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Abstract

LEarning TO Rank (LETOR) algorithms are usually trained on annotated cor-

pora where a single relevance label is assigned to each available document-topic

pair. Within the Cranfield framework, relevance labels result from merging

either multiple expertly curated or crowdsourced human assessments. In this

paper, we explore how to train LETOR models with relevance judgments dis-

tributions (either real or synthetically generated) assigned to document-topic

pairs instead of single-valued relevance labels. We propose five new probabilis-

tic loss functions to deal with the higher expressive power provided by relevance

judgments distributions and show how they can be applied both to neural and

Gradient Boosting Machine (GBM) architectures. Moreover, we show how train-

ing a LETOR model on a sampled version of the relevance judgments from cer-

tain probability distributions can improve its performance when relying either

on traditional or probabilistic loss functions. Finally, we validate our hypothesis

on real-world crowdsourced relevance judgments distributions. Overall, we ob-

serve that relying on relevance judgments distributions to train different LETOR

models can boost their performance and even outperform strong baselines such

as LambdaMART on several test collections.
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1. Introduction

Motivation. Ranking is a problem that we encounter in a number of tasks

we perform every day: from searching on the Web to online shopping. Given an

unordered set of items, this problem consists of ordering the items according to a

certain notion of relevance. Generally, in Information Retrieval (IR) we rely on

a notion of relevance that depends on the information need of a user, expressed

through a keyword query. When creating a new experimental collection, the

corresponding relevance judgments are obtained by asking different judges to

assign a relevance score to each document-topic pair. Multiple judges – either

trained experts or participants of a crowdsourcing experiment – usually assess

the same document-topic pair, and the final relevance label for the pair is ob-

tained by aggregating these scores [16]. This process is a cornerstone for system

training and evaluation and has contributed to the continuous development of

IR, especially in the context of international evaluation campaigns. Nonethe-

less, the opinion of different judges on the same document-topic pair might be

very different or even diverge to the opposite ends of the spectrum – either

because of random human errors or due to a different interpretation of a topic.

Inevitably, the aggregation process conflates the multiple assessors viewpoints

on document-topic pairs onto a single one, thus losing some information – even

though it also reduces annotation errors and outliers. Our research hypothesis is

that Machine Learning (ML) models – i.e., LETOR [34] and Neural Information

Retrieval (NIR) [23] models – could use all the labels collected in the annotation

process to improve the quality of their rankings. Indeed, judges disagreement on

a certain document-topic pair can be due to an inherent difficulty of the topic or

to the existence of multiple interpretations of it. We argue that designing ML

models able to learn from the whole distributions of relevance judgments could

improve the models’ representation of relevance and their performance through

the usage of this additional information.

Methods. Following this idea, we propose to interpret the output of a

LETOR model as a probability value or distribution – according to the ex-
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perimental hypotheses – and define different Kullback–Leibler (KL) divergence-

based loss functions to train a model using a distribution of relevance judgments

associated to the current training item. Such a training strategy allows us to

leverage all the available information from human judges without additional

computational costs compared to traditional LETOR training paradigms.

The loss functions we propose can be used to train any ranking model that

relies on gradient-based learning, including popular NIR models or LETOR

ones.

In this work we focus on transformer-based neural LETOR models and on

one decision tree-based GBM model – the model at the base of the popular

LambdaMART [8] ranker and used as a strong baseline in many recent LETOR

research papers such as [7, 5, 25, 6, 38].

Evaluation. We assess the quality of the proposed training strategies on

four standard LETOR collections (MQ2007, MQ2008, MSLR-WEB30K [27] and

OHSUMED [29]) and three different transformer-based LETOR models. We

also conduct a crowdsourcing experiment to build a new LETOR collection

based on the COVID-19 MultiLingual Information Access (MLIA) data. 1 We

then use the raw relevance labels and their aggregated version to assess the im-

pact on a LETOR model trained on raw relevance labels versus their aggregated

form.

Contributions of this paper are (i) the definition of five new loss functions

to train different LETOR models using probability distributions of relevance

labels; (ii) an extensive evaluation of the loss functions on neural and decision

tree-based LETOR models using standard test collections and a newly created

crowdsourced LETOR test collection based on COVID-19 MLIA data.

Outline. In Section 2, we describe the most relevant training strategies for

LETOR and NIR models; in Section 3, we present the probabilistic loss functions

leveraging on relevance judgments distributions and the novel neural LETOR

model we employ for evaluation; in Section 4, we describe the experimental

1http://eval.covid19-mlia.eu
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setup and in Section 5 we discuss the evaluation results; in Section 6, we draw

some conclusions and discuss future work.

2. Related Work

Decision tree-based approaches such as LambdaMART [8] have been for

many years the most popular ML models in this domain, but recently – thanks

to the growing size of LETOR collections, new optimization functions [6] and

feature normalization strategies [40] – deep learning approaches, transformer-

based ones in particular [38], are showing an increasingly competitive perfor-

mance.

Transformer-based LETOR models rely on one or more self-attention layers.

This type of neural layer architecture was originally proposed in [35], and later

popularized by language models such as Bidirectional Encoder Representations

from Transformers (BERT) [11]. This architecture allows LETOR models to

efficiently evaluate and compare lists of candidate relevant documents to a user

query, providing a numerical estimate of their relevance. One of the latest and

most successful approaches of this kind is Data Augmented Self-Attentive La-

tent Cross model (DASALC) [38]. It relies on a few strategies such as neural

feature transformation, self-attention layers, a listwise ranking loss and model

ensembling, to outperform strong non-neural baselines such as LambdaMART

on public LETOR collections. Strategies such as neural feature transformation

are frequently employed in the context of neural LETOR models to normalize

the representation of their inputs so that they could be better interpreted by

such models [40]. Self-attention layers – such as the one we employ in the pro-

posed neural LETOR model described in section 3 – allow to efficiently compare

groups of items at the feature level. Finally, listwise ranking losses and model

ensembling strategies are already popular solutions in LETOR and machine

learning to improve the performance of ranking models [8, 7].

In this work, we will show how we can achieve similar improvements in a more

efficient way through the usage of a new class of probabilistic loss functions that
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we propose.

Indeed, in addition to the development of new architectures, another important

branch of research in the LETOR domain focuses on the study of new loss func-

tions specific to ranking problems [34]. These loss functions are generally cate-

gorized as pointwise, pairwise and listwise [10]. Pointwise loss functions are used

to train a model to fit the corresponding relevance score for each document-topic

pair as in a regression task. Loss functions belonging to this class can be de-

scribed using the following general formulation: Pointwise(q, d, y) = f(s(q, d), y),

where q indicates a query, d a document, y its relevance label, s(·, ·) the func-

tion learned by a ML model to compute the relevance of a document given a

query, and f(·) the generic function which compares the score computed by

the model that is being trained with the corresponding relevance label. One

of the possible implementations of f(·) is the Mean Squared Error (MSE) [21].

Pairwise loss functions consider pairs of documents and compare their rele-

vance scores using different strategies. This class of losses can be formalized

as: Pairwise(q, d1, d2) = f(s(q, d1), s(q, d2)), where the function f can have dif-

ferent formulations such as the Hinge function φ(z1, z2) = max(0, 1− z1 + z2),

where zi = s(q, di) ∀i ∈ {1, ..., n} [15]. Finally, listwise loss functions take into

account a set of documents relative to a certain query and compute the loss for

the group of items as: Listwise(q, {d1, ..., dn}, {y1, ..., yn}) = f((s(q, d1), ..., s(q,

dn)), {y1, ..., yn}), where {y1, ..., yn} are the relevance judgments associated to

{d1, ..., dn} and the function f(·) can take different formulations such as the

ApproxNDCG [28] loss.

Amongst the numerous loss function formulations proposed by the LETOR

community, the most widely-employed in the latest state-of-the-art text-based

NIR [22] and LETOR models [40] are the pairwise Hinge [23] and the listwise

ApproxNDCG loss [28, 7], respectively. The formulation of the Hinge loss as

used in the NIR domain is Hinge(q, d+, d−) = max(0, 1 − s(q, d+) + s(q, d−)),

where d+ and d− identify respectively a relevant and a not-relevant document for

the query q. The goal of this loss function is to maximize the difference between

the relevance probabilities – indicated by the function s(q, ·) – computed for

5



each document. The Hinge loss is frequently chosen to train text-based NIR

models such as DRMM [15], MatchPyramid [24] or the most recently proposed

CEDR [22], but was also used as a baseline in LETOR research works such

as in [37], where it demonstrated to be a competitive candidate among other

pointwise or pairwise loss functions. The main advantage of this loss function is

its ability to perform well on relatively small datasets – as it is often the case for

text-based NIR models when evaluated on shared IR test collections. Differently

from the Hinge loss, the ApproxNDCG loss can take into account more than

two documents at a time and, as the name suggests, provides a differentiable

approximation of the normalized Discounted Cumulated Gain (nDCG) measure

for the evaluation of a ranked list. Given a permutation π of items {x1, ..., xn}

and the corresponding sequence of relevance labels y, the nDCG is defined as:

nDCG(π,y) =
DCG(π,y)

DCG(π∗,y)
, (1)

where π∗ is the ideal ranking of the items according to the relevance labels y.

The Discounted Cumulated Gain (DCG) is computed as [10]:

DCG(π,y) =

n∑
i=1

2yi − 1

log2(1 + r(xi, π))
, (2)

where r(xi, π) is the function returning the rank of item xi in π and yi is its label.

This measure, however, is not differentiable because the function r(·, ·) is not.

To tackle this problem, Qin et al. [28] propose a differentiable approximation

of nDCG which can be used as a loss function to train ML models [7]. In

the ApproxNDCG loss, the non-differentiable r(·, ·) function is replaced by its

approximation:

r̂(xi, π) = 1 +
∑
j 6=i

Is(xi)<s(xj),∀xj ∈ π, (3)

where s(·) indicates the scoring function of the model we are training and Iu<v is

the indicator function which is 1 if u < v and 0 otherwise. In turn, the indicator

function is approximated with: σ(v − u) = (1 + e−α(v−u))−1, where α is a

parameter to control the steepness of the sigmoid function σ(·). More recently,
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a stochastically treated version of the ApproxNDCG function was proposed

by Bruch et al. [6]. In the paper, zero-mean logistic noise is added to the

sigmoid function presented earlier, which becomes σ((v−u)+Zvu), where Zvu ∼

Logistic(mean = 0, scale = β). Intuitively, adding random noise to the model

outputs induces it to increase the difference between the relevance scores of

relevant and not-relevant items to maintain their relative ordering in the final

ranked list. ApproxNDCG and its variant with Stochastic Treatment (ST) are

the most popular and best performing listwise loss functions among the recently

published neural LETOR works such as [7, 6, 39, 40].

Regarding the collection of relevance judgments, there is still an open de-

bate in the IR community on how to reliably collect them and on the best

strategies for their aggregation. Crowdsourcing is a valuable option in this con-

text [2]. The TREC Crowdsourcing track [20, 31, 32] for example, explored the

challenges related to the collection and management of relevance judgments for

Web pages and search topics. Numerous aggregation options are also described

in the IR literature on crowdsourcing [30, 16, 13] involving strategies to weigh

the annotations of each judge depending on the topic difficulty and/or his/her

level of confidence on it. Here, we take a new approach to this problem, elim-

inating the relevance judgments aggregation step and training a model on the

distribution of relevance judgments associated to each document-topic pair.

We propose five different loss functions that allow ranking models to take

advantage of relevance judgments distributions prior to their aggregation. Since,

to the best of our knowledge, no similar method was previously presented in

the literature, we compare the newly proposed training strategies to five high-

performing loss functions representative for each class of functions described

before, i.e. MSE, Hinge, ApproxNDCG, ApproxNDCG with ST and ListMLE.

3. Proposed Approach

In this section we introduce the proposed pointwise, pairwise and listwise loss

functions and the neural LETOR model that we use as reference architecture.
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Pointwise Loss Functions. These formulations rely on KL divergence

to compare two probability distributions, i.e. the relevance score computed

by our LETOR model for a document-topic pair and its corresponding true

relevance label. We interpret the relevance label assigned to a document as if it

was generated by a Binomial random variable modeling the judges’ annotation

process. For example, we assume that n assessors provided one binary relevance

label for each document-topic pair, i.e., to state whether the pair was a relevant

or a not-relevant one. This process can be modeled as a Binomial random

variable P ∼ Bin(n, p) where the success probability p for each sample is the

average of the binary responses submitted in n trials. Since in most LETOR

datasets, relevance judgments are not real values in the [0, 1] range, we normalize

them to fit this interval.

We then apply the same reasoning for the interpretation of our model output

probability score as another Binomial distribution P̂ ∼ Bin(n, p̂) with the same

parameter n – empirically tuned for the numerical stability of the gradients

during training – and probability p̂ equal to the output of the model which

is kept in the [0, 1] ∈ R range employing a sigmoid activation function at the

output layer.

At this point, the model output and relevance labels distributions are ex-

pressed as Binomial distributions with the same parameter n and different suc-

cess probabilities; hence, we can compare them using the KL divergence:

DKLBin
(P ||P̂ ) = log

(
p

p̂

)
np+ log

(
1− p
1− p̂

)
n(1− p), (4)

that is differentiable because it is the sum of two differentiable and continu-

ous functions for p and p̂ in the open (0, 1) interval. Since KL divergence is not

symmetric – which would lead to issues in the comparison of different items dur-

ing model optimization – we employ the following symmetric and non-negative

formulation as the loss function for each data point in a training batch:

PointwiseKL(Bin) =
(
DKL(Pi||P̂i) +DKL(P̂i||Pi)

)
∗ wi. (5)

Since we train our model feeding it all the items corresponding to one or more
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ranked lists provided in the training data, we need to balance the contributions

of relevant (the minority) and not-relevant (the majority) items to the final loss

function value. For this reason, before computing the total loss value in a batch

by summing the contribution of each data point, we rescale each term by a

factor wi, inversely proportional to the number of times an item of the same

class appeared in the batch.

Since our relevance labels are graded and normalized between [0, 1] ∈ R, we

consider as not-relevant the data points associated to a relevance label lower

than an empirically set threshold, and the remaining ones as relevant. In our

experiments, we set this threshold to 0.1 – instead of for example 0.0 – for it to

be used also when simulating the relevance labels distributions as described in

Section 5, sampling them from continuous probability distributions.

Whenever an actual relevance judgments distribution is available, we propose

to use another pointwise loss function which takes into account the distribution

of values over a number of relevance grades, interpreting them as outcomes from

a Multinomial distribution [4, 1] P ∼ Mul(n, (p1, ..., pk)) – which is a general-

ization of the aforementioned Binomial distribution with the same parameter

n. The outcomes of the modeled random process take a finite number of values,

where
∑k
i=1 pi = 1. Each pi indicates the probability of one of the k possible rel-

evance grades to be selected by the pool of judges that were employed to asses a

certain document-topic pair. To obtain a comparable distribution to the output

of our model we adjust the output layer size to k and employ a softmax activa-

tion function over each output sequence obtaining the probabilities (p̂1, ..., p̂k),

which allow us to define the random variable P̂ ∼ Mul(n, (p̂1, ..., p̂k)). We then

compare the two distributions with the same strategy used before, changing the

formulation of the KL divergence to Multinomial distributions:

DKL(Mul)(P ||P̂ ) =

k∑
i=j

pj log
pj
p̂j
. (6)

This function is continuous and differentiable for non-zero probability values

but, again, not symmetric. Therefore, we train our model using the following

symmetric and non-negative formulation to evaluate the quality of approxima-
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tion of the relevance of each item:

PointwiseKL(Mul) =
(
DKL(Mul)(Pi||P̂i) +DKL(Mul)(P̂i||Pi)

)
∗ wi. (7)

As in the previous case, before computing the total loss in a batch, we rescale

the contribution of each data point in it by a factor wi.

In this case, we recommend the collection of a number of relevance labels

for each query-document pair sufficient to estimate the distribution of opinions

on its relevance for the user base of the search system. For example, if we are

evaluating the relevance of a recently published academic study with respect

to a certain topic, if our audience is made of experts from the same academic

field, then a wider range of relevance labels should be collected to capture all

of the nuances of the opinions field professionals could have on the topic. On

the other hand, if our audience is the general public, the number of relevance

judgements required can be smaller and proportional to the public agreement

on the specific topic.

Note also that, despite the interpretation we provide for the parameter n in

the Binomial and Multinomial distributions as the number of judges provid-

ing relevance labels for the same query-document pair, in the remainder of this

paper we consider n as a hyperparameter of the model. Indeed, even if there

could be a relation between the number of judges providing relevance labels

and the corresponding random variable which could model this process, this

intuition would be hard to verify empirically. Indeed, the number of judges

available for the creation of a new IR collection is often limited by real-world

constraints – such as labor cost or the availability of an appropriate number

of trained professionals – therefore, our hypothesis becomes hard to verify for

a large number of topics where potentially dozens or even hundreds of judges

could be required for the annotation of each query-document pair in an exhaus-

tive study. Pairwise Loss Functions. We also propose two pairwise loss

functions. The intuition here is to increase the model robustness and general-

ization power through a comparison between distributions instead of real-valued

relevance scores. To achieve this goal, given a topic, we compare all pairs of
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relevant and not-relevant – or less relevant if relevance labels are not binary –

documents in a batch by considering the output relevance scores produced by

our model and the respective relevance labels. In other words, for each topic in

an experimental collection we consider every pair of documents available with a

different relevance label – obtained by either aggregating relevance scores if rel-

evance judgments distributions are available, or taking their exact value – and

compare them to train a LETOR model with one of the loss functions described

below. We evaluate two possible interpretations for these relevance scores.

The first option, similarly to what we did for the PointwiseKL(Bin) loss func-

tion, is to consider the relevance scores as the success probabilities of Binomial

random variables and then to compute their KL divergence.

The second option is to consider the relevance scores of each pair as sam-

ples from two different Gaussian random variables P+ ∼ N (µp+ , σ) and P− ∼

N (µp− , σ) with the same standard deviation σ but centered on the relevance

labels – or model output scores – µp+ and µp− . Our hypothesis is that rele-

vance judgments provided by different judges for a certain document-topic pair

(relevant or not-relevant) will have a certain standard deviation (σ) and will

be all centered around a certain value µ, following a Gaussian random pro-

cess. Therefore, if we assume the standard deviation – i.e. the disagreement

of different judges over each annotated sample – to be constant over time, we

can model the process with a Gaussian random variable with µ equal to the

output relevance score of our model – interpreted as a sample from the true

distribution – and standard deviation σ to be adjusted according to the level of

agreement/disagreement that we hypothesize in the annotation process.

Depending on the modeling strategy, the proposed loss functions take the

following formulations typical of pairwise hinge losses [10], where we replace the

term dedicated to compare a pair of item with their sign-corrected KL divergence

value:

PairwiseKL(Bin) = max(0,m− sign(p+ − p−)DKL(Bin)(P
+
Bin, P

−
Bin), (8)

where m is a slack parameter to adjust the distance between the two dis-
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tributions, p+ and p− are the outputs of the LETOR model associated to

two documents – the former with a higher relevance label than the latter –

P+
Bin ∼ Bin(n, p+) and P−Bin ∼ Bin(n, p−) are two Binomial distributions corre-

sponding to a relevant and to a not-relevant document-topic pair, respectively.

The respective success probabilities are equal to the sigmoid-bounded relevance

probability scores returned by the LETOR model to train, as done for the cor-

responding pointwise loss function, see eq. (5). In this case, if the relevant data

point has a relevance probability p+ > p−, the loss is equal to the difference

between m and the KL divergence between the distributions. This difference

is lower bounded by zero, thanks to the max operation implemented with the

Rectified Linear Unit (ReLU) function. In this situation, the slack variable m

can be tuned to increase or decrease the distance between the two distributions.

Conversely, if p− > p+, then the loss is positive and equal to the sum of m and

the value of the KL divergence between the two distributions.

The formulation of the pairwise loss function relying on Gaussian distribu-

tions has a similar form, but it uses the formulation of the KL divergence be-

tween two Gaussian random variables P+ ∼ N (µp+ , σp+) and P− ∼ N (µp− , σp−):

DKL(N )(P ||P−) =
1

2

[
2 log

σp−

σp+
− 1 +

σ2
p+ + (µp+ − µp−)2

σ2
p−

]
. (9)

This function is differentiable and, if the two random variables have the same

variance, also symmetric and not-negative – i.e. DKL(N )(P ||P−) =
σ2+(µp+−µp− )2

2σ2 −
1
2 . Therefore, we can employ it to train the model as:

PairwiseKL(N ) = max(0,m− sign(p+ − p−)DKL(N )(P
+
N , P

−
N ). (10)

Listwise Loss Function. Finally, we propose a listwise loss function also

based on the KL divergence between distributions. In this case, we consider the

whole set of relevance probabilities associated to k documents in a ranked lists of

a batch and their respective relevance labels as two multivariate Gaussian distri-

butions. In a similar way as in eq. (9), we compute the KL divergence between

two multivariate Gaussian distributions P̂ ∼ N (µp̂µp̂µp̂,Σp̂) and P ∼ N (µpµpµp,Σp),
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obtaining:

DKL(Nmult) =
1

2

[
tr
(
Σp
−1Σp̂

)
+ (µpµpµp −µp̂µp̂µp̂)T Σ−1

p (µpµpµp −µp̂µp̂µp̂) −k + log

(
det Σp

det Σp̂

)]
.

(11)

If the two distributions have the same diagonal covariance matrix, eq. (11)

reduces to:

DKL(Nmult) =
1

2
(µpµpµp −µp̂µp̂µp̂)TΣ−1p [(µpµpµp −µp̂µp̂µp̂)] , (12)

which is also symmetric and not negative. As for the PointwiseKL(Bin) and

PointwiseKL(Mul), we rescale the components of the distributions associated

to relevant and not-relevant items by a factor www inversely proportional to their

respective class frequency in the current ranked list. Therefore, the loss function

value associated to one ranked list in a batch is computed as

ListwiseKL(Nmult) = DKL(Nmult)(P̂ ||P ) ∗www (13)

where P̂ ∼ N (µp̂,Σ) represents the output distribution of relevance probabilities

returned by our model and P ∼ N (µp,Σ) indicates the distribution of true

relevance judgments associated to each item in a ranked list. The loss function

values associated to each ranked list are then averaged over a batch.

Neural LETOR Model. The architecture of the transformer-based neural

model that we employ in our experiments is depicted in Figure 1 and is inspired

to other popular ones such as [26, 33, 38]. The first layer of the proposed

architecture – depicted in Figure 2 – is a standard Multi-Head Self-Attention

(SA) Layer as the one introduced in [35] to compare the different document

representations in input. The outputs of each SA head – of size m = f/k, i.e.

equal to the original document representation size f divided by the number k of

attention heads used – are then concatenated and fed to a Regularization Layer

with the goal of eliminating the redundancy in the representations of different

attention heads and extracting only the features and their combinations which

are useful for our goal. The Regularization Layer that we employ takes as input

the concatenation of the outputs of different attention heads associated to the

documents and begins by normalizing their components to have mean 0 and
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d1 dn
...

d2

...

Hidden Layer

Output Layer

Self-Attention
Head 1

Self-Attention
Head k

Concatenate

Regularization
Layer

Multi Head Self-
Attention Layer

Input Documents Set

s1 s2 sn...

Output Relevance Scores

Figure 1: Schema of the neural model employed in our experiments.

standard deviation equal to 1. Then, we feed these normalized representations

into a Feed-Forward Neural Network (FFNN) of size t times the input vector

size f , using the ReLU activation function. Next, we normalize its output – with

the goal of forcing to zero the components of the output which are redundant

– and feed them to another FFNN of size f . The output of the latter layer

is then summed to the normalized input to the layer as described in Fig. 3.

Finally, we normalize the components of the output vector of this layer to have

0 mean and unit standard deviation. Each normalization layer estimates the

components mean and standard deviations considering each feature separately.

This layer is used to improve the numerical stability of the operations in the
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KQ V

Input
Ranked List

Softmax

Mul

L2 Norm

Mul

Self-Attention
Head

Figure 2: Schema of the self-attention layer we employ in the proposed transformer-based

LETOR model.

LayernormLayernorm FFNNFFNN L2 NormDropoutInput
Vector Sum

Regularization Layer

Figure 3: Schema of the proposed Regularization Layer that we use in our LETOR model.

model by maintaining the values within a constant range.

The representation of each document returned by our Regularization Layer

is then fed to a hidden layer of size h with a ReLU activation function and to

an output layer. The output layer size is equal to the number of relevance levels

of the current collection if we are using the PointwiseKL(Mul) loss function, one

otherwise. The activation function we use depends on the output size and is the

softmax function if we are considering a multi-class output and the sigmoid in

the other cases.

4. Experimental Setup

In this section, we describe the main technical details of our experimental

setup, additional details are available in our code repository, along with the

source code of the proposed approaches and the newly created test collection:

https://github.com/albpurpura/PLTR.
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Experimental Collections. The experimental collections that we con-

sider in our experiments are: MQ2007, MQ2008, MSLR-WEB30K [27] and

OHSUMED [29]. All collections are already organized in five different folds

with the respective training, test and validation subsets. We report the perfor-

mance of our model averaged over these folds with the exception of the MSLR-

WEB30K collection where we only consider Fold 1 as in other popular research

works [40, 39, 17, 38].

The MQ2007 and MQ2008 collections contain 1, 700 and 800 queries, with a

respective average of 40 and 18 assessed documents per query. Their relevance

scores are integer values ranging from 0 to 2, indicating an increasing degree of

relevance. The MSLR-WEB30K collection is a subset of 30, 000 queries from

the retired training set of the commercial search engine Microsoft Bing with

an average number of 125 judged documents per query. Since these features xi

are not normalized, we normalize them applying the following transformation

proposed in [40] and also used in [38]: x̂i = log(|1 + xi|) ∗ sign(xi). Relevance

labels here are integers from 0 to 4. The OHSUMED [29] collection contains

about 16K documents from MEDLINE and 106 queries with an average of 125

assessed documents. Relevance labels here are in the {0, 1, 2} set.

Crowdsourcing Relevance judgments. We also conducted a crowd-

sourcing experiment to obtain relevance judgments distributions for a subset

of document-topic pairs from the COVID-19 MLIA collection. We consider

the English MLIA subset, which contains 30 topics related to the COVID-19

pandemic and documents scraped from different online sources. 2 We collected

relevance judgments on an average of 64 documents per topic (standard devia-

tion = 4.37) with an average of 4 different judges (standard deviation = 7.12)

per document and with an average pairwise inter-annotator agreement of 70%.

Judges are voluntary master or Ph.D. students in computer engineering or for-

eign languages. The relevance labels that we consider are in the {0, 1, 2} set,

indicating increasing relevance. We built a LETOR collection computing the

2http://eval.covid19-mlia.eu
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documents features by employing different retrieval models and configurations

available in the Apache Lucene framework. 3 We considered 24 different re-

trieval pipelines using a combination of one component from each the following

sets: {BM25, Language Model with Dirichlet Smoothing (LMD), Divergence

From Randomness} retrieval model, {Lucene, Indri, Atire, Okapi} stoplist –

available online 4 – and {Porter, Lovins} stemmer.

When required by the loss functions, we aggregated the relevance judgments

distributions to obtain a real-valued relevance score. This was achieved by com-

puting a weighted average with the following weights [−1.0, 0.5, 1.0], obtaining

a score within −1 and 1 which was then rescaled and shifted between 0 and

1 to be used for training and evaluation purposes. We chose this aggregation

strategy as an alternative to the Majority Vote method, to better preserve all

the possible degrees of relevance for a document-topic pair.

Model Hyperparameters and Training. The training parameters of the

aforementioned neural model are the number of attention heads k, the factor

t which is used to determine the size f × t of the first FFNN in the proposed

Regularization Layer, and the hidden layer size h. These parameters were ad-

justed according to the experimental collection size and number of features of

the input data points and tuned on the validation sets of the first folds of each

collection. The model was trained for a maximum of 100 epochs with early stop-

ping with patience of 20 epochs on the MQ2007, MQ2008 and MSLR-WEB30K

collections, while we reduced the maximum number of training epochs to 50 on

the OHSUMED and MLIA collection. The best model was then selected for

each fold according to the nDCG@1 performance on the validation set. The

number of attention heads k was dependent both on the collection size and the

number of features available to represent each document. This parameter was

set to 2 for the experiments on the MQ2007 and MQ2008 collections, 4 on the

MSLR-WEB30K, 3 on the OHSUMED and 1 on the MLIA collection. The fac-

3https://lucene.apache.org
4https://bitbucket.org/frrncl/gopal/src/master/src/main/resources/
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tor t was empirically set to 3 for the experiments on all collections, while the

hidden layer size h was set to 32 for the experiments on the MQ2007, MQ2008

and OHSUMED collections, to 128 for the ones on the MSLR-WEB30K and to

8 for the experiments on MLIA.

Since in the MSLR-WEB30K and OHSUMED collections the maximum

number of documents per query is much larger than the average on the other

datasets, we reranked in these cases only the top 150 documents ranked by a

LightGBM LambdaMART model [18] tuned considering the nDCG@1 measure

on the validation set of each collection fold. We cut the ranked lists at 150

documents since this was also the maximum value of documents available to

rerank per-query on the MQ2007, MQ2008 and MLIA collections.

In our experimental section, we also provide a performance comparison of

our probabilistic training approach simulating a noisy annotation process. For

each annotated query-document pair, we sample a new set of relevance labels

from a Binomial distribution with parameters n = 32 – we determined this value

empirically according of the performance of the model on the validation set of

the first fold of the experimental collections in the previous experiments with

pointwise loss functions – and p equal to the normalized relevance label found in

the dataset. In other words, if a dataset employs relevance labels in the set {0, 1,

2}, then the p values we employ to sample new relevance labels will take values

in the set {0, 0.5, 1}, in the same order. After the sampling step, we average

the sampled values to generate a new “sampled” relevance label. This label is

used as the parameter p in equations 5, 7, 13 and compared to the real-valued

output of the model we train indicated as p̂. The sampled relevance label is also

used to compute which documents to consider in each training pair provided to

the pairwise loss functions described in equations 8 and 10. This process does

not change the relevance label of highly relevant or not-relevant documents – i.e.

the documents with the highest or lowest relevance grade that have a success

probability of 1.0 or 0.0, respectively – but provides some range of variability

for the documents judged as partially-relevant, with a variance proportional to

the uncertainty on the relevance of the document. Indeed the variance of each
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Binomial variable P ∼ Bin(n, p) is defined as np(1−p), it is therefore higher for

values closer to 0.5 – i.e. values of p associated to relevance labels in the middle of

the grading scale. Intuitively, the parameter n increases or decreases the width

of the Probability Density Function (PDF) of the distributions we compare,

i.e. a larger n can be used in the cases where there is a large variability in the

relevance judgements distribution for the same query-document pair and vice

versa. Therefore, we recommend treating n as a model parameter and tuning

it on a separate validation set.

Evaluation Measures and Baselines. We evaluate the performance

of the proposed loss functions relying on top-heavy, widely-used measures as

ERR [9], nDCG@{1, 3, 5} 5 and P@{1, 3, 5}; these are also amongst the

most used measures in the LETOR literature. Moreover, despite recent crit-

ics [12, 14] and the open debate in the community, to ease the comparison with

other LETOR approaches in the literature [34, 17, 19], we also report the Aver-

age Precision (AP) of each of our runs averaged over all topics (MAP). We also

compute a paired Student’s t-test for each measure and report the performance

difference between the baseline of choice (i.e., the proposed neural model trained

with the ApproxNDCG loss function or the LambdaMART model, depending

on the experiment at hand) and the same model trained with the other loss func-

tions; we indicate with ↑ or ↓ a statistically significant difference (α < 0.05),

accordingly to the sign of the difference. We selected the ApproxNDCG loss

as a reference loss function for the proposed neural model since it was the one

with the best performance across all the considered collections. To simplify our

experimental analysis, we report the performance of our model when trained us-

ing the following loss functions as representatives from the pointwise, pairwise

and listwise loss categories: MSE, Hinge, ApproxNDCG with and without ST

and ListMLE.

Given the success of the LambdaMART model in the LETOR domain and

5The nDCG formulation we employ is the one used by the TREC eval tool. https://github.

com/usnistgov/trec_eval
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its widespread usage as a strong reference baseline for the evaluation of new

systems [38], we also evaluate the impact of the proposed loss functions to

train a decision tree-based GBM model, that is the model at the base of Lamb-

daMART [8]. We also evaluate the impact of the proposed training strategies on

two popular neural LETOR models, i.e. DASALC [38] and a simple transformer

model with one self attention layer similar to the one used in [26].

To perform the experiments with the GBM model, we rely on the Light-

GBM library. On each collection, we tune the hyperparameters of the GBM

to obtain the highest nDCG@1 on the validation set of Fold 1 of each exper-

imental collection. The hyperparameter optimization process is performed –

similarly to [27] – through a grid search over the following parameters: learn-

ing rate {0.001, 0.05, 0.1, 0.5}, number of trees {300, 500, 1000}, number of leaves

{200, 500, 1000} and followed by an additional manual tuning around the best

hyperparameters combination found in the previous step. The best model hy-

perparameters for each collection are reported in our online repository. We also

compare the performance of the neural LETOR and GBM model to the Light-

GBM LambdaMART implementation and to other neural models. We tuned the

hyperparameters of each neural model we consider following the same criteria

described in [38].

5. Evaluation

In Table 1, we report the performance of the proposed LETOR neural model

trained using different loss functions on the MQ2007, MQ2008, MSLR-WEB30K

and OHSUMED collections. We observe that the neural model achieves the

best performance in the majority of the collections when trained with the

PairwiseKL(N ) loss function. On the MQ2007 and MQ2008 collections, all the

proposed pairwise and listwise functions outperform the ApproxNDCG loss and

most of the other losses with the exception of the MSE loss on the MQ2008

collection which is the most competitive amongst the baselines. On the MSLR-

WEB30K collection the best of the proposed PairwiseKL(Bin) loss functions
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Loss Function ERR P@1 P@3 P@5 nDCG@1 nDCG@3 nDCG@5 AP

MQ2007

ApproxNDCG 0.3169 0.4639 0.4291 0.4105 0.4152 0.4150 0.4219 0.4603

ListMLE 0.3178 0.4681 0.4336 0.4116 0.4178 0.4175 0.4215 0.4596

ApproxNDCG (ST) 0.2704↓ 0.3842↓ 0.3621↓ 0.3494↓ 0.3363↓ 0.3391↓ 0.3459↓ 0.4021↓

Hinge 0.2674↓ 0.3723↓ 0.3633↓ 0.3511↓ 0.3239↓ 0.3334↓ 0.3420↓ 0.4004↓

MSE 0.3154 0.4574 0.4291 0.4115 0.4113 0.4136 0.4205 0.4550↓

Pointwise KL (Binomial) 0.3168 0.4551 0.4334 0.4132 0.4087 0.4177 0.4230 0.4601

Pairwise KL (Binomial) 0.3196 0.4728 0.4377 0.4186↑ 0.4249 0.4226 0.4297↑ 0.4647

Pairwise KL (Gaussian) 0.3218 0.4817↑ 0.4381 0.4201↑ 0.4350↑ 0.4249↑ 0.4318↑ 0.4665↑

Listwise KL (Gaussian) 0.3177 0.4657 0.4332 0.4145 0.4173 0.4192 0.4255 0.4634

MQ2008

ApproxNDCG 0.2972 0.4222 0.3639 0.3337 0.3750 0.4039 0.4484 0.4585

ListMLE 0.2801↓ 0.3954↓ 0.3482↓ 0.3153↓ 0.3508↓ 0.3795↓ 0.4236↓ 0.4399↓

ApproxNDCG (ST) 0.2783↓ 0.4005 0.3571 0.3171↓ 0.3457↓ 0.3856 0.4234↓ 0.4373↓

Hinge 0.2642↓ 0.3533↓ 0.3350↓ 0.3099↓ 0.3087↓ 0.3548↓ 0.4035↓ 0.4228↓

MSE 0.2997 0.4401 0.3844↑ 0.3431↑ 0.3795 0.4177↑ 0.4596↑ 0.4709↑

Pointwise KL (Binomial) 0.2968 0.4222 0.3797↑ 0.3375 0.3699 0.4126 0.4520 0.4626

Pairwise KL (Binomial) 0.2995 0.4388 0.3797↑ 0.3375 0.3839 0.4179 0.4567 0.4681↑

Pairwise KL (Gaussian) 0.3019 0.4375 0.3852↑ 0.3398 0.3871 0.4222↑ 0.4603↑ 0.4697↑

Listwise KL (Gaussian) 0.3008 0.4349 0.3814↑ 0.3457↑ 0.3827 0.4171 0.4630↑ 0.4729↑

WEB30K

ApproxNDCG 0.3523 0.7504 0.7158 0.6936 0.5263 0.5090 0.5084 0.5798

ListMLE 0.3354↓ 0.7756↑ 0.7362↑ 0.7103↑ 0.5217 0.5066 0.5068 0.5983↑

ApproxNDCG (ST) 0.3707↑ 0.7804↑ 0.6994↓ 0.6811↓ 0.5769↑ 0.5065 0.5040↓ 0.5818↑

Hinge 0.3748↑ 0.7885↑ 0.6899↓ 0.6745↓ 0.5884↑ 0.5054 0.5046 0.5877↑

MSE 0.3623↑ 0.7709↑ 0.7334↑ 0.7093↑ 0.5461↑ 0.5268↑ 0.5248↑ 0.5921↑

Pointwise KL (Binomial) 0.3502 0.7596 0.7271↑ 0.6985↑ 0.5293 0.5136↑ 0.5093 0.5862↑

Pairwise KL (Binomial) 0.3467↓ 0.7812↑ 0.7446↑ 0.7184↑ 0.5357↑ 0.5242↑ 0.5241↑ 0.5971↑

Pairwise KL (Gaussian) 0.3454↓ 0.7753↑ 0.7423↑ 0.7166↑ 0.5315 0.5209↑ 0.5214↑ 0.5971↑

Listwise KL (Gaussian) 0.3523 0.7612↑ 0.7258↑ 0.7016↑ 0.5322 0.5152↑ 0.5141↑ 0.5871↑

OHSUMED

ApproxNDCG 0.4981 0.5660 0.5377 0.5057 0.4764 0.4544 0.4371 0.3828

ListMLE 0.4732 0.5377 0.4717↓ 0.4321↓ 0.4575 0.3972↓ 0.3737↓ 0.3220↓

ApproxNDCG (ST) 0.4159↓ 0.5000 0.4119↓ 0.3660↓ 0.4009 0.3330↓ 0.3098↓ 0.2882↓

Hinge 0.4609 0.5660 0.4748↓ 0.4566 0.4434 0.3930↓ 0.3805↓ 0.3530↓

MSE 0.4376↓ 0.5377 0.4465↓ 0.4057↓ 0.4340 0.3663↓ 0.3417↓ 0.3049↓

Pointwise KL (Binomial) 0.4875 0.5189 0.5031 0.5019 0.4481 0.4269 0.4312 0.3800

Pairwise KL (Binomial) 0.4206↓ 0.4811 0.4151↓ 0.3868↓ 0.3915↓ 0.3360↓ 0.3235↓ 0.2886↓

Pairwise KL (Gaussian) 0.4520 0.5377 0.4403↓ 0.4000↓ 0.4481 0.3707↓ 0.3481↓ 0.2903↓

Listwise KL (Gaussian) 0.5248 0.6038 0.5692 0.5057 0.5189 0.4796 0.4456 0.3861

Table 1: Performance of the proposed LETOR neural model averaged over all topics. ↑ or ↓

indicate a statistically significant difference (α < 0.05) with the performance obtained using

the ApproxNDCG loss function. Best performance measures per collection are in bold as the

loss function with the majority of best measures per collection.

outperforms the best loss function overall on this collection, i.e. the Hinge

loss, in terms of P@3, P@5, nDCG@3, nDCG@5 and AP. We also observe that

the performance of the model trained using the ApproxNDCG with ST loss is
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higher here compared to other collections. Indeed, on smaller collections the

amount of training data is probably not sufficient for the model to benefit from

this training strategy. On the OHSUMED collection, the best loss function is

the ListwiseKL(Nmult), followed by the ApproxNDCG loss. This is due to the

combination of a high proportion of relevant documents in the ranked lists and

little amount of training data. For all the experiments on this collection, we

rerank the top 150 documents returned by a LambdaMART model and, for this

reason, we expect the representations of the documents in each ranked list to be

more similar to each other rather than in other collections. Hence, approaches

that consider multiple documents at a time, might have an advantage in finding

the differences between them and providing more insightful information through

their gradients to the model during training.

In Table 2, we report the results of the experiments training the proposed

LETOR neural model using sampled relevance judgments as described in Section

4. As we can see in this table, the relative performance of the neural model when

relying on different loss functions remains similar and the best loss function

overall is still the PairwiseKL(N ) loss. However, the neural model performance

is often higher in this case than in the previous experimental setup, regardless

of the loss function used. This is true for at least one performance measure

when using all but the PairwiseKL(Bin) loss on the MQ2007, and for all the

proposed losses on the MQ2008 collection. We also observe a few performance

improvements in the MSLR-WEB30K collection when using all loss functions

with the exception of the ApproxNDCG with ST and the ListMLE loss. Finally,

on the OHSUMED collection, we observe a performance improvement in at least

one measure when using the ApproxNDCG, ApproxNDCG with ST, MSE or

PairwiseKL(Bin) loss. These results support our hypothesis that acknowledging

and exploiting the possible inconsistencies in the training data can be a viable

way to improve a LETOR model’s performance.

In Table 3, we report the experiments of the crowdsourcing experiments

on the COVID19-MLIA collection. In this case, we set the output size of the

neural model to 3 – the same number of relevance grades that we used for our
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Loss Function ERR P@1 P@3 P@5 nDCG@1 nDCG@3 nDCG@5 AP

MQ2007

ApproxNDCG 0.3175 0.4645 0.4342 0.4090 0.4125 0.4186 0.4217 0.4608

ListMLE 0.3174 0.4639 0.4350 0.4110 0.4158 0.4176 0.4209 0.4591

ApproxNDCG (ST) 0.2749↓ 0.3895↓ 0.3690↓ 0.3579↓ 0.3398↓ 0.3459↓ 0.3540↓ 0.4061↓

Hinge 0.2667↓ 0.3806↓ 0.3599↓ 0.3486↓ 0.3295↓ 0.3331↓ 0.3416↓ 0.4017↓

MSE 0.3162 0.4569 0.4334 0.4117 0.4122 0.4167 0.4208 0.4554↓

Pointwise KL (Binomial) 0.3185 0.4569 0.4297 0.4142 0.4119 0.4159 0.4246 0.4602

Pairwise KL (Binomial) 0.3147 0.4592 0.4356 0.4158 0.4116 0.4163 0.4225 0.4612

Pairwise KL (Gaussian) 0.3193 0.4758 0.4383 0.4201↑ 0.4288↑ 0.4235 0.4294↑ 0.4655

Listwise KL (Gaussian) 0.3187 0.4616 0.4370 0.4178↑ 0.4146 0.4204 0.4272 0.4621

MQ2008

ApproxNDCG 0.2915 0.4120 0.3588 0.3286 0.3661 0.3951 0.4381 0.4498

ListMLE 0.3008↑ 0.4413↑ 0.3797↑ 0.3362↑ 0.3897↑ 0.4186↑ 0.4582↑ 0.4694↑

ApproxNDCG (ST) 0.2659↓ 0.3890 0.3384↓ 0.3077↓ 0.3361 0.3676↓ 0.4091↓ 0.4297↓

Hinge 0.2606↓ 0.3457↓ 0.3316↓ 0.3092↓ 0.3061↓ 0.3521↓ 0.4005↓ 0.4194↓

MSE 0.2991 0.4260 0.3835↑ 0.3416↑ 0.3744 0.4135↑ 0.4568↑ 0.4663↑

Pointwise KL (Binomial) 0.2999 0.4311 0.3831↑ 0.3378↑ 0.3782 0.4193↑ 0.4554↑ 0.4671↑

Pairwise KL (Binomial) 0.3016↑ 0.4362↑ 0.3814↑ 0.3390↑ 0.3871 0.4173↑ 0.4584↑ 0.4667↑

Pairwise KL (Gaussian) 0.3081↑ 0.4503↑ 0.3946↑ 0.3449↑ 0.4005↑ 0.4314↑ 0.4680↑ 0.4769↑

Listwise KL (Gaussian) 0.2996 0.4311 0.3865↑ 0.3439↑ 0.3788 0.4210↑ 0.4611↑ 0.4717↑

WEB30K

ApproxNDCG 0.3522 0.7523 0.7171 0.6938 0.5263 0.5091 0.5082 0.5797

ListMLE 0.3336↓ 0.7732↑ 0.7352↑ 0.7102↑ 0.5181 0.5052 0.5061 0.5980↑

ApproxNDCG (ST) 0.1762↓ 0.5103↓ 0.5086↓ 0.5060↓ 0.2614↓ 0.2773↓ 0.2913↓ 0.5041↓

Hinge 0.3853↑ 0.7919↑ 0.7126 0.6998↑ 0.5926↑ 0.5310↑ 0.5316↑ 0.5887↑

MSE 0.3638↑ 0.7718↑ 0.7344↑ 0.7098↑ 0.5483↑ 0.5286↑ 0.5262↑ 0.5924↑

Pointwise KL (Binomial) 0.3545 0.7542 0.7245↑ 0.6986↑ 0.5305 0.5137↑ 0.5106 0.5883↑

Pairwise KL (Binomial) 0.3475↓ 0.7777↑ 0.7406↑ 0.7150↑ 0.5352↑ 0.5208↑ 0.5212↑ 0.5957↑

Pairwise KL (Gaussian) 0.3506 0.7812↑ 0.7475↑ 0.7202↑ 0.5402↑ 0.5272↑ 0.5267↑ 0.5988↑

Listwise KL (Gaussian) 0.3513 0.7529 0.7234↑ 0.6987↑ 0.5250 0.5129 0.5111 0.5870↑

OHSUMED

ApproxNDCG 0.5157 0.6038 0.5377 0.4906 0.5189 0.4684 0.4395 0.3729

ListMLE 0.4616↓ 0.5377 0.4748↓ 0.4151↓ 0.4387↓ 0.4002↓ 0.3667↓ 0.3116↓

ApproxNDCG (ST) 0.4584↓ 0.5660 0.4465↓ 0.4208↓ 0.4623 0.3765↓ 0.3613↓ 0.3257↓

Hinge 0.4278↓ 0.5094↓ 0.4465↓ 0.4358↓ 0.4009↓ 0.3604↓ 0.3517↓ 0.3475↓

MSE 0.4474↓ 0.5566 0.4528↓ 0.4075↓ 0.4434↓ 0.3776↓ 0.3493↓ 0.3160↓

Pointwise KL (Binomial) 0.4820 0.5094 0.5000 0.4830 0.4340 0.4244 0.4177 0.3727

Pairwise KL (Binomial) 0.4203↓ 0.4717↓ 0.4182↓ 0.3811↓ 0.3915↓ 0.3376↓ 0.3185↓ 0.2887↓

Pairwise KL (Gaussian) 0.4446↓ 0.5094↓ 0.4340↓ 0.3906↓ 0.4245↓ 0.3647↓ 0.3401↓ 0.2933↓

Listwise KL (Gaussian) 0.5165 0.5755 0.5377 0.5113 0.5000 0.4654 0.4473 0.3873↑

Table 2: Performance of the proposed LETOR neural model averaged over all topics. The

model is trained sampling the relevance labels from a Binomial distribution. ↑ or ↓ indicate

a statistically significant difference (α < 0.05) with the ApproxNDCG baseline. Best per-

formance measures per collection are in bold as the loss function with the majority of best

measures per collection.

annotation – and trained the model either (i) by aggregating – as explained

in Section 4 – the model output probability scores and the collected relevance

judgments distributions in the same way, obtaining one relevance score and
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Loss Function ERR P@1 P@3 P@5 nDCG@1 nDCG@3 nDCG@5 AP

MLIA

ApproxNDCG 0.3313 0.4000 0.4667 0.4800 0.3556 0.3896 0.3973 0.3593

ApproxNDCG (ST) 0.2544 0.3000 0.3333↓ 0.3267↓ 0.2708 0.2788 0.2820↓ 0.3144

ListMLE 0.2463↓ 0.2667 0.3111↓ 0.3133↓ 0.2387 0.2640 0.2705↓ 0.3162

Hinge 0.3455 0.5000 0.4667 0.4467 0.4330 0.3830 0.3736 0.3822

MSE 0.2675 0.3333 0.3333 0.3333↓ 0.2917 0.2894 0.2900↓ 0.3101↓

Pointwise KL (Multinomial) 0.3377 0.4333 0.5000 0.4933 0.3628 0.4096 0.4054 0.3834↑

Pointwise KL (Binomial) 0.2562 0.3333 0.3222↓ 0.3533↓ 0.2798 0.2684↓ 0.2898↓ 0.3122

Pairwise KL (Binomial) 0.2639 0.3667 0.3444↓ 0.3200↓ 0.3111 0.2919↓ 0.2814↓ 0.3023↓

Pairwise KL (Gaussian) 0.2423↓ 0.3333 0.3000↓ 0.2867↓ 0.2750 0.2515↓ 0.2498↓ 0.3062

Listwise KL (Gaussian) 0.2521 0.3333 0.3111↓ 0.3133↓ 0.2715 0.2656↓ 0.2653↓ 0.3258

Table 3: Performance of the proposed LETOR neural model on the COVID19-MLIA collection

averaged over all topics. ↑ or ↓ indicate a statistically significant difference (α < 0.05) with

the ApproxNDCG baseline. Best performance measures per collection are in bold as the loss

function with the majority of best measures per collection.

relevance label to train the model with the previously evaluated loss functions,

or (ii) by training the model with the proposed PointwiseKL(Mul) loss function

which can take into account the raw probability distributions over the three

relevance classes. Note that, since relevance judgements distributions are only

available for this collections, this is the only scenario where we can employ the

proposed PointwiseKL(Mul) loss function.

We observe that the proposed PointwiseKL(Mul) loss function is the best loss

function to train the neural model on this collection. This can also be partially

due to the small size of the collection which favors pointwise and pairwise loss

functions. However, PointwiseKL(Mul) still outperforms other pointwise loss

functions such as the MSE and the PointwiseKL(Bin) losses by a sizable margin.

The Hinge loss is the second best loss function on this collection, outperforming

all other baselines. The results from this experiment further confirm our initial

hypothesis on the feasibility of training a LETOR model using raw probability

distributions as training data.

Finally, in Table 4 we report the performance comparison between the best

performing systems relying on the proposed neural model or on a decision tree-

based GBM from the LightGBM library. We also report here the performance

of a LambdaMART model trained with the LigthGBM library as a baseline.
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Loss Function ERR P@1 P@3 P@5 nDCG@1 nDCG@3 nDCG@5 AP

MQ2007

GBM – LambdaMART 0.3211 0.4669 0.4397 0.4167 0.4217 0.4243 0.4285 0.4646

GBM – Pointwise KL (Binomial) 0.3233 0.4752 0.4354 0.4167 0.4303 0.4207 0.4275 0.4591↓

GBM – Listwise KL (Gaussian) 0.3219 0.4592 0.4399 0.4164 0.4152 0.4240 0.4267 0.4595

NN – Pairwise KL (Gaussian) 0.3218 0.4817 0.4381 0.4201 0.4350 0.4249 0.4318 0.4665

NN – Listwise KL (Gaussian) 0.3177 0.4657 0.4332 0.4145 0.4173 0.4192 0.4255 0.4634

MQ2008

GBM – LambdaMART 0.3045 0.4413 0.3869 0.3446 0.3858 0.4260 0.4664 0.4746

GBM – Pointwise KL (Binomial) 0.3072 0.4439 0.3941 0.3464 0.3935 0.4325 0.4690 0.4771

GBM – Listwise KL (Gaussian) 0.2991 0.4362 0.3852 0.3444 0.3801 0.4214 0.4633 0.4775

NN – Pairwise KL (Gaussian) 0.3019 0.4375 0.3852 0.3398 0.3871 0.4222 0.4603 0.4697

NN – Listwise KL (Gaussian) 0.3008 0.4349 0.3814 0.3457 0.3827 0.4171 0.4630 0.4729

WEB30K

GBM – LambdaMART 0.3955 0.7918 0.7541 0.7288 0.5925 0.5711 0.5670 0.6299

GBM – Pointwise KL (Binomial) 0.3550↓ 0.7789↓ 0.7503 0.7261 0.5435↓ 0.5344↓ 0.5343↓ 0.6326↑

GBM – Listwise KL (Gaussian) 0.3861↓ 0.7918 0.7565 0.7323↑ 0.5825↓ 0.5647↓ 0.5615↓ 0.6347↑

NN – Pairwise KL (Gaussian) 0.3454↓ 0.7753↓ 0.7423↓ 0.7166↓ 0.5315↓ 0.5209↓ 0.5214↓ 0.5971↓

NN – Listwise KL (Gaussian) 0.3523↓ 0.7612↓ 0.7258↓ 0.7016↓ 0.5322↓ 0.5152↓ 0.5141↓ 0.5871↓

OHSUMED

GBM – LambdaMART 0.4704 0.5283 0.4874 0.4906 0.4387 0.3980 0.4037 0.4175

GBM – Pointwise KL (Binomial) 0.5036 0.5755 0.5220 0.5000 0.4953 0.4474 0.4330 0.4210

GBM – Listwise KL (Gaussian) 0.5139 0.5755 0.5314 0.5151 0.5000 0.4643↑ 0.4525↑ 0.4243

NN – Pairwise KL (Gaussian) 0.4520 0.5377 0.4403 0.4000↓ 0.4481 0.3707 0.3481↓ 0.2903↓

NN – Listwise KL (Gaussian) 0.5248 0.6038 0.5692↑ 0.5057 0.5189 0.4796↑ 0.4456 0.3861↓

Table 4: Performance of different LETOR models (decision tree-based Gradient Boosted

Machine (GBM) model or the Neural Model (NM)) trained with the best-performing proposed

loss functions averaged over all topics. ↑ or ↓ indicate a statistically significant (α < 0.05)

difference with the LambdaMART model trained on the original relevance judgments. Best

performance measures per collection are in bold as the loss function with the most best

measures per collection.

LambdaMART, and in particular its LightGBM implementation is generally

considered a very competitive baseline in many other LETOR research works [7,

5, 25, 6, 38]. We observe that the proposed probabilistic loss functions are in

most of the cases cases able to improve the performance of a decision tree-based

GBM model, surpassing the one of LambdaMART. We also observe that, on the

MQ2007 and OHSUMED experimental collections, the proposed neural model

outperforms LambdaMART and all the GBM-based models by a sizable margin.

To conclude our evaluation, in Table 5 we report a comparison of the per-

formance improvements obtained using the proposed loss functions to train two

state-of-the-art models, i.e. DASALC [38] and a simpler transformer model sim-

ilar to the one used in [26]. More specifically, we report – for each model – the

performance difference when training it using one of the proposed loss functions
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Optimization Function ERR P@1 P@3 P@5 nDCG@1 nDCG@3 nDCG@5 MAP

MQ2007

DASALC – Pointwise KL (Binomial) -0.0014 -0.0047 -0.0032 +0.0032 -0.0062 -0.0057 -0.0014 -0.0011

DASALC – Pairwise KL (Binomial) +0.0016 +0.0065 +0.0041 +0.0067↑ +0.0059 +0.0027 +0.0050 +0.0060↑

DASALC – Pairwise KL (Gaussian) +0.0007 +0.0035 +0.0047 +0.0080↑ +0.0027 +0.0038 +0.0062 +0.0062↑

DASALC – Listwise KL (Gaussian) -0.0015 -0.0089 -0.0006 +0.0020 -0.0080 -0.0014 +0.0004 -0.0002

TRANSFORMER – Pointwise KL (Binomial) +0.0099↑ +0.0035 +0.0106↑ -0.0007 +0.0098 +0.0112↑ +0.0033 -0.0005

TRANSFORMER – Pairwise KL (Binomial) +0.0084↑ +0.0047 +0.0091 +0.0041 +0.0095 +0.0078 +0.0033 +0.0025

TRANSFORMER – Pairwise KL (Gaussian) -0.0022 -0.0154 -0.0022 -0.0045 -0.0115 -0.0060 -0.0087 -0.0039

TRANSFORMER – Listwise KL (Gaussian) +0.0015 +0.0024 +0.0002 -0.0022 +0.0038 +0.0007 -0.0012 +0.0001

MQ2008

DASALC – Pointwise KL (Binomial) +0.0116↑ +0.0255 +0.0136↑ +0.0128↑ +0.0236 +0.0172↑ +0.0226↑ +0.0179↑

DASALC – Pairwise KL (Binomial) +0.0162↑ +0.0306↑ +0.0234↑ +0.0158↑ +0.0344↑ +0.0284↑ +0.0275↑ +0.0236↑

DASALC – Pairwise KL (Gaussian) +0.0114↑ +0.0230 +0.0170↑ +0.0089↑ +0.0249↑ +0.0210↑ +0.0201↑ +0.0181↑

DASALC – Listwise KL (Gaussian) +0.0160↑ +0.0268↑ +0.0238↑ +0.0171↑ +0.0268↑ +0.0277↑ +0.0279↑ +0.0224↑

TRANSFORMER – Pointwise KL (Binomial) +0.0119↑ +0.0242 +0.0162↑ +0.0056 +0.0198 +0.0231↑ +0.0170↑ +0.0146↑

TRANSFORMER – Pairwise KL (Binomial) +0.0129↑ +0.0293↑ +0.0174↑ +0.0074 +0.0281↑ +0.0235↑ +0.0178↑ +0.0143↑

TRANSFORMER – Pairwise KL (Gaussian) +0.0022 +0.0051 +0.0230↑ +0.0018 -0.0064 +0.0173↑ +0.0051 +0.0046

TRANSFORMER – Listwise KL (Gaussian) +0.0117↑ +0.0281↑ +0.0170↑ +0.0094↑ +0.0191 +0.0239↑ +0.0213↑ +0.0190↑

WEB30K

DASALC – Pointwise KL (Binomial) -0.0083↓ -0.0262↓ -0.0152↓ -0.0144↓ -0.0192↓ -0.0175↓ -0.0173↓ -0.0023↓

DASALC – Pairwise KL (Binomial) -0.0120↓ +0.0165↑ +0.0209↑ +0.0216↑ +0.0028 +0.0062↑ +0.0077↑ +0.0158↑

DASALC – Pairwise KL (Gaussian) -0.0169↓ +0.0094↑ +0.0168↑ +0.0182↑ -0.0074 -0.0009 +0.0020 +0.0148↑

DASALC – Listwise KL (Gaussian) -0.0067↓ -0.0263↓ -0.0175↓ -0.0138↓ -0.0163↓ -0.0139↓ -0.0125↓ -0.0039↓

TRANSFORMER – Pointwise KL (Binomial) -0.0238↓ +0.0138↑ -0.0028 -0.0146↓ -0.0099↓ -0.0193↓ -0.0243↓ -0.0082↓

TRANSFORMER – Pairwise KL (Binomial) -0.0440↓ +0.0135↑ +0.0142↑ +0.0101↑ -0.0386↓ -0.0235↓ -0.0197↓ +0.0042↑

TRANSFORMER – Pairwise KL (Gaussian) -0.0419↓ -0.0041 -0.0001 -0.0003 -0.0416↓ -0.0336↓ -0.0279↓ +0.0019↑

TRANSFORMER – Listwise KL (Gaussian) -0.1000↓ -0.0798↓ -0.0826↓ -0.0786↓ -0.1242↓ -0.1136↓ -0.1068↓ -0.0328↓

OHSUMED

DASALC – Pointwise KL (Binomial) +0.0232 0.0000 +0.0220 +0.0208 +0.0189 +0.0350 +0.0354 +0.0328↑

DASALC – Pairwise KL (Binomial) +0.0022 +0.0094 -0.0346 -0.0547↓ +0.0283 -0.0141 -0.0260 -0.0107

DASALC – Pairwise KL (Gaussian) -0.0176 -0.0189 -0.0629 -0.0717↓ +0.0047 -0.0408 -0.0480↓ -0.0140

DASALC – Listwise KL (Gaussian) +0.0266 +0.0472 -0.0094 -0.0189 +0.0566 +0.0178 +0.0050 +0.0026

TRANSFORMER – Pointwise KL (Binomial) +0.1563↑ +0.1321↑ +0.1478↑ +0.1434↑ +0.1745↑ +0.1604↑ +0.1573↑ +0.0825↑

TRANSFORMER – Pairwise KL (Binomial) +0.0530 -0.0189 +0.0409 +0.0434 +0.0283 +0.0477 +0.0474 +0.0393↑

TRANSFORMER – Pairwise KL (Gaussian) +0.0845↑ +0.0755 +0.0786 +0.0302 +0.1038 +0.0909 +0.0673 +0.0298

TRANSFORMER – Listwise KL (Gaussian) +0.1485↑ +0.1132 +0.1604↑ +0.1358↑ +0.1604↑ +0.1559↑ +0.1441↑ +0.0768↑

Table 5: Performance of different LETOR models trained with the proposed loss functions. We

indicate with ↑ or ↓ a statistically significant (p-value < 0.05) difference with the performance

obtained by the same model trained with the ApproxNDCG loss function on the original

relevance judgements available in each dataset. We indicate in bold all the cases where we

observe a performance improvement over the respective baseline.

or the ApproxNDCG loss. From the results reported in Table 5, we observe

that in the majority of our tests the proposed family of loss functions allows a

better performance of both DASALC and the transformer model compared to

the ApproxNDCG loss, especially on the MQ2008 collection. On the MQ2007

collection, we observe performance improvements on all evaluation measures,

with some differences between the two models. In this case, the two best loss

functions to train the DASALC model are the pairwise ones, while the trans-

former model benefits more from the pointwise and listwise losses. This effect is

observed because of the simpler nature of the latter model and its lower number

26



of parameters to train. On the MSLR-WEB30K collection, we observe fewer

performance improvements compared to other datasets. However, the perfor-

mance differences are more similar across models. Here, the best loss function is

the Pairwise KL (Binomial), which leads to statistically significant performance

improvements for both the considered neural LETOR models. Finally, on the

OHSUMED collection we observe a significant performance improvement on al-

most all performance measures when training the transformer model with any

of the proposed loss functions. On the other hand, the DASALC model shows

fewer performance improvements, likely because of the higher model complexity

combined with the small number of topics in this collection. Hence, the best

loss functions in this case are the Listwise KL (Gaussian) and the Pointwise

KL (Binomial), the same that performed the best on the proposed transformer-

based neural LETOR model.

Observing all the above results, we notice that the performance of different

models trained with the proposed loss functions varies according to the experi-

mental collection used. Indeed, we conducted our evaluation selecting a number

of datasets with different characteristics to show all the strengths and weak-

nesses of each of the proposed loss functions and to show the best scenarios

where they can be employed. For example, for what concerns the MQ2007 and

M2008 collections – with 1,700 and 800 topics, respectively – we always ranked

128 (or less) documents for each topic. On the other hand, for the MSLR-

WEB30K and OHSUMED collection – with 30,000 and 106 topic each – we

considered a subset of size 128 (or smaller if fewer documents were available)

of all documents provided for each topic in the dataset. We selected these sub-

sets by ranking all the available documents for each topic with a lambdaMART

model, and then then discarding the items with a rank higher than 128.

As a consequence of the diversity of the considered collections, we observe a

few differences in the performance of the proposed loss functions in each of our

experiments. On medium-sized collections – where documents were not filtered

prior to ranking them – such as the MQ2007 and MQ2008, we observe overall

a similar performance of all the proposed pointwise, pairwise and listwise loss
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functions, with sizeable differences noticeable only with certain evaluation met-

rics such as P@{1-5} and nDCG@{1-5}. On the MSLR-WEB30K dataset we

observe a similar trend, here however we notice a more sizeable performance

difference between the pairwise and listwise loss functions we propose and the

pointwise variant – especially when using them to train the DASALC and the

proposed LETOR model. In this case, the larger availability of training data

and the document filtering step we applied before reranking contribute to the

better performance of more complex training strategies – i.e. pairwise and list-

wise loss functions.

Finally, on the OHSUMED collection – the smallest of all the datasets we consid-

ered – we observe a different situation. Here, despite the small number of topics

available, the best-performing loss function is the Listwise KL (Gaussian). This

is likely due to the document pruning step we perform prior to ranking. This

step promotes the selection of documents which are more similar to each other

than in the previous cases and therefore gives an advantage to loss functions

which compare multiple items at a time, i.e. the proposed listwise loss function.

The second best performing probabilistic loss function however is the pointwise

KL one. Indeed, this loss function allows a LETOR model to learn better than

other training strategies when a few training examples are available – since it

considers each document-topic pair as a valid training data-point, simplifying

the training objective.

6. Conclusions and Future Work

We presented different strategies to train a LETOR model relying on rele-

vance judgments distributions. We introduced five different loss functions rely-

ing on the KL divergence between distributions, opening new possibilities for

the training of LETOR models. The proposed loss functions were evaluated

on a newly proposed neural model, two transformer-based neural LETOR sys-

tems, and on a decision tree-based GBM model – the same model employed

by the popular LambdaMART algorithm [8] – over a number of experimental
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collections of different sizes.

We compared the performance of the proposed loss functions to the most

representative loss functions in the IR domain: the pointwise Mean Squared

Error (MSE) loss [21], the pairwise Hinge loss [15], the listwise ApproxNDCG

loss [28] with and without the Stochastic Treatment (ST) proposed in [6] and the

ListMLE loss [36]. In our experiments, the proposed loss functions outperformed

the aforementioned baselines in several cases and gave a significant performance

boost to LETOR approaches – especially the ones based on neural models –

allowing them to also outperform other strong baselines in the LETOR domain

such as the LightGBM implementation of LambdaMART [8, 38].

We also evaluated the option of training a neural LETOR model simulat-

ing the distribution of relevance judgments for each document-topic pair in the

training data. The results from this experiment further confirmed our hypoth-

esis on the utility of using relevance judgments distributions to train a LETOR

model, showing performance improvements across different measures.

Finally, we conducted a crowdsourcing experiment on the COVID-19 MLIA

collection, building a new LETOR collection with real relevance judgments dis-

tributions. We share this collection and labels to be used for the development

and evaluation of other LETOR approaches that will follow the proposed train-

ing paradigm. These experiments consolidated our hypothesis and showed en-

couraging results on the usage of probabilistic loss functions also on this dataset.

As future work, we plan to further develop the proposed neural architecture to

take advantage of probability distributions on model weights – i.e. employing

Bayesian neural layers [3] – and to evaluate the performance of the proposed

loss functions to train a model based on implicit user feedback signals such as

clicks and dwell time.
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