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A B S T R A C T
Exa-scale volumes of medical data have been produced for decades. In most cases, the diagnosis
is reported in free text, encoding medical knowledge that is still largely unexploited. In order to
allow decoding medical knowledge included in reports, we propose an unsupervised knowledge
extraction system combining a rule-based expert system with pre-trained Machine Learning
(ML) models, namely the Semantic Knowledge Extractor Tool (SKET). Combining rule-based
techniques and pre-trained ML models provides high accuracy results for knowledge extraction.
This work demonstrates the viability of unsupervised Natural Language Processing (NLP)
techniques to extract critical information from cancer reports, opening opportunities such as data
mining for knowledge extraction purposes, precision medicine applications, structured report
creation, and multimodal learning.

SKET is a practical and unsupervised approach to extracting knowledge from pathology
reports, which opens up unprecedented opportunities to exploit textual and multimodal medical
information in clinical practice. We also propose SKET eXplained (SKET X), a web-based
system providing visual explanations about the algorithmic decisions taken by SKET.

SKET X is designed/developed to support pathologists and domain experts in understanding
SKET predictions, possibly driving further improvements to the system.

1. Introduction
Exascale volumes of multimodal data have been produced for decades in the biomedical domain. Biomedical

data include patient information, clinical data, biological laboratory data, bio-images, bio-signals, instrumental
examinations, and genetic data.

Hundred of thousands of reports have been used to describe findings leading to diagnoses, encoding vast medical
knowledge. Free-text reporting is the standard for communicating the diagnosis, guiding patients’ treatment, and other
applications, such as cancer registries. Processing high volumes of free-text reports, usually performed manually, is
also required to extract knowledge to train Machine Learning (ML) algorithms.

However, the manual analysis of data becomes an extremely time-consuming process since reports vary widely
between institutions, might be written in languages other than English, contain noise, and do not present a standard
structure. In this context, Natural Language Processing (NLP) methods are central [1, 2, 3, 4, 5, 6, 7, 8] as they empower
the efficient automatic processing of thousands of clinical reports and the extraction of key information for several
downstream tasks, such as clinical note mining [9, 10] and structuring [11], risk prediction [12], clinical decision
support [13], and precision medicine retrieval [14].

In the context of digital pathology, NLP techniques can drive noticeable advances by exploiting the availability
of textual pathology reports paired with digital histopathology images (i.e., Whole Slide Images (WSIs)) in clinical
practice. WSIs are used as a gold standard to diagnose cancer cases and related diseases [15, 16]. Within WSIs,
tissue patterns and morphology vary depending on the image magnification level – enabling different tasks such as
detection, classification, or segmentation [17]. However, the lack of training datasets containing pixel-wise annotations
for entire images [18, 19, 20] limits the effectiveness of supervised ML models [21]. Nevertheless, from the textual
pathology reports, it is possible to extract key concepts (e.g., the diagnosis outcome) to annotate the associated
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WSIs. Although noisy, the extracted concepts can then serve as weak labels to train prediction models for image
classification tasks [22, 23]. However, even though automated solutions involving ML are increasingly being integrated
into biomedical domains, NLP applications to digital pathology are less common. Compounding the situation further,
the actual use of Artificial Intelligence (AI) algorithms in digital pathology requires a large amount of data annotations
by pathologists. However, they are rarely available in a clinical setting [1, 24].

To overcome such limitation, this work aims at proving the viability of unsupervised NLP techniques to
automatically extract critical information from pathology reports and use it for different digital pathology applications,
such as automatic report annotation, pathological knowledge visualization, and WSI classification. In this regard, we
present the Semantic Knowledge Extractor Tool (SKET), an unsupervised hybrid knowledge extraction system that
combines an expert system with pre-trained ML models to extract knowledge from pathology reports. In recent years,
NLP has shifted from using rules to ML approaches [25, 8], which have the advantage of learning regularities from
data and of generalizing to previously unseen patterns.

Moreover, the advent of efficient Neural Language Models (NLMs) [26, 27, 28, 29] paved the way for the pre-
training era, where large NLMs trained in a self-supervised fashion on huge datasets are used to develop NLP models
for a number of downstream tasks. Nevertheless, similarly to Santus et al. [9], we argue that rule-based techniques
capture critical information that should be used together with – and not substituted by – ML to improve performance.

We evaluate SKET effectiveness on entity linking and text classification, considering three different diseases: colon,
cervix, and lung cancer. In this regard, we resort on diagnostic reports coming from two medical centers in Italy and
The Netherlands. Then, we compare SKET with unsupervised ML approaches to understand the impact that combining
rule-based techniques and pre-trained ML models have on the extraction of knowledge from pathology reports. The
achieved results highlight the viability of ML methods for information extraction in the pathology domain, but also
stress the importance of expert knowledge to reach the high levels of accuracy required to (semi-)automate the clinical
practice. Moreover, the applicability of the proposed approach is enhanced by the considered multilingual setting.

Besides effectiveness, we must consider that understanding and explaining decisions and outcomes is crucial in
clinical practice.

However, the black-box nature of many ML models, especially those based on Deep Learning, makes it difficult
to understand and trace back the underlying decision process. Hence, there is an urgent need for a shift towards
eXplainable Artificial Intelligence (XAI) [30, 31, 32, 33].

In the biomedical domain, clinicians and domain experts need to understand why a specific output has been
produced to trust the system and its predictions; moreover, the explainability of algorithmic decisions is increasingly
required for legal reasons [34]. To this end, we propose SKET eXplained (SKET X). This web-based system allows
domain experts to interact with SKET and visually comprehend the outcomes, rules, and parameters used in the
knowledge extraction process. In addition, SKET X allows users to compare different SKET executions (e.g., with
varying parameters of the system) and inspect punctual information, which provides valuable insights into the
knowledge extraction process and the contribution of each component and parameter. SKET X aims to support
pathologists and domain experts in the interaction with SKET, allowing them to gain an in-depth comprehension
of the system decision process – and thus increasing trust and confidence in the system. Beyond explainability, we also
report different digital pathology applications where SKET has been successfully integrated as a core system [35, 36].
In particular, we deepen the use of SKET in such applications and the advantages it entails.

SKET source code is publicly available at https://github.com/ExaNLP/sket. Besides, SKET can also be
deployed as a Docker container. For information about the Docker version of SKET, please refer to https://github.
com/ExaNLP/sket#docker. SKET X is available at http://w3id.org/sketx1.

The rest of this paper is organized as follows: Section 2 describes the considered data resources. Section 3 presents
SKET. Section 4 describes the experimental setup and reports quantitative and qualitative results. Section 5 presents
SKET X. Section 6 outlines the digital pathology downstream applications empowered by SKET. Finally, Section 7
draws some conclusions.

2. Material
The data used to develop and evaluate SKET comes from two different medical centers: the Cannizzaro Hospital

(AOEC), Catania, Italy and the Radboud University Medical Center (RUMC), Nijmegen, The Netherlands. The AOEC
data includes diagnostic reports for colon, cervix, and lung cancer cases, written in Italian and associated with WSIs.

1Access credentials for reviewing: demo/demo
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Table 1
Data size. For each medical center, we report the number of diagnostic reports associated with each use-case. The “–”
symbol represents the lack of reports for a given use-case.

Colon Cervix Lung

AOEC 1,704 1,777 1,902
RUMC 2,065 2,350 –

All data were collected in the clinical workflow and fully anonymized afterwards. Similarly, the RUMC data consists of
diagnostic reports and the associated WSIs for colon and cervix cases, written in Dutch – after the use of speech-to-text
tools – and anonymized. For both medical centers, the considered reports have been provided directly in digital format
and span several diagnostic outcomes. Note that other medical centers may provide reports in non-digital format,
thus requiring a digitization step upstream of SKET. Table 1 reports the total number of diagnostic reports for each
considered use-case and medical center.

Diagnostic reports contain the results of the analyses performed on specific tissues (or cells) to obtain a
pathological-clinical diagnosis – i.e. presence or absence of the disease. AOEC and RUMC diagnostic reports follow
the College of American Pathologists (CAP) international guidelines2 for pathology reports [37, 38] and contain the
patient’s personal and clinical-specific information, the description of how a specimen appears to the naked eye and at
the microscope, and provide the final diagnosis.

As mentioned above, AOEC and RUMC diagnostic reports are written in Italian and Dutch, respectively. However,
most of the resources required to develop NLP methods that extract concepts from unstructured text are in English.
To overcome this limitation, we first translated diagnostic reports in English and then performed data curation over
them. We used the open-source, pre-trained Marian Neural Machine Translation (NMT) models [39], which exhibit
a Transformer-based [40] encoder-decoder architecture with six layers in each component. Given the complexity of
the task, such an automatic approach introduces systematic translation errors that, if propagated, could hamper the
effectiveness of the extraction process. For this reason, we performed a data curation step, in which recurring, manually
identified translation errors were corrected through the use of handcrafted rules.

We defined an ontology3 for modeling the clinical reports in the digital pathology domain: ExaMode4 ontology.
Amongst other aspects not relevant for the current work, the ontology specifically defines the key concepts and
properties to model the diagnosis of colon, cervix and lung cancer, the anatomical location where the disease might
be located, the procedure employed to get the tissue, and the tests conducted on the tissue. Despite many medical
ontologies focusing specifically on cancer exist, no single ontology comprehensively models all the diseases related to
the cases mentioned above, their anatomical location, topography, and pathology laboratory process.

3. Methods
SKET adopts a combination of pre-trained Named Entity Recognition (NER) models and unsupervised Entity

Linking (EL) methods to extract key concepts (entities) from the diagnostic reports and to link them to the reference
ontology. The use of pre-trained NER models and unsupervised EL methods makes SKET suitable for weak supervision
tasks. In this regard, the pathological concepts extracted from diagnostic reports can serve as weak labels to train
prediction models for image classification tasks [22, 23], or as nodes to build report-level knowledge graphs for
information retrieval tasks [41].

As reported in Figure 1, SKET consists of four components: (A) Named Entity Recognition, (B) Entity Linking,
(C) Data Labeling, and (D) Graph Creation. Components (A) and (B) are sequential, whereas components (C) and (D)
are parallel. Below, we describe for each component the different methods and techniques we adopted, expanded, or
developed.

2https://www.cap.org/protocols-and-guidelines
3https://w3id.org/examode/ontology/
4ExaMode stands for “Extreme-scale Analytics via Multimodal Ontology Discovery & Enhancement” and is an H2020 project financed by the

EU commission. More information can be found at: http://www.examode.eu/
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Figure 1: SKET architecture. SKET main components are: (A) Named Entity Recognition, (B) Entity Linking, (C) Data
Labeling, and (D) Graph Creation.

3.1. Named Entity Recognition
NER is the task of identifying and categorizing key information – i.e., entities – within text. An entity can be any

word or phrase that consistently refers to the same concept or object of the world. Each identified entity is classified
into a pre-defined category, such as disease, protein, gene, cell type, etc.

SKET relies on a combination of pre-trained neural models and rule-based techniques to perform NER. At its
core, SKET adopts ScispaCy models [42], which provide full NER pipelines for biomedical data, comprising large
medical vocabularies, and Word2Vec [26] word vectors trained on the PubMed Central Open Access Subset [43].
It is worth mentioning that SKET has been designed to be deployed with any of the core models available at:
https://allenai.github.io/scispacy/.

Then, SKET extends the ScispaCy pipeline with two additional components: Entity Fusion and Negation Detection.
Entity Fusion: SKET extends the NER pipeline with a set of rules used to identify and merge specific entities
otherwise regarded as separate by ScispaCy. For instance, “transverse” and “colon” are considered as separate entities,
whereas we are interested in “transverse colon” as a unique entity. Hence, we developed regular expressions that
identify trigger terms indicative of a set of otherwise potentially separate entities. Once a trigger term is identified,
SKET matches the entities extracted by ScispaCy with the candidate terms associated with the trigger. Depending on
the trigger term, the match that SKET performs between extracted entities and candidate terms follows different rules
based on directional and positional attributes. Directional attributes specify the set of extracted entities to be matched
with the candidate trigger terms, and it can assume three values:

• PRE: match with the entities preceding the trigger entity.
• POST: match with the entities succeeding the trigger entity.
• BOTH: match between the entities both preceding and succeeding the trigger entity.

Positional attributes specify the maximum distance allowed between the trigger entity and the other one, and it can
assume two values:

• EXACT: the matched entity must be right before/after the trigger entity.
• LOOSE: the matched entity can be anywhere before/after the trigger entity.
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The described set of rules has been developed on a holdout dataset and it is available on the SKET GitHub
repository5. The dataset consists of 50 diagnostic reports for each use-case and medical center, for a total of 250
diagnostic reports.
Negation Detection: To handle negated entities, we extend the NER pipeline with NegEx [44], a negation detection
algorithm evaluating whether extracted entities are negated within text. NegEx uses regular expressions to identify the
scope of trigger terms that are indicative of negation, such as “no” or “ruled out”. Then, the entities extracted within
the scope of a trigger term are marked as negated. In this way, SKET identifies – and removes from the final list
of extracted entities – those entities that NegEx regards as negated. For example, if we consider the phrase “free of
dysplasia”, NegEx identifies the trigger term “free of” and marks “dysplasia” as negated, which is then removed by
SKET.
3.2. Entity Linking

EL is the task of assigning unique meanings to entities mentioned within text. In other words, the objective of EL
is to determine whether a given entity refers to a specific concept or object within a reference ontology.

SKET employs a combination of ad-hoc and similarity matching techniques to link the extracted entities to unique
concepts within the ExaMode ontology. Given an extracted entity, SKET first tries to match it using ad-hoc matching
and when it fails SKET employs similarity matching.
Ad-Hoc Matching: SKET uses regular expressions to identify trigger terms indicative of a specific ontological
concept. Once a trigger term is identified, SKET matches the entity containing the trigger term with the closest ontology
concept. For instance, if an extracted entity contains the term “carcinoma”, then SKET links the entity to the ontology
concept “colon adenocarcinoma”. As for Entity Fusion, the ad-hoc matching rules have been developed on the holdout
dataset and are available on GitHub.
Similarity Matching: SKET performs similarity matching using a combination of string and semantic matching
techniques. For string matching, SKET relies on the Gestalt Pattern Matching (GPM) algorithm [45], which computes
the similarity of two strings as the number of matching characters divided by the total number of characters in the two
strings. Matching characters are those in the longest common subsequence plus, recursively, matching characters in the
unmatched region on either side of the longest common subsequence. For semantic matching, SKET exploits the word
vectors provided by ScispaCy models [42]. In other words, SKET performs semantic matching as the cosine distance
between the vector representations of the extracted entities and the ontology concepts – where vector representations
are the mean of the word vectors composing the extracted entities or the ontology concepts.

Both string and semantic matching produce a ranking of ontology concepts ordered by decreasing similarity with
a given target entity. To combine the two rankings – and select the concept with the highest rank – SKET performs
rank fusion using the CombSUM [46] with min-max normalization. Before selection, a pruning phase is performed
on the combined ranking, in which ontology concepts with a similarity score lower than a predetermined threshold
are removed. The threshold value has been set empirically to 1.8 using the holdout dataset. The pruning phase aims
to increase precision by reducing false positives, which occur when ontology concepts are incorrectly linked to the
extracted entities.
3.3. Data Labeling

SKET also provides labels as one of its main outputs. Given the set of concepts extracted from each diagnostic
report, SKET maps a clinically relevant subset of such concepts to a set of annotation classes defined by AOEC
pathologists. For each use-case, we report below the set of annotation classes.

Colon Annotations: (1) Cancer; (2) Adenomatous polyp - high grade dysplasia; (3) Adenomatous
polyp - low grade dysplasia; (4) Hyperplastic polyp; (5) Non-informative.

Cervix Annotations: (1) Cancer - adenocarcinoma in situ; (2) Cancer - adenocarcinoma invasive;
(3) Cancer - squamous cell carcinoma in situ; (4) Cancer - squamous cell carcinoma invasive;
(5) High grade dysplasia; (6) Low grade dysplasia; (7) HPV infection present; (8) Koilocytes; (9)
Normal squamous; (10) Normal glands.

5https://github.com/ExaNLP/sket/tree/main/sket/nerd/rules/
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Lung Annotations: (1) Cancer - non-small cell cancer, adenocarcinoma; (2) Cancer - non-small
cell cancer, large cell carcinoma; (3) Cancer - non-small cell cancer, squamous cell carcinoma;
(4) Cancer - small cell cancer; (5) No cancer.

Thus, the Data Labeling component produces annotations from diagnostic reports that can be used to perform
weakly supervised classification tasks.
3.4. Graph Creation

SKET also builds report-level knowledge graphs using the extracted concepts as nodes and the semantic relations
of the ExaMode ontology as edges. The use of ontology concepts and relations to describe diagnostic reports increases
the semantic understanding of the underlying data [47]. Once created, report-level knowledge graphs are encoded in a
machine-readable format through Resource Description Framework (RDF).

4. Evaluation
4.1. Tasks

We evaluate the effectiveness of SKET on Entity Linking (Task 1) and Text Classification (Task 2). The evaluation
of SKET on entity linking also serves as a proxy to validate the quality of the RDF graphs it produces. On the other
hand, text classification results help understanding the viability of using SKET as an automatic annotator in weak
supervision tasks. Between the two tasks, text classification has a prominent role as it provides weak annotations that
can be used to reduce the high costs of training cancer assisted diagnosis tools – which prevent unleashing the full
potential of digital pathology applications [36].
4.2. Datasets
Entity Linking (Task 1): We evaluate SKET effectiveness to extract concepts from pathology reports on a subset
of the proprietary data described in Section 2. For each use-case and medical center, 250 reports have been manually
annotated by experts using the concepts from the ExaMode ontology. Overall, the total number of annotated reports
amounts to 1,250. In terms of annotations, all use-cases have been annotated with a large number of different concepts.
For colon cancer, the number of different concepts that can be found within reports stands at 19, while for cervix and
lung cancer amounts to 21 and 11, respectively. This large number of different concepts highlights the complexity of
the task, both for model predictions and human annotation efforts. In particular, the task can be seen as an extreme
multi-label classification problem [48, 49], where the goal is to tag a given report with a subset of the relevant concepts
from a large concept list.
Text Classification (Task 2): To evaluate the effectiveness of SKET to weakly annotate pathology reports, the
proprietary data described in Section 2 has been manually labeled by experts using the annotation classes defined
by AOEC pathologists. For each use-case, AOEC and RUMC reports have been annotated with one or more classes,
making the task a multi-label classification problem. Table 2 reports the total number of reports annotated for each
class in each use-case. Given the multi-label nature of the task, the total number of annotations does not reflect the
total number of reports. As a side note, the class imbalance of the datasets reflects a real-case scenario, where certain
conditions – e.g., low-grade dysplasia in colon cases – occur more often than others in the clinical routine.
4.3. Baselines
Entity Linking (Task 1): We compare SKET with two unsupervised approaches based on Bio FastText [27, 50] and
BioClinical BERT [29, 51] models. For a fair comparison, both approaches adopt the same NER ScispaCy pipeline
used by SKET, but without the extensions introduced with it. Then, the approaches perform EL by computing the
cosine distance between the vector representations of the extracted entities and the ontology concepts – obtained with
FastText in one case and with BERT in the other. The ontology concept closest to the extracted entity is kept and,
when appropriate, mapped to the corresponding annotation class. Both methods represent a straightforward approach
to perform text classification with lack of annotated data.
Text Classification (Task 2): We compare SKET with the Bio FastText and BioClinical BERT unsupervised
approaches described above. Beyond unsupervised approaches, we also use SKET to weakly annotate diagnostic
reports and then train FastText and BERT models in a supervised fashion. In this case, we stack a classification layer
on top of the pre-trained models and perform end-to-end classification – that is, the models take diagnostic reports
S. Marchesin, F. Giachelle, ... G. Silvello: Preprint accepted to Journal of Pathology Informatics Page 6 of 22
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Table 2
Number of annotated diagnostic reports for each use-case. Label counts are independent of each other except for “Non-
informative” in colon, “Normal squamous” and “Normal glands” in cervix, and “No cancer” in lung, which only occur when
none of the others does.

Colon

Cancer 495
Adenomatous polyp - high grade dysplasia 510
Adenomatous polyp - low grade dysplasia 841
Hyperplastic polyp 508
Non-informative 1,140

Cervix

Cancer - adenocarcinoma in situ 125
Cancer - adenocarcinoma invasive 32
Cancer - squamous cell carcinoma in situ 638
Cancer - squamous cell carcinoma invasive 88
High grade dysplasia 1,544
Low grade dysplasia 1,053
HPV infection present 1,221
Koilocytes 86
Normal squamous 1,265
Normal glands 1,266

Lung

Cancer - non-small cell cancer, adenocarcinoma 961
Cancer - non-small cell cancer, large cell carcinoma 68
Cancer - non-small cell cancer, squamous cell carcinoma 528
Cancer - small cell cancer 144
No cancer 247

as input and directly produce classes as output. Due to the introduction of supervised models, performances on text
classification are obtained through 10-fold cross-validation.
4.4. Results
Entity Linking (Task 1): Table 3 reports the results obtained by SKET and the considered baselines on entity
linking. Overall, we see that SKET achieves high performances for both micro- and weighted-average F1 measures
in each use-case. As for accuracy, the performances vary depending on the use-case, and the lowest score is obtained
in colon cancer with a value of 0.6280. In terms of use-cases, the best SKET results are obtained on lung cancer.
Compared to colon and cervix cases, lung cancer presents a lower number of concepts to identify, thus reducing the
task complexity. On the other hand, colon and cervix use-cases show similar SKET performances, having a comparable
number of concepts.

When we compare SKET performances with unsupervised approaches we can see that SKET outperforms them
for all measures in each use-case. This result shows the effectiveness of combining ad-hoc rules with ML models,
which make SKET both precise and sensitive. Indeed, ad hoc matching makes SKET precise while semantic matching
makes it sensitive. To further support this outcome, we observe that the performances of unsupervised baselines – only
relying on ML models and semantic matching – have low accuracy values. Given that we consider entity linking as a
multi-label task, we resort on subset accuracy – where the set of concepts predicted for a report must exactly match the
corresponding set of ground-truth concepts. Thus, accuracy values are more prone to rapidly decreasing with a large
number of classes, and less precise models are naturally affected by this behavior.
Text Classification (Task 2): Table 4 reports the results obtained by SKET and the considered baselines on text
classification. Overall, we observe that SKET achieves high performance on colon and lung cancer use-cases, whereas
it shows low accuracy values on cervix cancer. The motivation behind this drop in performance on cervix reports can
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Table 3
Entity linking results on colon, cervix, and lung cancer pathology reports. The considered measures are subset accuracy,
micro F1, and weighted F1. Bold values represent the highest scores achieved for each measure.

Colon

Approach Model Measures

Accuracy Micro F1 Weighted F1

Unsupervised
SKET 0.6280 0.8861 0.8694
FastText 0.0660 0.5000 0.6146
BERT 0.1840 0.3905 0.4527

Cervix

Approach Model Measures

Accuracy Micro F1 Weighted F1

Unsupervised
SKET 0.7020 0.8322 0.8368
FastText 0.0900 0.2802 0.3439
BERT 0.0720 0.2715 0.2940

Lung

Approach Model Measures

Accuracy Micro F1 Weighted F1

Unsupervised
SKET 0.8624 0.9375 0.9262
FastText 0.2510 0.5610 0.6506
BERT 0.3806 0.6804 0.8395

be attributed to the high number of annotation classes (i.e., ten) and the multi-label setting. We recall that we rely
on subset accuracy, which performs exact match between predicted and ground-truth labels – causing performance to
drop faster when the number of classes is larger. The higher values for both micro and weighted F1 measures, which
do not perform exact match between predicted and ground-truth labels, further support this intuition.

Compared to unsupervised baselines, SKET achieves better performance in both colon and cervix use-cases. In
particular, the (relative) performance gap between SKET and baselines varies from 20% to 40% across measures. To
confirm SKET effectiveness, we conducted a paired t-test and found that there is a statistical difference (p-value <
0.01) between its performance and that of the baselines on all the considered measures.

This outcome shows the effectiveness of introducing ad-hoc rules at both NER and EL levels, as well as the
soundness of combining different matching techniques together. On the other hand, the unsupervised BERT-based
approach outperforms both SKET and FastText in lung cancer. In this case, the paired t-test confirmed a statistical
difference between BERT performance and that of SKET and FastText. Nevertheless, the performance gap between
BERT and SKET never exceeds 5%. This highlights the robustness of SKET across different use-cases and makes it
a viable solution in real scenarios, where annotated data are hard and expensive to get (such as in clinical practice).
Besides, the lung cancer use-case presents two major differences with colon and cervix ones. First of all, lung annotation
classes all revolve around different, but closely related, cancer types. As a consequence, contextualized NLMs (e.g.,
BERT [29]) – which are able to properly model the small semantic, contextual variations of such classes – achieve
competitive results. Secondly, lung cancer data only consists of AOEC reports. The lack of RUMC reports makes the
dataset more homogeneous and easier than the others, thus reducing classification inconsistencies for baseline models
too.

Regarding weakly supervised models, the results reported in Table 4 demonstrate the effectiveness of using SKET
to weakly annotate diagnostic reports and then train FastText and BERT models in a supervised fashion. In this regard,
both weakly supervised FastText- and BERT-based approaches outperform their unsupervised counterparts. The only
exception is for BERT on lung cancer data, where the unsupervised BERT approach achieves top performance. On the
other hand, the weakly supervised BERT obtains the best results overall in both colon and cervix use-cases. Hence,
SKET proves to be effective when used to bootstrap supervised models in absence of manual annotations. Following
S. Marchesin, F. Giachelle, ... G. Silvello: Preprint accepted to Journal of Pathology Informatics Page 8 of 22
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Table 4
Text classification results on colon, cervix, and lung cancer pathology reports. The considered measures are subset accuracy,
micro F1, and weighted F1. The † symbol represents the statistical difference of SKET from unsupervised FastText- and
BERT-based approaches – verified using a paired t-test with a p-value < 0.01. Bold values represent the highest scores
achieved for each measure.

Colon

Approach Model Measures

Accuracy Micro F1 Weighted F1

Unsupervised
SKET 0.7525† 0.8386† 0.8373†
FastText 0.4146 0.5298 0.5514
BERT 0.5167 0.5697 0.6587

Weakly Supervised FastText 0.7116 0.8287 0.8276
BERT 0.7586 0.8432 0.8421

Cervix

Approach Model Measures

Accuracy Micro F1 Weighted F1

Unsupervised
SKET 0.5281† 0.7791† 0.7611†
FastText 0.2533 0.4882 0.4445
BERT 0.3066 0.3962 0.4867

Weakly Supervised FastText 0.4744 0.7542 0.7566
BERT 0.5397 0.7901 0.7737

Lung

Approach Model Measures

Accuracy Micro F1 Weighted F1

Unsupervised
SKET 0.8137 0.8387 0.8262
FastText 0.5221 0.7296 0.6853
BERT 0.8523† 0.8630† 0.8526†

Weakly Supervised FastText 0.7701 0.8313 0.8247
BERT 0.8127 0.8375 0.8249

this procedure, supervised models can first be trained on data automatically annotated by SKET and then fine-tuned
on small manually annotated batches, thus reducing annotation times and costs.

5. Understanding through Explainability
In recent years, the application of AI algorithms in the biomedical domain has experienced unprecedented

growth [52, 53, 54] – especially to perform clinical decision support and diagnostic activities [55, 56, 57]. Therefore,
there is an urgent need for eXplainable Artificial Intelligence (XAI) tools that can help clinicians and domain experts
understand algorithm predictions and their underlying rationale. In this regard, explainability techniques highlight
decision-relevant aspects of algorithms that contribute to specific predictions, thus trying to answer why a model has
made a certain decision [58, 30, 59]. Hence, explainability methods are essential for humans – and in particular for
clinicians – to decide whether to trust algorithm predictions and the (underlying) models that generated them [32, 33].
Among its different uses, explainability can be employed to understand the rationale of NER and EL outputs – such as
the entity mentions and concepts identified by SKET within clinical reports.

However, since most of the data that humans can easily “visualize” regards objects restricted to the two/three-
dimensional space, there is an urgent need not only for explainable models but also for explanation interfaces [30].
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Figure 2: SKET X dashboard providing information about the executed SKET pipelines - i.e., pipeline id, use case, pipeline
status, start timestamp, end timestamp, description, pipeline parameters. Users can view the parameters of each pipeline
by clicking on the dedicated button (A). Similarly, users can access pipelines data by clicking on the dedicated button (B).
When the execution of a pipeline ends, its outputs become available for download (C).

To this end, we have developed SKET X,6 a web-based environment to interact with SKET and get useful insights
about the extraction process and the related outputs. Through SKET X, pathologists and domain experts can visually
comprehend SKET and the different components activated during the knowledge extraction process – thus getting a
pointwise explanation of the outputs obtained for the provided diagnostic reports.

SKET X exploits Visual Analytics (VA) techniques to support domain experts in the visual comprehension of
SKET outputs by means of intuitive and interactive interfaces. Such interfaces allow users to inspect and find out
non-evident patterns in data and take decisions accordingly [60]. Specifically, VA techniques enable users to visually
comprehend the results of an ongoing task, while it advances asynchronously in the background. Because of this, VA
techniques are also used to visually adjust the parameters of a model running as a background task to continuously
refine its outputs [61, 62].
5.1. SKET X Workflow

SKET X is an interactive Webapp that runs SKET on a set of uploaded reports. SKET X is based on SKET pipelines
definable by the user who can customize the parameters and run SKET multiple times to compare the outputs and all
the intermediate steps of the process. Each pipeline runs as an asynchronous task, handled by a scheduler with a queue
manager. The pipelines are organized for straightforward access in the dashboard interface, shown in Figure 2. The
dashboard provides information about the SKET pipelines executed by the users and enables access and download of
the SKET outputs.

The execution of a SKET X pipeline consists at most of three phases, where the currently selected stage is shown
on the top of the interface (see Figure 3.A).

• Translation: the reports are automatically translated from their original language to English. Figure 3 reports
the information contained in the Overview tab of the interface, i.e. the inputs, outputs, and parameters of the
translation phase.

6http://w3id.org/sketx access provided with username and password: demo
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Figure 3: (A) SKET X Overview tab for the translation phase, (B) the reports in the original language (input), (C) the
translated reports (output) (C), and (D) the parameters and settings for the current phase.

• Entity Linking: the entities automatically recognized within the reports are linked to the concepts in the ExaMode
ontology. This phase’s output consists of the identified mentions and the linked concepts. SKET employs a
combination of hand-crafted rules and pre-trained neural models in this phase. The rules relevant to the disease of
the given report are shown via a Sankey diagram, where the rules activated for the current report are highlighted.
In this context, a rule is activated when one of the identified mentions – e.g., low degree dysplasia (mild)
– satisfies one rule trigger – e.g., dysplasia && mild – that implies a link to a specific concept – e.g., mild
colon dysplasia – as shown in Figure 4.

• Classification: SKET exploits mapping rules to decide the appropriate labels for each report. As for the EL
phase, the rules relevant for the disease of the considered report are visualized using a Sankey diagram,
where the activated rules are highlighted. A rule is activated when one of the identified concepts – e.g., Mild
Colon Dysplasia – satisfies one rule trigger – e.g., dysplasia && mild – that implies a specific label –
e.g., Adenomatous polyp - low grade dysplasia – as shown in Figure 5. The mentions and concepts
considered in the classification task are regarded as key mentions/concepts, whereas the ones not satisfying any
rule trigger are regarded as excluded, as shown in Figure 5.C and 5.D, respectively. For instance, in Figure 5 we
can observe that the key concepts identified are Colon Hyperplastic Polyp and Mild Colon Dysplasia,
whereas the excluded ones are Biopsy of Colon and Colon, NOS – both related to the same excluded mention
colon biopsy.

5.2. SKET X Interface
The interface of SKET X consists of six tabs providing different views of the data, according to the selected phase:
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Figure 4: SKET X Analytics tab for the EL phase: (A) reports section, the users can change the current report using
the left/right buttons; (B) SKET rules for the NER task; and, (C) list of mentions and concepts produced by the
knowledge extraction process. Each concept and related mentions are highlighted with the same color in (A) and (C). By
clicking/hovering on a specific concept, it is possible to highlight the relevant rules in the Sankey diagram that determined
the concept and the related mentions in the report text. On the left side of the Sankey diagram are reported the rules
triggers, which are boolean expressions tested on each mentioned text. If one or more mentions satisfy a rule trigger, then
the related concepts on the right side of the Sankey diagram are highlighted and listed in (C).

• Overview tab: overview of the visual outputs available in the other tabs (i.e., Input, Output, Params, Analytics) for
the current phase. The contents of the Analytics tab are shown in the overview only for the EL and classification
phases.

• Input tab: it reports the input data for the current phase. For instance, if the considered phase is translation, this
tab shows the reports in the original language, as shown in Figure 3.B. Instead, if the considered phase is EL,
it shows the translated reports. Similarly, the mentions and the concepts extracted for each report are shown in
this tab for the classification phase.

• Output tab: it reports the output data for the current phase. For translation, this tab shows the reports translated
into English, as shown in Figure 3.C. Instead, if the considered phase is EL, it shows the mentions and the
concepts extracted for each report. Similarly, the labels generated for each report are shown in this tab for the
classification phase.
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Figure 5: SKET X Analytics tab for the classification phase: (A) reports section to select the current report via left/right
buttons; (B) SKET rules for determining the labels visualized with a Sankey diagram; and, (C) list of labels, mentions, and
concepts determined by SKET. Each concept and the related mentions are highlighted with the same color in (A) and (C).
The Sankey diagram highlights the relevant rules by clicking/hovering on a specific label. On the left side of the Sankey
diagram are reported the rules triggers. If one or more concepts satisfy a rule trigger, then the related label is highlighted
on the right side of the Sankey diagram and also listed in (C). The mentions and concepts involved in the classification
task are the key mentions/concepts (C), while the excluded ones are reported in (D).

• Params tab: it reports the parameters for the current phase, as shown in Figure 3.D. For instance, for EL, it shows
the methods and models used by SKET to perform the linking process between mentions and related concepts.
Another important parameter is the threshold used by SKET in the pruning phase to reduce false positives and
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thus increase precision, as described in section 3.2. When the phase considered is EL, users can change one or
more parameters and then re-run SKET. This is useful to compare two pipelines using different parameters.

• Analytics tab: it allows the users to analyze the current report’s mentions, concepts, and labels in detail. In
particular, if the considered phase is EL, users can inspect the identified mentions and concepts concerning the
report textual content, as shown in Figures 4.A and 4.C. Moreover, by clicking on a mention, the user can inspect
the list of associated concepts. At the same time, a user can also do the reverse - identifying the relevant mentions
for a given concept. In addition, if the considered phase is classification, this tab shows the labels determined by
SKET and the relations between a label and the concepts from which it derives, as shown in Figure 5. To visually
explain the rules used by SKET to determine both the concepts and labels, a Sankey diagram is reported on the
right side of the interface as depicted in Figure 4.B and 5.B. On the left side of the Sankey diagram, the rules
triggers are reported, which are boolean expressions tested on the text of each mention – for the EL phase – and
concept – for the classification phase. If one or more mentions/concepts satisfy a rule trigger, then the related
concepts/labels on the right side of the Sankey diagram are highlighted.

• Compare tab: it allows the users to compare the outputs of two different SKET X pipelines in terms of mentions,
concepts, and labels identified for the current report. When the users click on the compare tab, they are provided
with an initial menu that allows them to specify the two pipelines to compare. After the selection, users can
click on the compare button to visualize the interface dedicated for the comparison, illustrated in Figure 6.
The comparison interface is divided into four parts: (A) the reports section displaying information about the
current report and two buttons for switching to the next/previous report; (B) the parameters section displaying
pipeline information, such as the identifier, the description, and its parameters; (C) first pipeline section showing
the outputs for the phase selected (e.g., mentions and concepts) and (D) second pipeline section with the
same structure of (C). In particular, if the considered phase is EL, users can compare the concepts and the
mentions identified by each pipeline and deduce which parameters have determined the major differences (e.g.,
the threshold for the NER task). Moreover, by clicking/hovering on each mention, the users can inspect the list
of associated concepts (highlighted in different colors) among the two pipelines. On top of that, the common
mentions between the two considered pipelines can be highlighted, thus making them and their related concepts
easy to identify. Figure 6 shows the outputs of two SKET pipelines that have been executed with different models,
where the first pipeline uses only the neural model while the second one uses only GPM. Since the two pipelines
considered in Figure 6 use different models, they identify different concepts and mentions. Indeed, the common
concepts between the two pipelines – i.e., Biopsy of Colon, Colon Hyperplastic Polyp, Colon NOS, and
Mild Colon Dysplasia – have been identified using SKET rules, which are used in both pipelines. On the
other hand, the disjoint concepts have been identified using the neural model – for Rectal mucous membrane
– and GPM – for Adenoma and Resection – respectively. If the considered phase is classification, users can
also compare the labels generated by each pipeline and the key concepts associated – that is, the ones from
which the labels are determined. For instance, in Figure 7, we can observe that the labels generated by SKET are
Adenomatous polyp – high grade dysplasia and Hyperplastic polyp for the first pipeline (C) while
only Adenomatous polyp - high grade dysplasia for the second one (D). By clicking/hovering on the
Hyperplastic polyp label, users can realize that it derives from the Colon Hyperplastic Polyp concept,
which, in turn, is associated with the polyp sigmoidmention. Nevertheless, the latter mention does not suggest
the presence of a Colon Hyperplastic Polyp. Thus it is a false positive. Similarly, users can do the same
with the Adenomatous polyp - high-grade dysplasia label, discovering that it derives from the Severe
Colon Dysplasia concept, which is correctly associated, through a SKET rule, with the severe dysplasia
mention. Finally, users can also compare the excluded mentions and concepts that are not considered for the
label generation process, but that can be a good indicator to determine whether the chosen threshold for models
produces noisy concepts.

Hence, using SKET X pathologists and domain experts can visually comprehend why a certain concept/label has
been extracted. Moreover, by leveraging both inspection and comparison functionalities, users can also understand the
impact of different parameters on the obtained outputs, and thus investigate the advantages of combining ad hoc rules
with ML models to improve the overall effectiveness of knowledge extraction systems.
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Figure 6: SKET X Compare tab for the EL phase showing the comparison interface for the two pipelines specified for the
comparison. The interface is organized in four parts: (A) the reports section displaying information about the current report
and two buttons for switching to the next/previous report; (B) the parameters section displaying pipeline information, such
as the identifier and its description, and parameters (e.g., the models used for EL phase and the threshold); (C) first pipeline
outputs for the phase selected (e.g., mentions and concepts) and (D) second pipeline outputs for the phase selected. The
mentions in common, and the related concepts, are highlighted both in the report text (A) and also in the mention/concept
lists for each pipeline (C) and (D). Hence, we can observe that there is a mention injury-free resection margin and a
concept Resection that are not highlighted since they have been identified only by the second pipeline (D). Nevertheless,
the concepts Rectal mucous membrane and Adenoma have been identified only by respectively the first pipeline (C) and the
second one (D), but since both are associated with the same common mention – i.e., adenomatous – they are highlighted
as well.

6. Digital Pathology Applications
SKET has been integrated as a core system into different downstream applications for digital pathology. Figure 8

depicts the SKET ecosystem, where SKET UP represents the online access point to interact with SKET, SKET
X provides explanations for SKET results, medTAG [35] integrates SKET automatic annotations to support semi-
automatic tagging, and ExaNet [35] allows to visualize and explore SKET report-level knowledge graphs. Moreover,
SKET labels can also be used to supervise cancer-assisted diagnosis tools [36].
6.1. Automatic Report Annotation

SKET has been integrated as an automatic annotator within MedTAG7 [35]. MedTAG is a collaborative biomedical
annotation tool that provides four annotation types:

7MedTAG is available at https://github.com/MedTAG/medtag-core/
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Figure 7: SKET X Compare tab for the classification phase showing the comparison interface for the two pipelines specified
for the comparison. The interface is organized in four parts: (A) the reports section displaying information about the current
report and two buttons for switching to the next/previous report; (B) the parameters section displaying pipeline information,
such as the identifier, the description, and its parameters; (C) first pipeline outputs for the phase selected (e.g., mentions
and concepts) and (D) second pipeline outputs for the phase selected. The mentions/concepts considered for determining
the report labels are regarded as key mentions/concepts and are differentiated by the excluded ones. Here, two concepts are
identified in the first pipeline, namely, Colon Hyperplastic Polyp and Severe Colon Dysplasia, while in the second
one only Severe Colon Dysplasia has been identified. Nevertheless, Colon Hyperplastic Polyp and Sigmoid colon
are negligible concepts (i.e., false positives) both associated with the polyp sigmoid mention. In contrast, Severe Colon
Dysplasia is correct since it has been identified using a SKET rule verified by the severe dysplasia key mention.
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Figure 8: The SKET ecosystem. From clinical reports, a suite of different applications relying on SKET to process (SKET
UP), analyze and annotate (medTAG), explore (ExaNET), and explain (SKET X) the knowledge contained within reports
– also providing weak supervision to train cancer assisted diagnosis tools.

Table 5
Number of labels, concepts, mentions, and links automatically annotated by SKET within MedTAG. Statistics are reported
for each use-case and globally.

Annotation Type Colon Cervix Lung Total

Labels 9,309 16,033 2,066 27,408
Concepts 11,932 12,936 2,336 27,204
Mentions 10,926 12,070 2,336 25,332
Linking 11,932 12,936 2,336 27,204

Total 44,099 53,975 9,074 107,148

• Labels: allows the user to assign, by clicking on the check-boxes, one or more labels to a document. The labels
indicate some reports’ properties (e.g. “Cancer” label indicates the presence of a cancer-related disease).

• Concepts: allows the user to specify which concepts are relevant for a document. Users can take advantage of
auto-complete functionalities for searching the relevant concepts to assign to each document.

• Mentions: shows the list of the mentions identified by the user in the report text.
• Linking: allows the user to link the mentions identified with the corresponding concepts. Users can link the

same mention to multiple concepts.
For each annotation type, SKET provides automatic annotations for reports associated with colon, cervix, and lung use-
cases. At present, MedTAG has been used by experts to produce more than 7,000 annotations. On the other hand, SKET
annotations within MedTAG exceed 100,000 units. Table 5 reports SKET annotation statistics for each annotation type.
6.2. Pathological Knowledge Visualization

The report-level knowledge graphs produced by SKET can be explored with ExaNet8. ExaNet is a visual application
that allows users (e.g., experts and pathologists) to explore the pathology reports linked data by using an interactive
graph visualization tool. ExaNet enables users to explore graph connections by leveraging pan and zoom functionalities.
On top of this, ExaNet allows users to visualize an interactive JSON serialization of each pathology report, providing
also download capabilities.

8ExaNet can be accessed through the “Reports’ stats” functionality of MedTAG, under the “Graph” feature associated with each report that has
been annotated by SKET.
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Table 6
CNN colon cancer performance when trained with SKET weak labels (CNN-SKET) and with manual ones (CNN-GT).
Results refer to WSI classification on AOEC and RUMC data. For each considered measure, we report the average obtained
through 10-fold cross-validation. Bold values represent the highest scores achieved for each measure.

Model Accuracy Micro F1 Weighted F1

CNN-SKET 0.6666 0.7741 0.7694
CNN-GT 0.6795 0.7866 0.7800

Conceptually, ExaNet stems from ontology visualization tools. The visualization of ontologies is a fundamental
task to assess ontologies and enable users to explore, verify, and understand them and their underlying structures [63,
64, 65, 66]. Nevertheless, compared to ontology visualization, where the focus is primarily on the Terminological
Box (TBox) – i.e., definition of classes and properties – ExaNet focuses instead on the Assertional Box (ABox) – that
is, individuals and instance data. Furthermore, ExaNet replaces the classes Internationalized Resource Identifier (IRI)
with the corresponding literals.
6.3. WSI Classification

The labels produced by SKET are used to reduce supervised-training limitations for colon cancer assisted diagnosis
tools [36] – limitations that prevent the full exploitation of digital pathology applications. In other words, SKET labels
serve as weak labels to train a deep image classifier.

The proposed model, based on Multiple Instance Learning Convolutional Neural Networks (CNNs), makes multi-
class predictions at patch-level and then aggregates them through an attention pooling layer [67, 68] to obtain multi-
label WSI predictions. The multi-label setting reflects the very nature of the pathology domain, where images (and
reports) can highlight multiple findings for the same sample. Therefore, employing models that produce multi-label
predictions allows to better approximate real-world pathology scenarios.

The proposed approach has been trained and tested using data composed of colon WSIs from AOEC and RUMC
medical centers. The training set consists of the WSIs associated with the 3769 colon reports reported in Table 1,
whereas the test set consists of 227 WSIs from AOEC and 423 from RUMC, for a total of 650 WSIs. Colon cancer was
chosen as use-case due to its high social impact and difficulty in diagnosing it. In fact, colon cancer is the fourth most
diagnosed cancer in the world [69]. Besides, the need to identify malignant polyps – which are cell agglomerations
protruding from the colon surface – makes it problematic to diagnose [69]. Thus, to prove the effectiveness of SKET as a
weak annotator, we compared the performance of the image classifier trained with SKET labels against its performance
when trained using manual labels. Table 6 reports the results for subset accuracy, micro-, and weighted-average F1
measures, obtained through 10-fold cross-validation.

The obtained results show the effectiveness of SKET when used as a weak annotator. The performance obtained
using weak labels are close to those achieved with manual ones. Precisely, the performance difference between the
two CNNs does not exceed 1.3%. Furthermore, we performed the Wilcoxon Rank-Sum test and verified that such
performance difference is not statistically significant (p-value < 0.05). Thus, SKET allows training cancer diagnostics
models for digital pathology without human intervention, paving the way to the use of ML models in the clinical
practice.

7. Conclusions and Future Work
In this work, we presented the Semantic Knowledge Extractor Tool (SKET), an unsupervised hybrid knowledge

extraction system that combines rule-based techniques with pre-trained Machine Learning (ML) models to extract
critical pathological concepts from diagnostic reports. The concepts extracted from diagnostic reports can serve
different digital pathology applications, such as automatic annotation, knowledge visualization, discovery, or image
classification. A throughout evaluation demonstrated SKET effectiveness in annotating colon, cervix, and lung cancer
use-cases – making it a viable solution to reduce pathologists’ workload. The results and analyses highlighted
the importance of expert knowledge in developing unsupervised systems for specialized medicine. Moreover, the
effectiveness of SKET as a weak annotator suggests that it can be used as a first, cheap solution to bootstrap supervised
models in the absence of manual annotations.
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Together with SKET, we also introduced SKET eXplained (SKET X), a web-based system to support pathologists
and domain experts in the understanding of SKET outputs, as well as the role that its different components have
on such outputs. Through SKET X, users can comprehend predictions and get valuable insights into the knowledge
extraction process. Beyond explainability, SKET has also been used to empower different digital pathology downstream
applications. In particular, SKET labels have been used to reduce training limitations for colon cancer-assisted
diagnosis tools. The use of SKET for training deep image classifiers without human intervention paves the way to
ML models in the clinical practice [36].

As future work, we plan to extend SKET to other emerging but under-researched use-cases, such as celiac disease
– whose prevalence has significantly increased over the past 20 years [70].
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