to multiple domains being applicable to some dataset.
6 See the “subject area” and “subject category” drop down menus from https://www.scimagojr.com/
journalrank.php, accessed on March 15, 2022.
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Fig. 2 Datasets employed in fairness research span diverse domains. See Table 2 for a detailed breakdown

terAAE), and political leaning (Twitter Presidential Politics). Twitter is by far the most
representedplatform,while datasets fromFacebook (GermanPolitical Posts), Steeemit
(Steemit), Instagram (InstagramPhotos), Reddit (RtGender,RedditComments), Fitoc-
racy (RtGender), and YouTube (YouTube Dialect Accuracy) are also present. Datasets
from library and information sciences are mainly focused on academic collaboration
networks (Cora Papers, CiteSeer Papers, PubMed Diabetes Papers, ArnetMiner Cita-
tion Network, 4area, Academic Collaboration Networks), except for a dataset about
peer review of scholarly manuscripts (Paper-Reviewer Matching).

Social Sciences. Datasets from social sciences are also plentiful, spanning law,
education, social networks, demography, social work, political science, transporta-
tion, sociology and urban studies. Law datasets are mostly focused on recidivism
(Crowd Judgement, COMPAS, Recidivism of Felons on Probation, State Court Pro-
cessing Statistics, Los Angeles City Attorney’s Office Records) and crime prediction
(Strategic Subject List, Philadelphia Crime Incidents, Stop, Question and Frisk, Real-
TimeCrimeForecastingChallenge,Dallas Police Incidents, Communities andCrime),
with a granularity spanning the range from individuals to communities. In the area
of education we find datasets that encode application processes (Nursery, IIT-JEE),
student performance (Student, Law School, UniGe, ILEA, US Student Performance,
Indian Student Performance, EdGap, Berkeley Students), including attempts at auto-
mated grading (Automated Student Assessment Prize), and placement information
after school (Campus Recruitment). Some datasets on student performance support
studies of differences across schools and educational systems, for which they report
useful features (Law School, ILEA, EdGap), while the remaining datasets are more
focused on differences in the individual condition and outcome for students, typically
within the same institution. Datasets about social networks mostly concern online
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social networks (Facebook Ego-networks, Facebook Large Network, Pokec Social
Network, Rice FacebookNetwork, Twitch Social Networks, University FacebookNet-
works), except for High School Contact and Friendship Network, also featuring offline
relations. Demography datasets comprise census data from different countries (Dutch
Census, Indian Census, National Longitudinal Survey of Youth, Section 203 determi-
nations, US Census Data (1990)). Datasets from social work cover complex personal
and social problems, including child maltreatment prevention (Allegheny Child Wel-
fare), emergency response (Harvey Rescue), and drug abuse prevention (Homeless
Youths’ Social Networks, DrugNet). Resources from political science describe reg-
istered voters (North Carolina Voters), electoral precincts (MGGG States), polling
(2016 US Presidential Poll), and sortition (Climate Assembly UK). Transportation
data summarizes trips and fares from taxis (NYC Taxi Trips, Shanghai Taxi Trajecto-
ries), ride-hailing (Chicago Ridesharing, Ride-hailing App), and bike sharing services
(Seoul Bike Sharing), along with public transport coverage (Equitable School Access
in Chicago). Sociology resources summarize online (Libimseti) and offline dating
(Columbia University Speed Dating). Finally, we assign SafeGraph Research Release
to urban studies.

Computer Vision. This is an area of early success for artificial intelligence,
where fairness typically concerns learned representations and equality of performance
across classes. The surveyed articles feature several popular datasets on image clas-
sification (ImageNet, MNIST, Fashion MNIST, CIFAR), visual question answering
(VisualQuestionAnswering), segmentation and captioning (MS-COCO,Open Images
Dataset). We find over ten face analysis datasets (Labeled Faces in the Wild, UTK
Face, Adience, FairFace, IJB-A, CelebA, Pilot Parliaments Benchmark, MS-Celeb-
1M, Diversity in Faces, Multi-task Facial Landmark, Racial Faces in the Wild, BUPT
Faces), including one from experimental psychology (FACES), for which fairness is
most often intended as the robustness of classifiers across different subpopulations,
without much regard for downstream benefits or harms to these populations. Syn-
thetic images are popular to study the relationship between fairness and disentangled
representations (dSprites, Cars3D, shapes3D). Similar studies can be conducted on
datasets with spurious correlations between subjects and backgrounds (Waterbirds,
Benchmarking Attribution Methods) or gender and occupation (Athletes and health
professionals). Finally, the Image Embedding Association Test dataset is a fairness
benchmark to study biases in image embeddings across religion, gender, age, race,
sexual orientation, disability, skin tone, and weight. It is worth noting that this sig-
nificant proportion of computer vision datasets is not an artifact of including CVPR
in the list of candidate conferences, which contributed just five additional datasets
(Multi-task Facial Landmark, Office31, Racial Faces in theWild, BUPT Faces, Visual
Question Answering).

Health. This macrodomain, comprising medicine, psychology and pharmacol-
ogy displays a notable diversity of subdomains interested by fairness concerns.
Specialties represented in the surveyed datasets are mostly medical, including
public health (Antelope Valley Networks, Willingness-to-Pay for Vaccine, Kidney
Matching, KidneyExchange Program), cardiology (Heart Disease, Arrhythmia, Fram-
ingham), endocrinology (Diabetes 130-USHospitals, Pima Indians Diabetes Dataset),
health policy (Heritage Health, MEPS-HC). Specialties such as radiology (National
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Lung Screening Trial, MIMIC-CXR-JPG, CheXpert) and dermatology (SIIM-ISIC
Melanoma Classification, HAM10000) feature several image datasets for their strong
connections with medical imaging. Other specialties include critical care medicine
(MIMIC-III), neurology (Epileptic Seizures), pediatrics (Infant Health and Develop-
ment Program), sleep medicine (Apnea), nephrology (Renal Failure), pharmacology
(Warfarin) and psychology (Drug Consumption, FACES). These datasets are often
extracted from care data of multiple medical centers to study problems of auto-
mated diagnosis. Resources derived from longitudinal studies, including Framingham
and Infant Health and Development Program are also present. Works of algorithmic
fairness in this domain are typically concerned with obtaining models with similar
performance for patients across race and sex.

Linguistics. In addition to the textual resources we already described, such as
the ones derived from social media, several datasets employed in algorithmic fairness
literature can be assigned to the domain of linguistics andNatural LanguageProcessing
(NLP). There are many examples of resources curated to be fairness benchmarks
for different tasks, including machine translation (Bias in Translation Templates),
sentiment analysis (Equity Evaluation Corpus), coreference resolution (Winogender,
Winobias, GAP Coreference), named entity recognition (In-Situ), language models
(BOLD) and word embeddings (WEAT). Other datasets have been considered for
their size and importance for pretraining text representations (Wikipedia dumps, One
billion word benchmark, BookCorpus, WebText) or their utility as NLP benchmarks
(GLUE, Business Entity Resolution). Speech recognition resources have also been
considered (TIMIT).

Economics and Business. This macrodomain comprises datasets from economics,
finance,marketing, andmanagement information systems. Economics datasets mostly
consist of census data focused onwealth (Adult, USFamily Income, Poverty inColom-
bia, Costarica Household Survey) and other resources which summarize employment
(ANPE), tariffs (US Harmonized Tariff Schedules), insurance (Italian Car Insurance),
and division of goods (Spliddit Divide Goods). Finance resources feature data on
microcredit and peer-to-peer lending (MobileMoney Loans, Kiva, Prosper Loans Net-
work), mortgages (HMDA), loans (German Credit, Credit Elasticities), credit scoring
(FICO) and default prediction (Credit Card Default).Marketing datasets describemar-
keting campaigns (Bank Marketing), customer data (Wholesale) and advertising bids
(Yahoo! A1 Search Marketing). Finally, datasets from management information sys-
tems summarize information about automated hiring (CVs from Singapore, Pymetrics
Bias Group) and employee retention (IBM HR Analytics).

Miscellaneous. This macrodomain contains several datasets originating from the
news domain (Yow news, Guardian Articles, Latin Newspapers, Adressa, Reuters 50
50, New York Times Annotated Corpus, TREC Robust04). Other resources include
datasets on food (Sushi), sports (Fantasy Football, FIFA 20 Players, OlympicAthletes)
, and toy datasets (Toy Dataset 1–4).

Arts andHumanities. In this area wemostly find literature datasets, which contain
text from literaryworks (Shakespeare, Curatr British LibraryDigital Corpus, Victorian
Era Authorship Attribution, Nominees Corpus, Riddle of Literary Quality), which
are typically studied with NLP tools. Other datasets in this domain include domain-
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specific information systems about books (Goodreads Reviews),movies (MovieLens)
and music (Last.fm, Million Song Dataset, Million Playlist Dataset).

Natural Sciences. This domain is represented with three datasets from biology
(iNaturalist), biochemestry (PP-Pathways) and plant science, with the classic Iris
dataset.

As a whole, many of these datasets encode fundamental human activities where
algorithms andADM systems have been studied and deployed. Alertness and attention
to equity seems especially important in specific domains, including social sciences,
computer science, medicine, and economics. Here the potential for impact may result
in large benefits, but also great harm, particularly for vulnerable populations and
minorities, more likely to be neglected during the design, training, and testing of an
ADM. After concentrating on domains, in the next section we analyze the variety of
tasks studied in works of algorithmic fairness and supported by these datasets.

5.2 Task and setting

Researchers and practitioners are showing an increasing interest in algorithmic
fairness, proposing solutions for many different tasks, including fair classification,
regression, and ranking. At the same time, the academic community is developing an
improved understanding of important challenges that run across different tasks in the
algorithmic fairness space (Chouldechova and Roth 2020), also thanks to practitioner
surveys (Holstein et al. 2019) and studies of specific legal challenges (Andrus et al.
2021). To exemplify, the presence of noise corrupting labels for sensitive attributes
represents a challenge that may apply across different tasks, including fair classifica-
tion, regression, and ranking. We refer to these challenges as settings, describing them
in the second part of this section. While our work focuses on fair ML datasets, it is
cognizant of the wide variety of tasks tackled in the algorithmic fairness literature,
which are captured in a specific field of our data briefs. In this section we provide an
overview of common tasks and settings studied on these datasets, showing their variety
and diversity. Table 3 summarizes these tasks, listing the three most used datasets for
each task.When describing a task, we explicitly highlight datasets that are particularly
relevant to it, even when outside of the top three.

5.2.1 Task

Fair classification (Calders and Verwer 2010; Dwork et al. 2012) is the most common
task by far. Typically, it involves equalizing some measure of interest across subpop-
ulations, such as the recall, precision, or accuracy for different racial groups. On the
other hand, individually fair classification focuses on the idea that similar individuals
(low distance in the covariate space) should be treated similarly (low distance in the
outcome space), often formalized as a Lipschitz condition. Unsurprisingly, the most
common datasets for fair classification are the most popular ones overall (Sect. 4), i.e.,
Adult, COMPAS, and German Credit.

Fair regression (Berk et al. 2017) concentrates onmodels that predict a real-valued
target, requiring the average loss to be balanced across groups. Individual fairness in
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Table 2 A selection of datasets through the lens of the domain taxonomy

Domain Sample datasets

Computer science

Social media

Toxicity and hate speech Civil Comments, Wikipedia Toxic Comments, Twitter offen-
sive language

Political leaning Twitter Presidential Politics

Dialect TwitterAAE

Library and information sciences

Collaboration networks Paper-reviewer matching, 4area, ArnetMiner Citation net-
work

Peer review Paper-reviewer matching

Information systems

Search engines Online freelance marketplaces, Bing US Queries, Symptoms
in Queries

Recommender systems Amazon Recommendations, Amazon Reviews, MovieLens

Knowledge bases Freebase15k-237, Wikidata

Computer networks KDD Cup 99

Pattern recognition Internet Ads

Signal processing Vehicle

Social sciences

Urban studies SafeGraph Research Release

Social networks University Facebook Networks, Pokec Social Network, Rice
Facebook Network

Demography US Census Data (1990), Dutch Census, National Longitudi-
nal Survey of Youth

Sociology Columbia University Speed Dating, Libimseti

Law

Recidivism prediction COMPAS, recidivism of felons on probation, state court pro-
cessing statistics

Crime prediction Communities and crime, stop, question and frisk, strategic
subject list

Political science

Registered voters North Carolina Voters

Electoral precincts MGGG States

Polling 2016 US Presidential Poll

Sortition Climate Assembly UK

Education

Application processes Nursery, IIT-JEE

Student performance Student, Law School, UniGe

Post-education placement Campus Recruitment
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Table 2 continued

Domain Sample datasets

Social work

Child maltreatment prevention Allegheny Child Welfare

Emergency response Harvey Rescue

Drug abuse prevention Homeless Youths’ Social Networks, DrugNet

Transportation

Taxi trips NYC Taxi Trips, Shanghai Taxi Trajectories

Ride hailing Chicago Ridesharing, Ride-hailing App

Bike sharing Seoul Bike Sharing

Public transport Equitable School Access in Chicago

Computer vision

General purpose ImageNet, MNIST, CIFAR

Face analysis CelebA, Pilot Parliaments Benchmar, FairFace

Synthetic dSprites, Cars3D, shapes3D

Health

Sleep medicine Apnea

Critical care medicine MIMIC-III

Public health Kidney exchange program, willingness-to-pay for vaccine,
kidney matching

Cardiology Arrhythmia, heart disease, framingham

Neurology Epileptic seizures

Pediatrics Infant Health and Development Program (IHDP)

Dermatology HAM10000, SIIM-ISIC melanoma classification

Medicine Stanford medicine research data repository

Pharmacology Warfarin

Endocrinology Diabetes 130-US Hospitals, Pima Indians diabetes dataset
(PIDD)

Nephrology Renal failure

Radiology CheXpert, MIMIC-CXR-JPG, national lung screening trial
(NLST)

Health policy Heritage Health, MEPS-HC

Applied psychology Drug consumption

Experimental psychology FACES

Economics and business

Economics

Census Adult, US Family Income, Poverty in Colombia

Employment ANPE

Tariffs US Harmonized tariff schedule

Insurance Italian car insurance

Division of goods Spliddit divide goods
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Table 2 continued

Domain Sample datasets

Finance

Peer-to-peer lending Mobile money loans, kiva, prosper loans network

Mortgages HMDA

Credit scoring FICO

Other credit German credit, credit card default, credit elasticities

Marketing

Marketing campaigns Bank Marketing

Advertising bids Yahoo! A1 search marketing, wholesale

Management information systems

Automated hiring Pymetrics bias group, CVs from Singapore

Employee retention IBM HR analytics

Linguistics

General purpose Wikipedia dumps, one billion word benchmark, BookCorpus

Fairness benchmarks Bias in translation templates, equity evaluation corpus,Wino-
gender

Arts and Humanities

Music Million playlist dataset (MPD), million song dataset (MSD),
Last.fm

Literature Goodreads reviews, riddle of literary quality, nominees cor-
pus

Movies MovieLens, FilmTrust

Natural sciences

Biology iNaturalist Datasets

Biochemestry PP-Pathways

Plant science Iris

Miscellaneous

News TREC Robust04, New York Times Annotated Corpus,
Reuters 50 50

Sports Fantasy football, FIFA 20 Players, Olympic Athletes

Food Sushi

this context may require losses to be as uniform as possible across all individuals. Fair
regression is a less popular task, often studied on the Communities and Crime dataset,
where the task is predicting the rate of violent crimes in different communities.

Fair ranking (Yang andStoyanovich 2017) requires ordering candidate items based
on their relevance to a current need. Fairness in this context may concern both the
people producing the items that are being ranked (e.g. artists) and those consuming
the items (users of a music streaming platform). It is typically studied in applications
of recommendation (MovieLens, Amazon Recommendations, Last.fm, Million Song
Dataset, Adressa) and search engines (Yahoo! c14B Learning to Rank, Microsoft
Learning to Rank, TREC Robust04).
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Table 3 Most used datasets by algorithmic fairness task and setting

Task Datasets

Fair classification Adult; COMPAS; German Credit

Fair regression Communities and Crime; Law School; Student

Fair ranking MovieLens; German Credit; Kiva

Fair matching NYC Taxi Trips; Libimseti; Columbia University Speed
Dating

Fair risk assessment COMPAS; Allegheny Child Welfare; Infant Health and
Development Program (IHDP)

Fair representation learning Adult; COMPAS; dSprites

Fair clustering Adult; Bank Marketing; Diabetes 130-US Hospitals

Fair anomaly detection Adult; MNIST; Credit Card Default

Fair districting MGGG States

Fair task assignment Crowd Judgement; COMPAS

Fair spatio-temporal process learning Real-Time Crime Forecasting Challenge; Dallas Police
Incidents; Harvey Rescue

Fair graph diffusion/augmentation University Facebook Networks; Antelope Valley Networks;
Rice Facebook Network

Fair resource allocation/subset selection ML Fairness Gym; US Federal Judges; Climate Assembly UK

Fair data summarization Adult; Student; Credit Card Default

Fair data generation CelebA; MovieLens; shapes3D

Fair graph mining MovieLens; Freebase15k-237; PP-Pathways

Fair pricing Willingness-to-Pay for Vaccine; Credit Elasticities; Italian
Car Insurance

Fair advertising Yahoo! A1 Search Marketing; North Carolina Voters;
Instagram Photos

Fair routing Shanghai Taxi Trajectories

Fair entity resolution Winogender; Winobias; Business Entity Resolution

Fair sentiment analysis Popular Baby Names; Equity Evaluation Corpus (EEC);
TwitterAAE

Bias in word embeddings Wikipedia dumps; Word Embedding Association Test
(WEAT); Popular Baby Names

Bias in language models TwitterAAE; BOLD; GLUE

Fair machine translation Bias in Translation Templates

Fair speech recognition YouTube Dialect Accuracy; TIMIT

Setting Datasets

Rich-subgroup fairness Adult; COMPAS; Communities and Crime

Fairness under unawareness Adult; COMPAS; HMDA

Limited-label fairness Adult; German Credit; COMPAS

Robust fairness COMPAS; Adult; MEPS-HC

Dynamical fairness FICO; ML Fairness Gym; COMPAS

Preference-based fairness Adult; COMPAS; Toy Dataset 1

Multi-stage fairness Adult; Heritage Health; Twitter Offensive Language

123



A. Fabris et al.

Table 3 continued

Setting Datasets

Fair few-shot learning Communities and Crime; Toy Dataset 1; Mobile Money Loans

Fair private learning UTK Face; CheXpert; FairFace

Fair federated learning Vehicle; Sentiment140; Shakespeare

Fair incremental learning ImageNet; CIFAR

Fair active learning Adult; German Credit; Heart Disease

Fair selective classification CheXpert; CelebA; Civil Comments

Fair matching (Kobren et al. 2019) is similar to ranking as they are both tasks
defined on two-sided markets. This task, however, is focused on highlighting and
matching pairs of items on both sides of the market, without emphasis on the ranking
component. Datasets for this task are from diverse domains, including dating (Libim-
seti, ColumbiaUniversity SpeedDating) transportation (NYCTaxi Trips, Ride-hailing
App) and organ donation (Kidney Matching, Kidney Exchange Program).

Fair risk assessment (Coston et al. 2020) studies algorithms that score instances in
a dataset according to a predefined type of risk. Relevant domains include healthcare
and criminal justice. Key differences with respect to classification are an empha-
sis on real-valued scores rather than labels, and awareness that the risk assessment
process can lead to interventions impacting the target variable. For this reason,
fairness concerns are often defined in a counterfactual fashion. The most popular
dataset for this task is COMPAS, followed by datasets from medicine (IHDP, Stan-
ford Medicine Research Data Repository), social work (Allegheny Child Welfare),
Economics (ANPE) and Education (EdGap).

Fair representation learning (Creager et al. 2019) concerns the study of features
learnt by models as intermediate representations for inference tasks. A popular line of
work in this space, called disentaglement, aims to learn representations where a single
factor of import corresponds to a single feature. Ideally, this approach should select
representationswhere sensitive attributes cannot be used as proxies for target variables.
Cars3D and dSprites are popular datasets for this task, consisting of synthetic images
depicting controlled shape types under a controlled set of rotations. Post-processing
approaches are also applicable to obtain fair representations from biased ones via
debiasing.

Fair clustering (Chierichetti et al. 2017) is an unsupervised task concerned with
the division of a sample into homogenous groups. Fairness may be intended as an
equitable representation of protected subpopulations in each cluster, or in terms of
average distance from the cluster center. While Adult is the most common dataset
for problems of fair clustering, other resources often used for this task include Bank
Marketing, Diabetes 130-US Hospitals, Credit Card Default and US Census Data
(1990).

Fair anomaly detection (Zhang and Davidson 2021), also called outlier detection
(Davidson and Ravi 2020), is aimed at identifying surprising or anomalous points in
a dataset. Fairness requirements involve equalizing salient quantities (e.g. acceptance
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rate, recall, precision, distribution of anomaly scores) across populations of interest.
This problem is particularly relevant for members of minority groups, who, in the
absence of specific attention to dataset inclusivity, are less likely to fit the norm in the
feature space.

Fair districting (Schutzman 2020) is the division of a territory into electoral dis-
tricts for political elections. Fairness notions brought forth in this space are either
outcome-based, requiring that seats earned by a party roughly match their share of
the popular vote, or procedure-based, ignoring outcomes and requiring that counties
or municipalities are split as little as possible. MGGG States is a reference resource
for this task, providing precinct-level aggregated information about demographics and
political leaning of voters in US districts.

Fair task assignment and truthdiscovery (Goel andFaltings 2019; Li et al. 2020d)
are different subproblems in the same area, focused on the subdivision of work and the
aggregation of answers in crowdsourcing. Here fairness may be intended concerning
errors in the aggregated answer, requiring errors to be balanced across subpopulations
of interest, or in terms of the work load imposed to workers. A dataset suitable for this
task is Crowd Judgement, containing crowd-sourced recidivism predictions.

Fair spatio-temporal process learning (Shang et al. 2020) focuses on the estima-
tion of models for processes which evolve in time and space. Surveyed applications
include crime forecasting (Real-Time Crime Forecasting Challenge, Dallas Police
Incidents) and disaster relief (Harvey Rescue), with fairness requirements focused on
equalization of performance across different neighbourhoods and special attention to
their racial composition.

Fair graph diffusion (Farnad et al. 2020) models and optimizes the propagation
of information and influence over networks, and its probability of reaching individ-
uals of different sensitive groups. Applications include obesity prevention (Antelope
Valley Networks) and drug-use prevention (Homeless Youths’ Social Networks). Fair
graph augmentation (Ramachandran et al. 2021) is a similar task, defined on graphs
which define access to resources based on existing infrastructure (e.g. transportation),
which can be augmented under a budget to increase equity. This task has been pro-
posed to improve school access (Equitable School Access in Chicago) and information
availability in social networks (Facebook100).

Fair resource allocation/subset selection (Babaioff et al. 2019; Huang et al. 2020)
can often be formalized as a classification problem with constraints on the number of
positives. Fairness requirements are similar to those of classification. Subset selection
may be employed to choose a group of people from a wider set for a given task (US
Federal Judges, Climate Assembly UK). Resource allocation concerns the division of
goods (Spliddit Divide Goods) and resources (ML Fairness Gym, German Credit).

Fair data summarization (Celis et al. 2018) refers to presenting a summary of
datasets that is equitable to subpopulations of interest. It may involve finding a small
subset representative of a larger dataset (strongly linked to subset selection) or select-
ing the most important features (dimensionality reduction). Approaches for this task
have been applied to select a subset of images (Scientist+Painter) or customers (Bank
Marketing), that represent the underlying population across sensitive demographics.

Fair data generation (Xu et al. 2018) deals with generating “fair” data points and
labels, which can be used as training or test sets. Approaches in this space may be
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used to ensure an equitable representation of protected categories in data generation
processes learnt from biased datasets (CelebA, IBM HR Analytics), and to evaluate
biases in existing classifiers (MS-Celeb-1M). Data generation may also be limited to
synthesizing artificial sensitive attributes (Burke et al. 2018a).

Fair graph mining (Kang et al. 2020) focuses on representations and prediction
tasks on graph structures. Fairness may be defined either as a lack of bias in represen-
tations, or with respect to a final inference task defined on the graph. Fair graphmining
approaches have been applied to knowledge bases (Freebase15k-237, Wikidata), col-
laboration networks (CiteSeer Paper, Academic Collaboration Networks) and social
network datasets (Facebook Large Network, Twitch Social Networks).

Fair pricing (Kallus and Zhou 2021) concerns learning and deploying an optimal
pricing policy for revenue while maintaining equity of access to services and con-
sumer welfare across sensitive groups. Datasets employed in fair pricing are from
the economics (Credit Elasticities, Italian Car Insurance), transportation (Chicago
Ridesharing), and public health domains (Willingness-to-Pay for Vaccine).

Fair advertising (Celis et al. 2019a) is also concerned with access to goods and
services. It comprises both bidding strategies and auction mechanisms which may be
modified to reduce discrimination with respect to the gender or race composition of
the audience that sees an ad. One publicly available dataset for this subtask is Yahoo!
A1 Search Marketing.

Fair routing (Qian et al. 2015) is the task of suggesting an optimal path from a
starting location to a destination. For this task, experimentation has been carried out
on a semi-synthetic traffic dataset (Shanghai Taxi Trajectories). The proposed fairness
measure requires equalizing the driving cost per customer across all drivers.

Fair entity resolution (Cotter et al. 2019) is a task focused on deciding whether
multiple records refer to the same entity, which is useful, for instance, for the construc-
tion and maintenance of knowledge bases. Business Entity Resolution is a proprietary
dataset for fair entity resolution, where constraints of performance equality across
chain and non-chain businesses can be tested. Winogender and Winobias are publicly
available datasets developed to study gender biases in pronoun resolution.

Fair sentiment analysis (Kiritchenko and Mohammad 2018) is a well-established
instance of fair classification, where text snippets are typically classified as positive,
negative, or neutral depending on the sentiment they express. Fairness is intended with
respect to the entities mentioned in the text (e.g. men and women). The central idea is
that the estimated sentiment for a sentence should not change if female entities (e.g.
“her”, “woman”, “Mary”) are substituted with their male counterparts (“him”, “man”,
“James”). The Equity Evaluation Corpus is a benchmark developed to assess gender
and race bias in sentiment analysis models.

Bias in Word Embeddings (WEs) (Bolukbasi et al. 2016) is the study of unde-
sired semantics and stereotypes captured by vectorial representations of words. WEs
are typically trained on large text corpora (Wikipedia dumps) and audited for associ-
ations between gendered words (or other words connected to sensitive attributes) and
stereotypical or harmful concepts, such as the ones encoded in WEAT.

Bias in Language Models (LMs) (Bordia and Bowman 2019) is, quite similarly,
the study of biases in LMs, which are flexible models of human language based on
contextualized word representations, which can be employed in a variety of linguistics
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and NLP tasks. LMs are trained on large text corpora from which they may learn spu-
rious correlations and stereotypes. The BOLD dataset is an evaluation benchmark for
LMs, based on prompts that mention different socio-demographic groups. LMs com-
plete these prompts into full sentences, which can be tested along different dimensions
(sentiment, regard, toxicity, emotion and gender polarity).

FairMachine Translation (MT) (Stanovsky et al. 2019) concerns automatic trans-
lation of text from a source language into a target one. MT systems can exhibit
gender biases, such as a tendency to translate gender-neutral pronouns from the source
language into gendered pronouns of the target language in accordance with gender
stereotypes. For example, a “nurse” mentioned in a gender-neutral context in the
source sentence may be rendered with feminine grammar in the target language. Bias
in Translation Templates is a set of short templates to test such biases.

Fair speech recognition (Tatman 2017) requires accurate annotation of spoken
language into text across different demographics. YouTube Dialect Accuracy is a
dataset developed to audit the accuracy of YouTube’s automatic captions across two
genders and five dialects of English. Similarly, TIMIT is a classic speech recognition
dataset annotated with American English dialect and gender of speaker.

5.2.2 Setting

As noted at the beginning of this section, there are several settings (or challenges)
that run across different tasks described above. Some of these settings are specific
to fair ML, such as ensuring fairness across an exponential number of groups, or
in the presence of noisy labels for sensitive attributes. Other settings are connected
with common ML challenges, including few-shot and privacy-preserving learning.
Below we describe common settings encountered in the surveyed articles. Most of
these settings are tested on fairness datasets which are popular overall, i.e. Adult,
COMPAS, and German Credit. We highlight situations where this is not the case,
potentially due to a given challenge arising naturally in some other dataset.

Rich-subgroup fairness (Kearns et al. 2018) is a setting where fairness properties
are required to hold not only for a limited number of protected groups, but across an
exponentially large number of subpopulations. This line of work represents an attempt
to bridge the normative reasoning underlying individual and group fairness.

Fairness under unawareness is a general expression to indicate problems where
sensitive attributes are missing (Chen et al. 2019a), encrypted (Kilbertus et al. 2018)
or corrupted by noise (Lamy et al. 2019). These problems respond to real-world chal-
lenges related to the confidential nature of protected attributes, that individuals may
wish to hide, encrypt, or obfuscate. This setting is most commonly studied on highly
popular fairness dataset (Adult, COMPAS), moderately popular ones (Law School
and Credit Card Default), and a dataset about home mortgage applications in the US
(HMDA).

Limited-label fairness comprises settings with limited information on the target
variable, including situations where labelled instances are few (Ji et al. 2020), noisy
(Wang et al. 2021), or only available in aggregate form (Sabato and Yom-Tov 2020).

Robust fairness problems arise under perturbations to the training set (Huang
and Vishnoi 2019), adversarial attacks (Nanda et al. 2021) and dataset shift (Singh
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et al. 2021). This line of research is often connected with work in robust machine
learning, extending the stability requirements beyond accuracy-related metrics to
fairness-related ones.

Dynamical fairness (Liu et al. 2018; D’Amour et al. 2020) entails repeated deci-
sions in changing environments, potentially affected by the very algorithm that is being
studied. Works in this space study the co-evolution of algorithms and populations on
which they act over time. For example, an algorithm that achieves equality of accep-
tance rates across protected groups in a static setting may generate further incentives
for the next generation of individuals from historically disadvantaged groups. Popular
resources for this setting are FICO and the ML Fairness GYM.

Preference-based fairness (Zafar et al. 2017b) denotes work informed, explicitly
or implicitly, by the preferences of stakeholders. For people subjected to a decision this
is related to notions of envy-freeness and loss aversion (Ali et al. 2019b); alternatively,
policy-makers can express indications on how to trade-off different fairness measures
(Zhang et al. 2020c), or experts can provide demonstrations of fair outcomes (Galhotra
et al. 2021).

Multi-stage fairness (Madras et al. 2018b) refers to settings where several deci-
sion makers coexist in a compound decision-making process. Decision makers, both
humans and algorithmic, may act with different levels of coordination. A fundamen-
tal question in this setting is how to ensure fairness under composition of different
decision mechanisms.

Fair few-shot learning (Zhao et al. 2020b) aims at developing fair ML solutions
in the presence of a small amount of data samples. The problem is closely related to,
and possibly solved by, fair transfer learning (Coston et al. 2019) where the goal
is to exploit the knowledge gained on a problem to solve a different but related one.
Datasets where this setting arises naturally are Communities and Crime, where one
may restrict the training set to a subset of US states, and Mobile Money Loans, which
consists of data from different African countries.

Fair private learning (Bagdasaryan et al. 2019; Jagielski et al. 2019) studies the
interplay between privacy-preserving mechanisms and fairness constraints. Works in
this space consider the equity of machine learning models designed to avoid leakage
of information about individuals in the training set. Common domains for datasets
employed in this setting are face analysis (UTK Face, FairFace, Diversity in Face) and
medicine (CheXpert, SIIM-ISIC Melanoma Classification, MIMIC-CXR-JPG).

Additional settings that are less common include fair federated learning (Li et al.
2020b), where algorithms are trained acrossmultiple decentralized devices, fair incre-
mental learning (Zhao et al. 2020a), where novel classes may be added to the learning
problem over time, fair active learning (Noriega-Campero et al. 2019), allowing for
the acquisition of novel information during inference and fair selective classification
(Jones et al. 2021), where predictions are issued only if model confidence is above a
certain threshold.

Overall, we found a variety of tasks defined on fairness datasets, ranging from
generic, such as fair classification, to narrow and specifically defined on certain
datasets, such as fair districting on MGGG States and fair truth discovery on Crowd
Judgement. Orthogonally to this dimension, many settings or challenges may arise to
complicate these tasks, including noisy labels, systemdynamics, and privacy concerns.
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Quite clearly, algorithmic fairness research has been expanding in both directions, by
studying a variety of tasks under diverse and challenging settings. In the next section,
we analyze the roles played in scholarly works by the surveyed datasets.

5.3 Role

Thedatasets used in algorithmic fairness research can play different roles. For example,
some may be used to train novel algorithms, while others are suited to test existing
algorithms from a specific point of view. Chapter 7 of Barocas et al. (2019), describes
six different roles of datasets inmachine learning.We adopt their framework to analyse
fairMLdatasets, adding to the taxonomy two roles that are specific to fairness research.

A source of real data. While synthetic datasets and simulations may be suited to
demonstrate specific properties of a novel method, the usefulness of an algorithm
is typically established on data from the real world. More than a sign of immediate
applicability to important challenges, good performance on real-world sources of data
signals that the researchers did not make up the data to suit the algorithm. This is likely
the most common role for fairness datasets, especially common for the ones hosted
on the UCI ML repository, including Adult, German Credit, Communities and Crime,
Diabetes 130-US Hospitals, Bank Marketing, Credit Card Default, US Census Data
(1990). These resources owe their popularity in fair ML research to being a product of
human processes and to encoding protected attributes. Quite simply, they are sources
of real human data.

A catalyst of domain-specific progress. Datasets can spur algorithmic insight and
bring about domain-specific progress. Civil Comments is a great example of this role,
powering the Jigsaw Unintended Bias in Toxicity Classification challenge. The chal-
lenge responds to a specific need in the space of automated moderation against toxic
comments in online discussion. Early attempts at toxicity detection resulted in models
which associate mentions of frequently attacked identities (e.g. gay) with toxicity, due
to spurious correlations in training sets. The dataset and associated challenge tackle this
issue by providing toxicity ratings for comments, along with labels encoding whether
members of a certain group are mentioned, favouring measurement of undesired bias.
Many other datasets can play a similar role, including, Winogender, Winobias and the
Equity Evaluation Corpus. In a broader sense, COMPAS and the accompanying study
(Angwin et al. 2016) have been an important catalyst, not for a specific task, but for
fairness research overall.

Away to numerically track progress on a problem. This role is common formachine
learning benchmarks that also provide human performance baselines. Algorithmic
methods approaching or surpassing these baselines are often considered a sign that
the task is “solved” and that harder benchmarks are required (Barocas et al. 2019).
Algorithmic fairness is a complicated, context-dependent, contested construct whose
correct measurement is continuously debated. Due to this reason, we are unaware of
any dataset having a similar role in the algorithmic fairness literature.

A resource to comparemodels. Practitioners interested in solving a specific problem
may take a large set of algorithms and test themon a group of datasets that are represen-
tative of their problem, in order to select themost promising ones. For well-established
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ML challenges, there are often leaderboards providing a concise comparison between
algorithms for a given task, which may be used for model selection. This setting is
rare in the fairness literature, also due to inherent difficulties in establishing a sin-
gle measure of interest in the field. One notable exception is represented by Friedler
et al. (2019), who employed a suite of four datasets (Adult, COMPAS, German Credit,
Ricci) to compare the performance of four different approaches to fair classification.

A source of pre-training data. Flexible, general-purpose models are often pre-
trained to encode useful representations, which are later fine-tuned for specific tasks in
the same domain. For example, large text corpora are often employed to train language
models and word embeddings which are later specialized to support a variety of down-
stream NLP applications. Wikipedia dumps, for instance, are often used to train word
embeddings and investigate their biases (Brunet et al. 2019; Liang and Acuna 2020;
Papakyriakopoulos et al. 2020). Several algorithmic fairness works aim to study and
mitigate undesirable biases in learnt representations. Corpora like Wikipedia dumps
are used to obtain representations via realistic pretraining procedures that mimic com-
mon machine learning practice as closely as possible.

A source of training data.Models for a specific task are typically learnt from training
sets that encode relations between features and target variable in a representative
fashion. One example from the fairness literature is LargeMovie Review, used to train
sentiment analysis models, later audited for fairness (Liang and Acuna 2020). For
fairness audits, one alternative would be resorting to publicly available models, but
sometimes a close control on the training corpus and procedure is necessary. Indeed,
it is interesting to study issues of model fairness in relation to biases present in the
respective training corpora, which can help explain the causes of bias (Brunet et al.
2019). Some works measure biases in internal model representations before and after
fine-tuning on a training set, and regard the difference as a measure of bias in the
training set. Babaeianjelodar et al. (2020) employ this approach to measure biases in
RtGender, Civil Comments, and datasets from GLUE.

A representative summary of a service. Much important work in the fairness lit-
erature is focused on measuring fairness and harms in the real world. This line of
work includes audits of products and services, which rely on datasets extracted from
the application of interest. Datasets created for this purpose include Amazon Recom-
mendations, Pymetrics Bias Group, Occupations in Google Images, Zillow Searches,
Online Freelance Marketplaces, Bing US Queries, YouTube Dialect Accuracy. Sev-
eral other datasets were originally created for this purpose and later repurposed in the
fairness literature as sources of real data, including Stop Question and Frisk, HMDA,
Law School, and COMPAS.

An important source of data. Some datasets acquire a pivotal role in research and
industry, to the point of being considered a de-facto standard for a given purpose.
This status warrants closer scrutiny of the dataset, through which researchers aim to
uncover potential biases and problematic aspects that may impact models and insights
derived from the dataset. ImageNet, for instance, is a dataset with millions of images
across thousands of categories. Since its release in 2011, this resource has been used
to train, benchmark, and compare hundreds of computer vision models. Given its sta-
tus in machine learning research, ImageNet has been the subject of two quantitative
investigations analyzing its biases and other problematic aspects in the person subtree,
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uncovering issues of representation (Yang et al. 2020b) and non-consensuality (Prabhu
and Birhane 2020). A different data bias audit was carried out on SafeGraph Research
Release. SafeGraph data captures mobility patterns in the US, with data from nearly
50 million mobile devices obtained and maintained by Safegraph, a private data com-
pany. Their recent academic release has become a fundamental resource for pandemic
research, to the point of being used by the Centers for Disease Control and Prevention
to measure the effectiveness of social distancing measures (Moreland et al. 2020). To
evaluate its representativeness for the overall US population, Coston et al. (2021) have
studied selection biases in this dataset.

In algorithmic fairness research, datasets play similar roles to the ones they play
in machine learning according to Barocas et al. (2019), including training, catalyzing
attention, and signalling awareness of common data practices. One notable exception
is that fairness datasets are not used to track algorithmic progress on a problem over
time, likely due to the fact that there is no consensus on a singlemeasure to be reported.
On the other hand, two roles peculiar to fairness research are summarizing a service
or product that is being audited, and representing an important resource whose biases
and ethical aspects are particularly worthy of attention.We note that these roles are not
mutually exclusive and that datasets can play multiple roles. COMPAS, for example,
was originally curated to perform an audit of pretrial risk assessment tools and was
later used extensively in fair ML research as a source of real human data, becoming,
overall, a catalyst for fairness research and debate.

In sum, existing fairness datasets originate from a variety of domains, support
diverse tasks, and play different roles in the algorithmic fairness literature. We hope
our work will contribute to establishing principled data practices in the field, to guide
an optimal usage of these resources. In the next section we continue our discussion on
the key features of these datasets with a change of perspective, asking which lessons
can be learnt from existing resources for the curation of novel ones.

6 Best practices for dataset curation

In this section, we analyze the surveyed datasets from different perspectives, typ-
ical of critical data studies, human–computer interaction, and computer-supported
cooperative work. In particular, we discuss concerns of re-identification (Sect. 6.1),
consent (Sect. 6.2), inclusivity (Sect. 6.3), sensitive attribute labeling (Sect. 6.4) and
transparency (Sect. 6.5). We describe a range of approaches and consideration to these
topics, ranging from negligent to conscientious. Our aim is to make these concerns
and related desiderata more visible and concrete, to help inform responsible curation
of novel fairness resources, whose number has been increasing in recent years (Fig. 3).

6.1 Re-identification

Motivation. Data re-identification (or de-anonymization) is a practice through which
instances in a dataset, theoretically representing people in an anonymized fashion, are
successfully mapped back to the respective individuals. Their identity is thus discov-
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Fig. 3 Most datasets employed in algorithmic fairness were created or updated after 2015, with a clear
growth in recent years

ered and associated with the information encoded in the dataset features. Examples
of external re-identification attacks include de-anonymization of movie ratings from
the Netflix prize dataset (Narayanan and Shmatikov 2008), identification of profiles
based on social media group membership (Wondracek et al. 2010), and identification
of people depicted in verifiably pornographic categories of ImageNet (Prabhu and
Birhane 2020). These analyses were carried out as “attacks” by external teams for
demonstrative purposes, but dataset curators and stakeholders may undertake similar
efforts internally (McKenna 2019b).

There are multiple harms connected to data re-identification, especially the ones
featured in algorithmic fairness research, due to their social significance. Depending
on the domain and breadth of information provided by a dataset, malicious actors
may acquire information about mobility patterns, consumer habits, political leaning,
psychological traits, and medical conditions of individuals, just to name a few. The
potential for misuse is tremendous, including phishing attacks, blackmail, threat, and
manipulation (Kröger et al. 2021). Face recognition datasets are especially prone to
successful re-identification as, by definition, they contain information strongly con-
nected with a person’s identity. The problem also extends to general purpose computer
vision datasets. In a recent dataset audit, Prabhu and Birhane (2020) found images of
beach voyeurism and other non-consensual depictions in ImageNet, and were able
to identify the victims using reverse image search engines, highlighting downstream
risks of blackmail and other forms of abuse.

Disparate consideration. In this work, we find that fairness datasets are proofed
against re-identification with a full range of measures and care. Perhaps surprisingly,
some datasets allow for straightforward re-identification of individuals, providing their
full names. We do not discuss these resources here to avoid amplifying the harms dis-
cussed above. Other datasets afford plausible re-identification, providing social media
handles and aliases, such as Twitter Abusive Behavior, Sentiment140, Facebook Large
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Network, and Google Local. Columbia University Speed Dating may also fall in this
category due to a restricted population from which the sample is drawn, and provision
of age, field of study and ZIP code where participants grew up in addition. In con-
trast, many datasets come with strong guarantees against de-anonymization, which is
especially typical of health data, such as MIMIC-III and Heritage Health (El Emam
et al. 2012). Indeed, health is a domain where a culture of patient record confiden-
tiality is widely established and there is a strong attention to harm avoidance. Also
datasets describing scholarly works and academic collaboration networks (Academic
Collaboration Networks, PubMed Diabetes Papers, Cora, CiteSeer) are typically de-
identified, with numerical IDs substituting names. This is possibly a sign of attention
to anonymization from curators when the data represents potential colleagues. As a
consequence, researchers are protected from related harms, but posterior annotation
of sensitive attributes similarly to Biega et al. (2019) becomes difficult or impossible.
One notable exception is ArnetMiner Citation Network, derived from an online plat-
form which is especially focused on data mining from academic social networks and
profiling of researchers.

Mitigating factors. A wide range of factors, summarized in Table 4. may help to
reduce the risk of re-identification.Afirst set of approaches concerns the distribution of
data artefacts. Some datasets are simply kept private, minimizing risks in this regard.
These include UniGe, US Student Performance, Apnea, Symptoms in Queries and
Pymetrics Bias Group, the last two being proprietary datasets that are not disclosed to
preserve intellectual property. Twitter Online Harrassment is available upon request to
protect the identities of Twitter users that were included. Another interesting approach
are mixed release strategies: NLSY has some publicly available data, while access
to further information that may favour re-identification (e.g. ZIP code and census
tract) is restricted. For crawl-based datasets, it is possible to keep a resource private
while providing code to recreate it (Bias in Bios). While this may alleviate some
concerns, it will not deter motivated actors. As a post-hoc remedy, proactive removal
of problematic instances is also a possibility, as shown by recent work on ImageNet
(Yang et al. 2020b).

Another family of approaches is based on redaction, aggregation, and injection of
noise. Obfuscation typically involves the distribution of proprietary company data at
a level of abstraction which maintains utility to a company while hindering recon-
struction of the underlying human-readable data, which also makes re-identification
highly unlikely (Yahoo! c14B Learn to Rank, Microsoft Learning to Rank). Noise
injection can take many forms, such as top-coding (Adult), i.e., saturation of certain
variables, and blurring (Chicago Ridesharing), i.e., disclosure at coarse granularity.
Targeted scrubbing of identifiable information is also rather common, with ad-hoc
techniques applied in different domains. For example, the curators of ASAP, a dataset
featuring student essays, removed personally identifying information from the essays
using named entity recognition and several heuristics. Finally, aggregation of data into
subpopulations of interest also supports the anonymity of the underlying individuals
(FICO).

So far we have covered datasets that feature human data derived from real-world
processes. Toy datasets, on the other hand, are perfectly safe from this point of view,
however their social relevance is inevitably low. In this work we survey four popular
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Table 4 Mitigating factors against re-identification

Mitigating factor Example datasets

Controlled distribution

Private dataset UniGe, Pymetrics Bias Group

Availability upon request Twitter Online Harrassment

Mixed release strategy NLSY

Code-based reconstruction Bias in Bios

Data perturbation

Obfuscation Yahoo! c14B Learn to Rank, Microsoft Learning to Rank

Top-coding Adult

Blurring Chicago Ridesharing

Targeted scrubbing ASAP

Aggregation FICO

Synthesis

Synthetic data Toy Dataset 1–4

Semi-synthetic data Antelope Valley Networks, Kidney Matching

Hypothetical profiles Italian Car Insurance

Age German Credit

ones, taken from Zafar et al. (2017c); Donini et al. (2018); Lipton et al. (2018);
Singh and Joachims (2019). Semi-synthetic datasets aim for the best of both worlds
by generating artificial data from models that emulate the key characteristics of the
underlying processes, as is the casewithAntelopeValleyNetworks, KidneyMatching,
and the generative adversarial network trained by McDuff et al. (2019) on MS-Celeb-
1M. Data synthesis may also be applied to augment datasets with artificial sensitive
attributes in a principled fashion [MovieLens—(Burke et al. 2018a)]. Finally, resources
designed to externally probe services, algorithms, and platforms, to estimate the direct
effect of a feature of interest (e.g. gender, race), may rely on hypothetical profiles
(Bertrand and Mullainathan 2004; Fabris et al. 2021). This approach can support
evaluations of fairness through unawareness (Grgic-Hlaca et al. 2016), ofwhich Italian
Car Insurance is an example.

One last important factor is the age of a dataset. Re-identification of old information
about individuals requires matching with auxiliary resources from the same period,
which are less likely to be maintained than comparable resources from recent years.
Moreover, even if successful, the consequences of re-identification are likelymitigated
by dataset age, as old information about individuals is less likely to support harm
against them. The German Credit dataset, for example, represents loan applicants
from 1973 to 1975, whose re-identification and subsequent harm appears less likely
than re-identification for more recent datasets in the same domain.

Anonymization vs social relevance. Utility and privacy are typically considered
conflicting objectives for a dataset (Wieringa et al. 2021). If we define social rele-
vance as the breadth and depth of societally useful insights that can be derived from
a dataset, a similar conflict with privacy becomes clear. Old datasets hardly afford
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any insight that is actionable and relevant to current applications. Insight derived from
synthetic datasets is inevitably questionable. Noise injection increases uncertainty and
reduces the precisionof claims.Obfuscationhinders subsequent annotationof sensitive
attributes. Conservative release strategies increase friction and deter from obtaining
and analyzing the data. The most socially relevant fairness datasets typically feature
confidential information (e.g. criminal history and financial situation) in conjunction
with sensitive attributes of individuals (e.g. race and sex). For these reasons, the social
impact afforded by a dataset and the safety against re-identification of included indi-
viduals are potentially conflicting objectives that require careful balancing. In the next
section we discuss informed consent, another important aspect for the privacy of data
subjects.

6.2 Consent

Motivation. In the context of data, informed consent is an agreement between a data
processor and a subject, aimed at allowing collection and use of personal information
while guaranteeing some control to the subject. It is emphasized in Article 7 and
Recitals (42) and (43) of the General Data Protection Regulation (European Union
2016), requiring it to be freely given, specific, informed, and unambiguous. Paullada
et al. (2020) note that in the absence of individual control on personal information,
anyone with access to the data can process it with little oversight, possibly against the
interest and well-being of data subjects. Consent is thus an important tool in a healthy
data ecosystem that favours development, trust, and dignity.

Negative examples. A separate framework, often conflated with consent, is copy-
right. Licenses such asCreativeCommons discipline how academic and creativeworks
can be shared and built upon, with proper credit attribution. According to the Creative
Commons organization, however, their licenses are not suited to protect privacy and
cover research ethics (Merkley 2019). In computer vision, and especially in face recog-
nition, consent and copyright are often considered and discussed jointly, and Creative
Commons licenses are frequently taken as an all-inclusive permit encompassing intel-
lectual property, consent, and ethics (Prabhu and Birhane 2020). Merler et al. (2019),
for example, mention privacy and copyright concerns in the construction of Diver-
sity in Faces. These concerns are apparently jointly solved by obtaining images from
YFCC-100M, due to the fact that “a large portion of the photos have Creative Com-
mons license”. Indeed lack of consent is a widespread and far-reaching problem in
face recognition datasets (Keyes et al. 2019). Prabhu and Birhane (2020) find several
examples of non-consensual images in large scale computer vision datasets. A partic-
ularly egregious example covered in this survey is MS-Celeb-1M, released in 2016
as the largest publicly available training set for face recognition in the world (Guo
et al. 2016b). As suggested by its name, the dataset should feature only celebrities,
“to enable our training, testing, and re-distributing under certain licenses” (Guo et al.
2016b). However, the dataset was later found to feature several people who are in
no way celebrities, and must simply maintain an online presence. The dataset was
retracted for this reason (Murgia 2019).
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Positive examples. FACES, an experimental psychology dataset on emotion-
related stimuli, represents a positive exception in the face analysis domain. Due its
small cardinality, it was possible to obtain informed consent from every participant.
One domain where informed consent doctrine has been well-established for decades is
medicine; fairness datasets from this space are typically sensitive to the topic. Exper-
iments such as randomized controlled trials always require consent elicitation and
often discuss the process in the respective articles. Infant Health and Development
Program (IHDP), for instance, is a dataset used to study fair risk assessment. It was
collected through the IHDP program, carried out between 1985 and 1988 in the US
to evaluate the effectiveness of comprehensive early intervention in reducing devel-
opmental and health problems in low birth weight premature infants. Brooks-Gunn
et al. (1992) clearly state that “of the 1302 infants who met enrollment criteria, 274
(21%) had parents who refused consent and 43 were withdrawn before entry into the
assigned group”. Longitudinal studies require trust and continued participation. They
typically produce insights and data thanks to participants who have read and signed
an informed consent form. Examples of such datasets include Framingham, stem-
ming from a study on cardiovascular disease, and the National Longitudinal Survey
of Youth, following the lives of representative samples of US citizens, focusing on
their labor market activities and other significant life events. Field studies and derived
datasets (DrugNet, Homeless Youths’ Social Networks) are also attentive to informed
consent.

The FRIES framework. According to the Consentful Tech Project,7 consent
should be Freely given, Reversible, Informed, Enthusiastic, and Specific (FRIES).
Below we expand on these points and discuss some fairness datasets through the
FRIES lens. Pokec Social Network summarizes the networks of Pokec users, a pop-
ular social network in Slovakia and Czech Republic. Due to default privacy settings
being predefined as public, a wealth of information for each profile was collected by
curators, including information on demographics, politics, education, marital status,
and children (Takac and Zabovsky 2012). While privacy settings are a useful tool
to control personal data, default public settings are arguably misleading and do not
amount to freely given consent. In the presence of more conservative predefined set-
tings, a user can explicitly choose to publicly share their information. This may be
interpreted as consent to share one’s information here and now with other users; more
loose interpretations favouring data collection and distribution are also possible, but
they seem rather lacking in specificity. It is far from clear that choosing public profile
settings entails consent to become part of a study and a publicly available dataset for
years to come.

This stands in contrast with Framingham and other datasets derived from medical
studies, where consent may be provided or refused with fine granularity (Levy et al.
2010). In this regard, let us consider a consent form from a recent Framingham exam
(Framingham Heart Study 2021). The form comes with five different consent boxes
which cover participation in examination, use of resulting data, participation in genetic
studies, sharing of data with external entities, and notification of findings to subject.
Before the consent boxes, a well-structured document informs participants on the

7 https://www.consentfultech.io/.
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reasons for this study, clarifies that they can choose to drop out without penalties at
any point, provides a point of contact, explains what will happen in the study and
what are the risks to the subject. Some examples of accessible language and open
explanations include the following:

• “You have the right to refuse to allow your data and samples to be used or shared
for further research. Please check the appropriate box in the selection below.”

• “There is a potential risk that your genetic information could be used to your
disadvantage. For example, if genetic research findings suggest a serious health
problem, that could be used to make it harder for you to get or keep a job or
insurance.”

• “However, we cannot guarantee total privacy. […] Once information is given to
outside parties, we cannot promise that it will be kept private.”

Moreover, the consent form is accessible from a website that promises to deliver
a Spanish version, showing attention to linguistic minorities. Overall, this approach
seems geared towards trust and truly informed consent.

In some cases, consent is made unapplicable by necessity. Allegheny Child Wel-
fare, for instance, stems from an initiative by the Allegheny County’s Department
of Human Services to develop assistive tools to support child maltreatment hotline
screening decisions. Individuals who resort to this service are in a situation of need
and emergency that makes enthusiastic consent highly unlikely. Similar considera-
tions arise in any situations where data subjects are in a state of need and can only
access a service by providing their data. A clear example is Harvey Rescue, the result
of crowdsourced efforts to connect rescue parties with people requesting help in the
Houston area. Moreover, the provision of data is mandatory in some cases, such as
the US census, which conflicts with meaningful, let alone enthusiastic, consent.

Finally, consent should be reversible, giving individuals a chance to revoke it and be
removed from a dataset. This is an active area of research, studying specific tools for
consent management (Albanese et al. 2020) and approaches for retroactive removal of
an instance from a model’s training set (Ginart et al. 2019). Unfortunately, even when
discontinued or redacted, some datasets remain available through backchannels and
derivatives. MS-Celeb-1M is, again, a negative example in this regard. The dataset
was removed by Microsoft after widespread criticism and claims of privacy infringe-
ment. Despite this fact, it remains available via academic torrents (Peng et al. 2021).
Moreover, MS-Celeb-1M was used as a source of images for several datasets derived
from it, including the BUPT Faces and Racial Faces in the Wild datasets covered in
this survey. This fact demonstrates that harms related to data artefacts are not simply
remedied via retirement or redaction. Ethical considerations about consent and poten-
tial harms to people must bemore than an afterthought and need to enter the discussion
during design.

6.3 Inclusivity

Motivation. Issues of representation, inclusion and diversity are central to the fair ML
community. Due to historical biases stemming from structural inequalities, some pop-
ulations and their perspectives are underrepresented in certain domains and in related
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data artefacts (Jo and Gebru 2020). For example, the person subtree of ImageNet
contains images that skew toward male, young and light skin individuals (Yang et al.
2020b). Female entities were found to be underrepresented in popular datasets for
coreference resolution (Zhao et al. 2018). Even datasets that match natural group pro-
portionsmay support the development of biased toolswith low accuracy forminorities.

Recent works have demonstrated the disparate performance of tools on sensitive
subpopulations in domains such as health care (Obermeyer and Mullainathan 2019),
speech recognition (Tatman 2017), and computer vision (Buolamwini and Gebru
2018). Inclusivity and diversity are often considered a primary solution in this regard,
both in training sets, which support the development of better models, and test sets,
capable of flagging such issues.

Positive examples. Ideally, inclusivity should begin with a clear definition of data
collection objectives (Jo and Gebru 2020). Indeed, we find that diversity and repre-
sentation are strong points of datasets that were creted to assess biases in services,
products and algorithms (BOLD, HMDA, FICO, Law School, Scientist+Painter, CVs
from Singapore, YouTube Dialect Accuracy, Pilot Parliaments Benchmark), which
were designed and curated with special attention to sensitive groups. We also find
instances of ex-post remedies to issues of diversity. As an example, the curators of
ImageNet proposed a demographic balancing solution based on a web interface that
removes the images of overrepresented categories (Yang et al. 2020b). A natural alter-
native is the collection of novel instances, a solution adopted for Framingham. This
dataset stems from a study of key factors that contribute to cardiovascular disease, with
participants recruited in Framingham, Massachusetts over multiple decades. Recent
cohorts were especially designed to reflect a greater racial and ethnic diversity in the
town (Tsao and Vasan 2015).

Negative examples.Among the datasets we surveyed, we highlight one whose low
inclusivity is rather obvious.WebText is a 40 GB text dataset that supported training of
the GPT-2 language model (Radford et al. 2019). The authors crawled every document
reachable from outbound Reddit links that collected at least 3 karma. While this was
considered a useful heuristic to achieve size and quality, it ended up skewing this
resource towards content appreciated by Reddit users, who are predominantly male,
young, and enjoy good internet access. This should act as reminder that size does not
guarantee diversity (Bender et al. 2021), and that sampling biases are almost inevitable.

Inclusivity is nuanced. While inclusivity surely requires an attention to subpop-
ulations, a more precise definition may depend on context and application. Based on
the task at hand, an ideal sample may feature all subpopulations with equal presence,
or proportionally to their share in the overall population. Let us call these the equal
and proportional approach to diversity. The equal approach is typical of datasets that
are meant to be evaluation benchmarks (Pilot Parliaments Benchmark, Winobias) and
allow for statistically significant statements on performance differences across groups.
On the other hand, the proportional approach is rather common in datasets collected
by census offices, such as US Census Data (1990), and in resources aimed precisely
at studying issues of representation in services and products (Occupations in Google
Images).

Open-ended collection of data is ideal to ensure that various cultures are represented
in the manner in which they would like to be seen (Jo and Gebru 2020). Unfortunately,
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we found no instance of datasets where sensitive labels were self-reported according
to open-ended responses. On the contrary, individuals with non-conforming gender
identities were excluded from some datasets and analyses. Bing US Queries is a
proprietary dataset used to study differential user satisfaction with the Bing search
engine across different demographic groups. It consists of a subset of Bing users
who provided their gender at registration according to a binary categorization, which
misrepresents or simply excludes non-binary users from the subset.Moreover, a dataset
may be inclusive and encode gender in a non-binary gender fashion (ClimateAssembly
UK), but, if used in conjunction with an auxiliary dataset where gender has binary
encoding, a common solution is removing instances whose gender is neither female
nor male (Flanigan et al. 2020).

Inclusivity does not guarantee benefits. To avoid downstream harms, inclusion
by itself is insufficient. The context in which people and sensitive groups are repre-
sented should always be taken into account. Despite its overall skew towards male
subjects, ImageNet has a high female-to-male ratio in classes such as bra, bikini
andmaillot,which often feature images that are voyeuristic, pornographic, andnon-
consensual (Prabhu and Birhane 2020). Similarly, in MS-COCO, a famous dataset for
object recognition, there is roughly a 1:3 female-to-male ratio, increasing to 0.95 for
images of kitchens (Hendricks et al. 2018). This sort of representation is unlikely to
benefit women in anyway and, on the contrary, may contribute to reinforce stereotypes
and support harmful biases.

Another clear (but often ignored) disconnect between the inclusion of a group and
benefits to it is represented by the task at hand and, more in general, by possible uses
afforded by a dataset. In this regard, we find many datasets from the face recognition
domain,which are presented as resources geared towards inclusion (Diversity in Faces,
BUPT Faces, UTK Face, FairFace, Racial Faces in the Wild). Attention to subpopu-
lations in this context is still called “diversity” (Diversity in Faces, FairFace, Racial
Faces in the Wild) or “social awareness” (BUPT Faces), but is driven by business
imperatives and goals of robustness for a technology that can very easily be employed
for surveillance purposes, and become detrimental to vulnerable populations included
in datasets. In a similar vein, the FACES dataset has been used to measure age bias
in emotion detection, a task whose applications and benefits for individuals remain
dubious.

Overall, attention to subpopulations is an upside of many datasets we surveyed.
However, inclusion, representation, and diversity can be defined in different ways
according to the problem at hand. Individuals would rather be included on their own
terms, and decide whether and how they should be represented. The problems of
diversity and robustness have some clear commonalities, as the former can be seen
as a means towards the latter, but it seems advisable to maintain a clear separation
between the two, and to avoid equating either one with fairness. Algorithmic fairness
will not be “solved” by simply collecting more data, or granting equal performance
across different groups identified by a given sensitive attribute.
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Table 5 Approaches to demographic data procurement

Approach Example datasets

Self-reported labels Bing US Queries, MovieLens, Libimset, Adult, HMDA,
Law School, Sushi, Willingness-to-Pay for Vaccine

Expert labels Pilot parliaments benchmark

Non-expert labels CelebFaces attributes, diversity in faces, fairface,
occupations in Google images

ML algorithm Racial faces in the wild, instagram photos, BUPT faces,
UTK face

ML algorithm + annotators FairFace, Open Images Dataset

Rule-/knowledge-based algorithm RtGender, Bias in Bios, Demographics on Twitter,
TwitterAAE

6.4 Sensitive attribute labelling

Motivation. Datasets are often taken as factual information that supports objective
computation and pattern extraction. The etymology of the word “data”, meaning
“given”, is rather revealing in this sense. On the contrary, research in human–computer
interaction, computer-supported cooperative work, and critical data studies argues that
this belief is superficial, limited and potentially harmful (Muller et al. 2019; Crawford
and Paglen 2021).

Data is, quite simply, a human-influenced entity (Miceli et al. 2021), determined
by a chain of discretionary decisions on measurement, sampling and categorization,
which shape how and by whom data will be collected and annotated, according to
which taxonomy and based on which guidelines. Data science professionals, often
more cognizant of the context surrounding data than theoretical researchers, report
significant awareness of how curation and annotation choices influence their data and
its relation with the underlying phenomena (Muller et al. 2019). In an interview, a
senior text classification researcher responsible for ground truth annotation shows
consciousness of their own influence on datasets by stating “I am the ground truth.”
(Muller et al. 2019).

Sensitive attributes, such as race and gender, are no exception in this regard. Incon-
sistencies in racial annotation are rather common within the same system (Lum
et al. 2020) and, even more so, across different systems (Scheuerman et al. 2020;
Khan and Fu 2021). External annotation (either human or algorithmic) is essentially
based on co-occurrence of specific traits with membership in a group, thus running
the risk of encoding and reinforcing stereotypes. Self-reported labels overcome this
issue, although they are still based on an imposed taxonomy, unless provided in an
open-ended fashion. In this section, we discuss the practices through which sensitive
attributes are annotated in datasets used in algorithmic fairness research, which are
summarized in Table 5.

Procurement of sensitive attributes. Self-reported labels for sensitive attributes
are typical of datasets that represent users of a service, who may report their demo-
graphics during registration (Bing US Queries, MovieLens, Libimseti), or that were
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gathered through surveys (HMDA, Adult, Law School, Sushi, Willingness-to-Pay for
Vaccine). These are all resources for which collection of protected attributes was envi-
sioned at design, potentially as an optional step. However, when sensitive attributes
are not available, their annotation may be possible through different mechanisms.

A common approach is having sensitive attributes labelled by non-experts, often
workers hired on crowdsourcing platforms. CelebFaces Attributes Dataset (CelebA)
features images of celebrities from the CelebFaces dataset, augmented with annota-
tions of landmark location and categorical attributes, including gender, skin tone and
age, which were annotated by a “professional labeling company” (Liu et al. 2015). In
a similar fashion, Diversity in Faces consists of images labeled with gender and age by
workers hired through the Figure Eight crowd-sourcing platform, while the creators
of FairFace hired workers on Amazon Mechanical Turk to annotate gender, race, and
age in a public image dataset. This practice also raises concerns of fair compensation
of labour, which are not discussed in this work.

Some creators employ algorithms to obtain sensitive labels. Face datasets curators
often resort to the Face++ API (Racial Faces in the Wild, Instagram Photos, BUPT
Faces) or other algorithms (UTK Face, FairFace). In essence labeling is classifying,
hencemeasuring and reporting accuracy for this procedurewould be in order, but rarely
happens. Creators occasionally note that automated labels were validated (FairFace) or
substantially enhanced (Open Images Dataset) by human annotators, and very seldom
report inter-annotator agreement (Occupations in Google Images).

Other examples of external labels include the geographic origin of candidates in
resumes (CVs from Singapore), political leaning of US Twitter profiles (Twitter Politi-
cal Searches), English dialect of tweets (TwitterAAE), and gender of subjects featured
in image search results for professions (Occupations in Google Images). Annota-
tion may also rely on external knowledge bases such as Wikipedia,8 as is the case
with RtGender. In situations where text written by individuals is available, rule-based
approaches exploiting gendered nouns (“woman”) or pronouns (“she”) are also appli-
cable (Bias in Bios, Demographics on Twitter).

Some datasets may simply have no sensitive attribute. These are often used in
works of individual fairness, but may occasionally support studies of group fairness.
For example, dSprites is a synthetic computer vision dataset where regular covariates
may play the role of sensitive variables (Locatello et al. 2019). Alternatively, datasets
can be augmentedwith simulated demographics, as done byMadnani et al. (2017) who
randomly assigned a native language to test-takers in ASAP, or through the technique
of Burke et al. (2018a), which they demonstrate on MovieLens.

Face datasets. Posterior annotation is especially common in computer vision
datasets. The Pilot Parliaments Benchmark, for instance, was devised as a testbed
for face analysis algorithms. It consists of images of parliamentary representatives
from three African and three European countries, that were labelled by a surgical der-
matologist with the Fitzpatrick skin type of the subjects (Fitzpatrick 1988). This is a
dermatological scale for skin color, which can be retrieved from people’s appearance.
On the contrary, annotations of race or ethnicity from a photo are simplistic at best,
and it should be clear that they actually capture perceived race from the perspective

8 https://en.wikipedia.org/wiki/Category:American_female_tennis_players.

123

https://en.wikipedia.org/wiki/Category:American_female_tennis_players


A. Fabris et al.

of the annotator (FairFace, BUPT Faces). Careful nomenclature is an important first
step to improve the transparency of a dataset and make the underlying context more
visible.9

Similarly to Scheuerman et al. (2020), we find that documentation accompanying
face recognition datasets hardly ever describes how specific taxonomies for gender
and race were chosen, conveying a false impression of objectivity. A description of the
annotation process is typically present, but minimal. For Multi-task Facial Landmark,
for instance, we only know that “The ground truths of the related tasks are labeled
manually” (Zhang et al. 2014).

Annotation trade-offs. It is worth re-emphasizing that sensitive label assignment
is a classification task that rests on assumptions. Annotation of race and gender in
images, for example, is based on the idea that they can be accurately ascertained from
pictures, which is an oversimplification of these constructs. The envisioned classes
(e.g. binary gender) are another subjective choice stemming from the point of view of
dataset curators and may reflect narrow or outdated conceptions and potentially harm
the data subjects. In this regard a quote from the curators of MS-Celeb-1M, who do
not annotate race, but consider it for their sampling strategy, is particularly striking:
“We cover all the major races in the world (Caucasian, Mongoloid, and Negroid)”
(Guo et al. 2016b). For these reasons, external annotation of sensitive attributes is
controversial and inevitably influenced by dataset curators.

On the other hand, external annotation may be the only way to test specific biases.
Occupations in Google Images, for instance, is an image dataset collected to study
gender and skin tone diversity in image search results for various professions. The
creators hired workers on AmazonMechanical Turk to label the gender (male, female)
and Fitzpatrick skin tone (Type 1–6) of the primary person in each image. The Pilot
Parliaments Benchmark was also annotated externally to obtain a benchmark for the
evaluation of face analysis technology, with a balanced representation of gender and
skin type. Different purposes can motivate data collection and annotation of sensitive
attributes. Purposes and aims should be documented clearly, while also reflecting on
other uses and potential for misuse of a dataset (Gebru et al. 2018). Dataset curators
mayuse documentation to discuss these aspects and specify limitations for the intended
use of a resource (Peng et al. 2021). In the next section we focus on documentation
and why it represents a key component of data curation.

6.5 Transparency

Motivation. Transparent and accurate documentation is a fundamental part of data
quality. Its absence may lead to serious issues, including lack of reproducibility, con-
cerns of scientific validity, ethical problems, and harms (Barocas et al. 2019). Clear
documentation can shine a light on inevitable choices made by dataset creators and
on the context surrounding the data. In the absence of this information, the curation
mechanismmediating reality and data is hidden; the data becomes onewith its context,

9 In this article, we typically discuss sensitive attributes following the naming convention in the accompa-
nying documentation of a dataset, avoiding a critical terminology discussion .

123



Algorithmic fairness datasets: the story so far

to the point that interpretation of numerical results can be misleading and overarching
(Bao et al. 2021).

The “ground truth” labels (typically indicated with the letter y), which are the target
of prediction tasks in some datasets, such as indications of recidivism in COMPAS,
are especially sensitive in this regard. Indeed, not only accuracy and related quality
metrics, but also measures of algorithmic fairness such as sufficiency and separation
(Barocas et al. 2019) are based on y labels and the ability ofML algorithms to replicate
them, implicitly granting thema special status of truthfulness. In reality, however, these
labels may be biased and incorrect due tomultiple causes, including, very frequently, a
disconnect between what we aim to measure in an ideal construct space (e.g., offense
in the case of COMPAS) and what we can actually measure in the observed space
(e.g., arrest) (Friedler et al. 2021). Fair ML algorithms (measures) can only partly
overcome (catch) these biases, and actually run the risk of further reifying them. Proper
documentation does not solve this issue, but equips practitioners and researchers with
the necessary awareness to handle these biases.

More broadly, good documentation should discuss and explain features, providing
context about who collected and annotated the data, how, and for which purpose
(Gebru et al. 2018; Denton et al. 2020). This provides dataset users with information
they can leverage to select appropriate datasets for their tasks and avoid unintentional
misuse (Gebru et al. 2018). Other actors, such as reviewers, may also access the official
documentation of a dataset to ensure that it is employed in compliance with its stated
purpose, guidelines, and terms of use (Peng et al. 2021).

Positive examples. In this survey, we find examples of excellent documentation
in datasets related to studies and experiments, including CheXpert, Framingham and
NLSY. Indeed, datasets curated by medical institutions and census offices are often
well-documented. The ideal source of good documentation are descriptor articles
published in conjunction with a dataset (e.g. MIMIC-III), typically offering stronger
guarantees than web pages in terms of quality and permanence. Official websites
hosting and distributing datasets are also important to collect updates, errata, and
additional information that may not be available at the time of release. The Million
Song Dataset and Goodreads Reviews, for instance, are available on websites which
contain a useful overview of the respective dataset, a list of updates, code samples,
pointers to documentation, and contacts for further questions.

Negative examples.On the other hand, some datasets are opaque and poorly docu-
mented. Among publicly available ones, Arrhythmia is distributed with a description
of the features but no context about the purposes, actors, and subjects involved in the
data collection. Similarly, the whole curation process and composition of Multi-task
Facial Landmark is described in a short paragraph, explaining it consists of 10,000
outdoor face images from the web that were labelled manually with gender. Most face
datasets suffer from opaque documentation, especially concerning the choice of sensi-
tive labels and their annotation. For semi-synthetic resources, proper documentation is
especially important, to let users understand the broader applicability and implications
of numerical analyses performed on a dataset. IBM HR Analytics is a resource about
employee attrition, which the hosting website describes as containing “fictional data”,
without any additional information. Nonetheless, this data was plausibly generated in
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a principled fashion and (even partial) disclosure of the underlying data generation
mechanism would benefit dataset users.

Retrospective documentation. Good documentation may also be produced ret-
rospectively (Bandy and Vincent 2021; Garbin et al. 2021). German Credit is an
interesting example of a dataset that was poorly documented for decades, until the
recent publication of a report correcting severe coding mistakes (Grömping 2019). As
mentioned in Sect. 4.3, from the old documentation it seemed possible to retrieve the
sex of data subjects from a feature jointly encoding sex and marital status. The dataset
archaeology work by Grömping (2019) shows that this is not the case, which has par-
ticular relevance for many algorithmic fairness works using this dataset with sex as a
protected feature, as this feature is simply not available. Numerical results obtained in
this settingmay be an artefact of thewrong codingwithwhich the dataset has been, and
still is, officially distributed in the UCIMachine Learning Repository (1994). Until the
report and the new redacted dataset (UCIMachine Learning Repository 2019) become
well-known, the old version will remain prevalent and more mistakes will be made.
In other words, while the documentation debt for this particular dataset has been ret-
rospectively addressed (opacity), many algorithmic fairness works published after the
report continue to use the German Credit dataset with sex as a protected attribute (He
et al. 2020b; Yang et al. 2020a; Baharlouei et al. 2020; Lohaus et al. 2020; Martinez
et al. 2020; Wang et al. 2021). This is an issue of documentation sparsity, where the
right information exists but does not reach interested parties, including researchers
and reviewers.

Documentation is a fundamental part of data curation, with most responsibility
resting on creators. However, dataset users can also play a role in mitigating the
documentation debt by proactively looking for information about the resources they
plan to use. Brief summaries discussing and motivating the chosen datasets can be
included in scholarly articles, at least in supplementary materials when conflicting
with page limitations. Indeed, documentation debt is a problem for the whole research
community, which can be addressed collectively with retrospective contributions and
clarifications. We argue that it is also up to individual researchers to seek contextual
information for situating the data they want to use.

7 Broader relevance to the community

Along with the analyses presented in this work, through the lens of tasks supported,
domains spanned, and roles played by algorithmic fairness datasets, we are releasing
the underlying data briefs, as a further contribution for the research community. Data
briefs are a short documentation format providing essential information on datasets
used in fairness research. Data briefs are composed of ten fields, detailed in appendix
A, derived from shared vocabularies such as Data Catalog Vocabulary (DCAT); to
be compliant with the FAIR data principles (Wilkinson et al. 2016), we also defined
a schema called fdo to model the relationships between the terms and to make the
links to external vocabularies explicit. We leverage fdo to format the data briefs as a
Resource Description Framework (RDF) (Miller 1998), and to make them available
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as linked open data, thus supporting data reuse, interoperability, and interpretability.10

Our final aim is to release, update, and maintain a web app, which can be queried
by researchers and practitioners to find the most relevant datasets, according to their
specific needs.11 We envision several benefits for the algorithmic fairness and data
studies communities, such as:

• Informing the choice of datasets for experimental evaluations of fair MLmethods,
including domain-oriented and task-oriented search.

• Directing studies of data bias, and other quantitative and qualitative analyses,
including retrospective documentation efforts, towards popular (or otherwise
important) resources.

• Identifying areas and sub-problems that are understudied in the algorithmic fair-
ness literature.

• Supporting multi-dataset studies, focused on resources united by a common char-
acteristic, such as encoding a given sensitive attribute (Scheuerman et al. 2020),
concerning computer vision (Fabbrizzi et al. 2021), or being popular in the fairness
literature (Le Quy et al. 2022).

8 Conclusions and recommendations

Algorithmic fairness is a young research area, undergoing a fast expansion,with diverse
contributions in terms of methodology and applications. Progress in the field hinges
on different resources, including, very prominently, datasets. In this work, extending
(Fabris et al. 2022), we have surveyed hundreds of datasets used in the fair ML and
algorithmic equity literature to help the research community reduce its documentation
debt, improve the utilization of existing datasets, and the curation of novel ones.

With respect to existing resources, we have shown that the most popular datasets
in the fairness literature (Adult, COMPAS, and German Credit) have limited merits
beyond originating from human processes and encoding protected attributes. On the
other hand, several negative aspects call into question their current status of general-
purpose fairness benchmarks, including contrived prediction tasks, noisy data, severe
coding mistakes, limitations in encoding sensitive attributes, and age.

We have documented over two hundred datasets to provide viable alternatives,
annotating their domain, the tasks they support, and discussing the roles they play in
works of algorithmic fairness. We have shown that the processes generating the data
belong to many different domains, including, for instance, criminal justice, education,
search engines, online marketplaces, emergency response, social media, medicine,
hiring, and finance. At the same time, we have described a variety of tasks studied
on these resources, ranging from generic, such as fair classification, to narrow such
as fair districting and fair truth discovery. Overall, such diversity of domains and
tasks provides a glimpse into the variety of human activities and applications that
can be impacted by automated decision making, and that can benefit from algorithmic

10 Schema publicly available at https://fairnessdatasets.dei.unipd.it/schema/; RDF publicly available at
https://zenodo.org/record/6518370#.YnOSKFTMJhF.
11 This resource will be released at https://fairnessdatasets.dei.unipd.it/.
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fairness research. Tasks and domain annotations aremade available in our data briefs to
facilitate thework of researchers and practitioners interested in the study of algorithmic
fairness applied to specific domains or tasks. By assembling sparse information on
hundreds of datasets into a single document, we aim to provide a useful reference to
support both domain-oriented and task-oriented dataset search.

At the same time, we have analyzed issues connected to re-identification, consent,
inclusivity, labeling, and transparency running across these datasets. By describing
a range of approaches and attentiveness to these topics, we aim to make them more
visible and concrete. On one hand, this may prove valuable to inform post-hoc data
interventions aimed at mitigating potential harms caused by existing datasets. On
the other hand, as novel datasets are increasingly curated, published, and adopted in
fairness research, it is important to motivate these concerns, make them tangible, and
distill existing approaches into best practices, which we summarize below, for future
endeavours of data curation. Our recommendations complement (and do not replace)
a growing body of work studying key aspects in the life cycle of datasets (Gebru et al.
2018; Jo and Gebru 2020; Prabhu and Birhane 2020; Crawford and Paglen 2021; Peng
et al. 2021).

Social relevance of data, intended as the breadth and depth of societally useful
insights afforded by datasets, is a central requirement in fairness research. Unfor-
tunately, this may conflict with user privacy, favouring re-identification or leaving
consideration of consent in the background. Consent should be considered during the
initial design of a dataset, in accordance with existing frameworks, such as the FRIES
framework outlined in the Consentful Tech project. Moreover, different strategies are
available to alleviate concerns of re-identification, including noise injection, conser-
vative release, and (semi)synthetic data generation. Algorithmic fairness is motivated
by aims of justice and harm avoidance for people, which should be extended to data
subjects.

Inclusivity is also important for social relevance, as it allows for a wider repre-
sentation, and supports analyses that take into account important groups. However,
inclusivity is insufficient in itself. Possible uses afforded by a dataset should always
be considered, evaluating costs and benefits for the data subjects and the wider pop-
ulation. In the absence of these considerations, acritical inclusivity runs the risk of
simply supporting system robustness across sensitive attributes, such as race and gen-
der, rebranded as fairness.

Sensitive attributes are a key ingredient to measure inclusion and increase the social
relevance of a dataset. Although often impractical, it is typically preferable for sen-
sitive attributes to be self-reported by data subjects. Externally assigned labels and
taxonomies can harm individuals by erasing their needs and points of view. Sensi-
tive attribute labelling is thus a shortcut whose advantages and disadvantages should
be carefully weighted and, if chosen, it should be properly documented. Possible
approaches based on human labour include expert and non-expert annotation, while
automated approaches range from simple rule-based systems to complex and opaque
algorithms. To label is to classify, hence measuring and reporting per-group accuracy
is in order. Some labeling endeavours are more sensible than others: while skin tone
can arguably be retrieved from pictures, annotations of race from an image actually
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capture perceived race from the perspective of the annotator. Rigorous nomenclature
favours better understanding and clarifies the subjectivity of certain labels.

Reliable documentation shines a light on inevitable choicesmade bydataset creators
and on the context surrounding the data. This provides dataset users with information
they can leverage to select appropriate datasets for their tasks and avoid unintentional
misuse. Datasets for which some curation choices are poorly documented may appear
more objective at first sight. However, it should be clear that objective data and turbid
data are very different things. Proper documentation increases transparency, trust,
and understanding. At a minimum, it should include the purpose of a data artifact,
a description of the sample, the features and related annotation procedures, along
with an explicit discussion of the associated task, if any. It should also clarify who
was involved in the different stages of the data development procedure, with special
attention to annotation. Data documentation also supports reviewers and readers of
academic research in assessing whether a dataset was selected with good reason and
utilized in compliance with creators’ guidelines.

Understanding and budgeting for all these aspects during early design phases, rather
than after collection or release, can be invaluable for data subjects, data users, and soci-
ety. While possible remedies exist, data is an extremely fluid asset allowing for easy
reproduction and derivatives of all sorts; remedies applied to a dataset do not neces-
sarily benefit its derivates. In this work, we have targeted the collective documentation
debt of the algorithmic fairness community, resulting from the opacity surrounding
certain resources and the sparsity of existing documentation. We have mainly targeted
sparsity in a centralized documentation effort; as a result, we have found and described
a range of weaknesses and best practices that can be adopted to reduce opacity and
mitigate concerns of privacy and inclusion. Similarly to other types of data interven-
tions, useful documentation can be produced after release, but, as shown in this work,
the documentation debt may propagate nonetheless. In a mature research community,
curators, users, and reviewers can all contribute to cultivating a data documentation
culture and keep the overall documentation debt in check.
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