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Abstract
Cancer prevention is one of the most pressing challenges that public health needs to face. In this regard, data-driven
research is central to assist medical solutions targeting cancer. To fully harness the power of data-driven research, it is
imperative to have well-organized machine-readable facts into a Knowledge Base (KB). Motivated by this urgent need,
we introduce the Collaborative Oriented Relation Extraction (CORE) system for building KBs with limited manual
annotations. CORE is based on the combination of distant supervision and active learning paradigms, and offers a
seamless, transparent, modular architecture equipped for large-scale processing.
We focus on precision medicine and build the largest KB on fine-grained gene expression-cancer associations – a key
to complement and validate experimental data for cancer research. We show the robustness of CORE and discuss the
usefulness of the provided KB.
Database URL: https://zenodo.org/record/7577127
SPARQL endpoint: http://w3id.org/corekb/sparql
Search platform: https://gda.dei.unipd.it
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1 Introduction
In 2020 there were about 19.2 million cancer cases worldwide.
The World Health Organization estimates a 32% overall
increase by 20401. With this growing global burden, cancer
prevention is one of the century’s most pressing public
health challenges, and data-driven research is crucial in
assisting the development of medical solutions to address
it. In the last years, cancer research increasingly relied on
microarray and next-generation sequencing technologies, which
provide raw experimental data about gene expression-cancer
interactions [1, 2]. These interactions hold vital information
to guide diagnosis, assess prognosis, or predict therapy
response [3, 4]. To fully harness the potential of this data,
they must be made readily accessible and organized in a
comprehensive manner. This is where Knowledge Bases (KBs)
come into play, providing machine-readable knowledge that
connects cutting-edge technologies with data-driven research to
support the fight against cancer [5].

Although experimental data are invaluable for cancer
research, they require further investigation, processing, and
validation by experts to be used to populate a KB. Luckily,

1 https://gco.iarc.fr/tomorrow/en/dataviz/bubbles?sexes=

0&mode=population

in most cases, the analysis and interpretation of experimental
data are described in peer-reviewed publications, making
the scientific literature a critical source to complement and
validate the data. Given the high economical and time
costs to manually extract knowledge (e.g., scientific facts)
from domain-specific literature [6, 7, 8], in recent years
Machine Learning (ML) methods and automated techniques for
Knowledge Base Construction (KBC) have flourished [9, 10, 11].
The main bottleneck for KBC systems is the requisite of
large and expensive labeled training data to perform Named
Entity Recognition and Disambiguation (NERD) and Relation
Extraction (RE).

Distant supervision [12, 13] and active learning [14, 15] are
the main paradigms adopted to address this limitation [16, 17].
In this work, we use both paradigms in conjunction to
build a modular, pluggable, transparent, and scalable KBC
system focusing on the discovery of “gene expression-cancer”
associations.

We note that there are a handful of knowledge resources
containing data about gene expression-cancer associations [18,
19, 20, 21, 22, 23] and most of them only contain experimental
data [18, 19, 20, 21]. A small minority – e.g., BioXpress [22]
and OncoMX [23] – also integrate knowledge extracted from the
biomedical literature. To do so, they rely on DEXTER [24], a
state-of-the-art method based on pattern matching techniques.

© The Author 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
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CoMAGC [25] and OncoSearch [26] are other literature-based
resources [27, 28], modelling also the particularly valuable fine-
grained aspects of gene expression-cancer associations. Still,
CoMAGC only consists of 821 sentences on prostate, breast,
and ovarian cancers, while OncoSearch is not maintained.

More general and large-scale resources on gene-disease
associations – i.e., DisGeNET [27] and LHGDN [28] – store
coarse-grained information expressing the existence of an
association between gene expression and cancer, which is
often insufficient to model such complex, faceted relationships
effectively.

Hence, there is a need for KBC systems that can scale to
large text corpora and stay up to date while generating fine-
grained information about gene expression-cancer associations.
We present the Collaborative Oriented Relation Extraction
(CORE) system, a KBC system based on the combination of
automated ML-based methods and domain experts’ feedback.
CORE features a seamless, transparent, modular architecture,
where the different components can be easily plugged-in. It also
employs active learning to bootstrap the KB to be produced and
exploits the fine-grained aspects involved in gene expression-
cancer associations to perform iterative tests that measure the
reliability of the data to be stored in the KB. Finally, it returns
small, selected samples to domain experts for annotation.
The high-quality data generated by this process is then used
as reinforcement to re-train the ML models from scratch.
Active learning makes CORE suited to iterative KB versioning.
Therefore, with the data annotated by domain experts, re-
trained ML models are deployed to build subsequent versions
of the KB.

The experimental evaluation shows the robustness of the
proposed approach by highlighting how CORE scales to large
text corpora with little human annotations. Additionally,
when compared to the state-of-the-art in a knowledge base
reconstruction task, the performance of CORE confirms the
system effectiveness in this domain. We have made the KB
derived by CORE available as Open Data [29], provided with a
SPARQL endpoint for querying: http://w3id.org/corekb/sparql.
The KB can also be accessed via COREKB [30], an intuitive
and easy-to-use search platform: https://gda.dei.unipd.it. The
source code is available at: https://github.com/GDAMining/core.

The rest of the article is as follows: Section 2 presents
the required background; Section 3 outlines the CORE
system; Sections 4–9 describe the components of CORE;
Section 10 presents the system settings and the experiments;
Section 11 performs some exploratory queries and analyses on
the generated KB; Section 12 showcases the search platform;
and Section 13 draws final remarks.

2 Background
Precision Medicine and Gene Expression
Generally, precision medicine is about the tailoring of medical
treatment to the characteristics of an individual patient and
moves beyond the traditional approach of stratifying patients
into treatment groups based on phenotypic markers [31].
Among the different fields of medicine, precision medicine has
the greatest impact in cancer research. In this context, precision
medicine involves the use of an individual patient’s genomics
information to guide diagnosis, prognosis, treatment, and
prevention of cancer for that patient. In other words, precision
medicine is a multifaceted approach that involves several
critical aspects such as pharmacogenomics, pharmacodynamics,

and the impact of genetic variations on an individual’s response
to cancer treatments like chemotherapeutics [32]. It also
considers various factors, including age, ethnicity, sex, and
lifestyle habits, as prognostic indicators, as well as diagnostic
aspects related to disease identification and its severity. Among
the factors that identify the different risk outcomes in patients,
alterations in gene expression patterns play a central role [3]. In
fact, genes contain the information required to create proteins
and dictate cellular functions, but it is the gene expression that
determines the cellular phenotype – and therefore the disease
development. Moreover, abnormalities in the expression of
microRNAs – small RNAs that post-transcriptionally regulate
the expression of their target genes – have recently been
associated with cancer [33, 34]. Thus, identifying genes and
microRNAs whose expression levels interact with cancer status
is imperative to advance cancer research [3].

Gene Expression-Cancer Resources
Most knowledge resources about gene expression-cancer
associations consist of experimental data obtained through
microarray and next-generation sequencing technologies [18,
19, 20, 21]. A relevant example is GENT2 [18], which
provides a search platform for gene expression patterns across
different normal and tumor tissues, compiled from public gene
expression datasets. Another platform is MERAV [19], which
provides access to gene expression datasets and compares gene
expressions across human tissues and cell types. ICGC [20]
is a collaborative effort to characterize genomic abnormalities
in 50 different cancer types, which provides a data portal
containing data from 24 cancer projects, including TCGA [21].
As explained above, these resources are valuable but provide
raw data that need to be further processed and validated to be
effectively used in precision medicine.

Beyond experimental data, BioXpress [22] and OncoMX [23]
also integrate knowledge extracted – either manually or
automatically – from the biomedical literature [22, 23].
BioXpress is a KB storing genes that are differentially
expressed in adjacent normal and tumor tissues from the
same patients. On the other hand, OncoMX is a KB for
exploring cancer biomarkers, which encompasses more than
1,000 unique biomarker entries mapped to 20,576 genes that
have either mutations or differential expressions in cancer.
In particular, both resources consider data automatically
extracted by DEXTER [24], a text-mining expert system that
identifies gene and microRNA expressions in disease samples
from sentences selected from the relevant literature. To the best
of our knowledge, DEXTER is the most advanced text-mining
system for gene expression-cancer associations. However, the
use of pattern matching techniques – based on manually-defined
regular expressions – to extract relationships limits DEXTER
flexibility and hampers its applicability to a broad range of new,
unseen sentences. In this regard, we show that DEXTER fails
to extract knowledge from sentences whose syntactic structure
differs from its predefined patterns. Thus, it appears clear
that more adaptive RE methods are required to build KBC
systems capable of scaling to large-scale text corpora, made of
heterogeneous documents written in different styles.

Regarding literature-based resources, CoMAGC [25] is
a corpus developed to train RE methods targeting gene
expression-cancer associations. In CoMAGC, each sentence is
annotated with different concepts that together express 1)
how a gene changes, 2) how a cancer changes, and 3) the
interaction between gene and cancer changes. Together, the
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different concepts can be used to infer the prospective roles of
genes in cancer and to classify genes into classes according to
the inferred roles. Relying on the CoMAGC annotation schema,
OncoSearch [26] retrieves sentences mentioning gene expression
changes in cancers from Medline abstracts. Specifically,
OncoSearch queries seek 1) whether a gene is up- or down-
regulated, 2) whether a given cancer progresses or regresses
based on the given gene expression change, and 3) the expected
role of the gene in the cancer. While relevant, CoMAGC is
small-scale and OncoSearch is not maintained, making them
limited resources. On the other hand, general, large-scale,
and widely-used resources about gene-disease associations, such
as DisGeNET [27] and LHGDN [28], store information that
is not specific enough to be effectively used to model gene
expression-cancer relationships.

Knowledge Base Construction
KBs have gained a lot of attention lately as a key component
for supporting search and recommendations at Web scale.
From seminal works such as DBPedia [35], Freebase [36],
and YAGO [37] to community-driven projects such as
WikiData [38], KBs have become a central asset in several
applications. To build them, KBC spans different areas of Data
Management and Artificial Intelligence. Data integration [39,
40], data cleaning [41], named entity recognition and
disambiguation [42, 43, 44], relation extraction [45, 46, 47],
and active learning [14, 15, 48] are critical to ensure the
accurate and scalable construction of KBs. In this regard,
several systems have been built that include the latest advances
in these areas [11, 49, 9, 10].

KBs are also increasingly used by large companies and
organizations as a means for organizing and understanding their
data [50, 51, 52, 53]. Industry-scale KBs are typically derived
from numerous sources and contain a wealth of information
that is used in downstream applications [54]. One of the few
published reports of an end-to-end industrial system to build,
maintain, and use such KBs is the work by Deshpande et
al. [50]. We follow a similar focus on data quality and clear
methodology for bootstrapping a KB. Besides, we agree that
an imperfect KB is still useful for real-world applications and
that maintenance is also important as facts evolve over time.

3 The CORE System
Preliminaries
Let us consider a directed graph G = (V,E), where E ⊆
{(v1, v2) | (v1, v2) ∈ V × V } is the set of edges connecting
ordered pairs of vertices. Given an edge e = (v1, v2) ∈ E,
we call v1 the source vertex and v2 the target vertex. In our
context, the nodes of G are entities and the edges are the
relationships between them.

Definition 1 (Aspect). We call aspect an attribute of a
relationship between a pair of entities. An aspect Ai has a name
and a domain D = {ai1, . . . , ain}, where aij ∈ Ai is the jth

aspect value of Ai. Dom(Ai) = D returns the domain of Ai
2.

Example 1. Let us consider gene-cancer associations. There
are three aspects describing a possible relationship (e) between

2 When it is clear from the context, the aspect value aij ∈ Ai

is referred to as aj .

gene (v1) and cancer (v2): the Change of Gene Expression
(CGE), the Change of Cancer Status (CCS), and the Gene-
Cancer Interaction (GCI). Following Definition 1, CGE, CCS,
and GCI are the names of the aspects with the following
domains: Dom(CGE) = {up, down, notinf}, Dom(CCS) =

{progression, regression, notinf}, and Dom(GCI) =

{causality, correlation, notinf}.

Details about the aspect domains are described in Table 1.

Definition 2 (Multi-Aspect Relationship). Given a graph
G(V,E) and a set of aspects A = {Ai}n

i=1, then a tuple of
aspect values (a1j , . . . , anj) associated with e = (v1, v2) ∈ E

defines a multi-aspect relationship between v1 and v2.

Definition 3 (Signature Function). Given a set of aspects A =

{Ai}n
i=1 and an alphabet Σ, we define s :

∏n
i=1 Ai → S ⊆ Σ∗;

s(a1j , ..., anj) 7→ type as the signature function that maps a
multi-aspect relationship to a type in S, called the signature
set.

The signature function defines a set of mapping rules
depending on the domain of interest. We use the signature
function to map multi-aspect gene expression-cancer relation-
ships to gene prospective roles in cancer (e.g., oncogene or
biomarker). Table 2 provides the inference rules used to derive
expected gene roles. Gene roles allow to distinguish the genes
that are responsible for oncogenesis from those that are not;
these are essential information for effective cancer research and
therapy design [55].

Definition 4 (Tagging Function). Given an edge e ∈ E and
the signature set S. We define σ : E → S;σ(e) 7→ type as the
function tagging an edge with a signature type.

The tagging function associates a signature type to an edge
of the graph. In this work, we use the tagging function to
label edges with gene prospective roles.The graph represents
gene expression-cancer associations as gene prospective roles in
cancer.

Overview
The goal of the CORE system is to harvest facts from text
corpora to populate KBs. We model a KB as a directed graph
G made up of entities connected by typed relationships. Facts
(or statements) are (v1, e, v2) triples, where v1, v2 ∈ V , e =

(v1, v2) ∈ E, and σ(e) ∈ S.
To obtain facts, CORE collects scientific literature from

different sources, identifies sentences containing pairs of entities
relevant to the considered task, and extracts aspects from them.
Depending on the combination of extracted aspect values, a
sentence expresses a specific signature type. Note that, for a
given pair of entities, different sentences can express various
signature types, as we show in the next example.

Example 2. See these two sentences from the biomedical
literature:

A.Colorectal cancer (CRC) growth and progression is
frequently driven by RAS pathway activation through
upstream growth factor receptor activation or through
mutational activation of KRAS or BRAF.
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Table 1. Description of the aspects involved in gene expression-cancer associations. For each aspect, we report its domain values and the
corresponding descriptions.

Aspect Value Description

Change of Gene Expression (CGE)
up The expression of a gene is increased.
down The expression of a gene is decreased.
notinf The change of gene expression is unknown.

Change of Cancer Status (CCS)
progression The cell or tissue acquires cancerous properties as gene expression level changes.
regression The cell or tissue loses cancerous properties as gene expression level changes.
notinf The change of cancerous properties of cell or tissue is unknown.

Gene-Cancer Interaction (GCI)
causality There is a cause-effect relationship between CGE and CCS.
correlation There is a correlation between CGE and CCS.
notinf The interaction between CGE and CCS is unknown.

Table 2. Inference rules for gene classes. For each combination of CGE, CCS, and GCI, we report the expected gene class. Gene classes
refer to the role that a given gene has on a specific disease. Following [25, 26], a biomarker represents a gene that exhibits altered expression
levels in cancer, but which is not (yet) identified as an oncogene or a tumor suppressor gene. In Rule 5, CGE and CCS can assume any value
between {up, down} and {progression, regression}.

Rule # CGE CCS GCI Gene Class

1 up progression causality oncogene

2 up regression causality tumor suppressor gene

3 down regression causality oncogene

4 down progression causality tumor suppressor gene

5 up|down progression|regression observation biomarker

B.Somatic mutations of the BRAF gene, causing constitutive
activation of BRAF, have been found in various types
of human cancers such as malignant melanoma, and
colorectal cancer.

In both sentences, the following entities are extracted v1 =

BRAF and v2 = Colorectal Cancer. Considering the aspects
introduced in Example 1, for sentence A we find CGE = up,
CCS = progression, and GCI = causality, leading to the
signature type s((up, progression, causality)) = oncogene. On
the other hand, the aspect values of sentence B are CGE = up,
CCS = progression, and GCI = correlation, leading to the
signature type s((up, progression, correlation)) = biomarker.

From Example 2, we see that different sentences may lead
to different signature types. In the scientific discourse, it is not
surprising that there are different viewpoints and that various
studies can lead to different conclusions – even in contradiction
with each other. Hence, we need to consider this potential
uncertainty when facts are extracted from the literature. The
CORE system models this inherent uncertainty by assigning the
likelihood of being true to each aspect value. This probability is
based on the evidence we can extract from the literature. Given
a set of sentences concerning the same two entities, the more an
aspect value is consistent in the set, the higher the probability
for that value to be true.

Definition 5 (Aspect-Probability Set). Given an aspect Ai =

{aj}m
j=1 such that each aspect value aj carries a likelihood

Pr(aj), we call APi = {(aj ,Pr(aj))}m
j=1 the aspect-probability

set of Ai.

Definition 6 (Multi-Aspect Function). Let G = (V,E) be
a directed graph and AP = {APi}n

i=1 a set of aspect-
probability sets. We define ϕ : E →

∏n
i=1 APi;ϕ(e) 7→

({(a1j ,Pr(a1j))}|A1|
j=1 , . . . , {(anj ,Pr(anj))}|An|

j=1 ) as the multi-
aspect function that, given an edge, returns the n-tuple of
aspect-probability sets.

Bootstrapping
Deployment
Active Learning

Data Acquisition 
+ NERD

Manual 
Annotation

Knowledge Base 
Population

Automatic 
Annotation

Training RE 
Models

Fig. 1. Overview of the CORE architecture. The system consists of
five main modules and three processes. The modules represent the data
acquisition and NERD components (1), the manual annotation activities
(2), the training of the RE models (3), the subsequent automatic
annotation (4), and the KB population (5). The processes reflect the
different workflows: bootstrapping (orange) sets up the KBC process via
expert involvement; deployment (blue) scales it through automated RE
methods; and active learning (purple) allows refining the process through
subsequent iterations.

Thus, for each pair of target entities, CORE computes the
probabilities for all the aspect values and combines them into
tuples of aspect-probability sets – i.e., a probability distribution
over multi-aspect relationships. Sentences serve as supporting
or contradicting evidence that strengthens or weakens the
likelihood of a fact.

Architecture
Figure 1 gives an overview of the CORE architecture, depicting
modules and processes, and Figure 2 zooms into it providing
further details. The system acquires text from the literature,
processes and normalizes it to obtain sentences, from which
a NERD component detects and annotates the entity pairs
(module 1). These entity-annotated sentences undergo two
different processes: bootstrapping and deployment. In the
bootstrapping workflow, experts manually annotate multi-
aspect relationships between the entities (module 2), producing
a set of relation-annotated sentences used to train RE methods
(module 3) and to populate the KB (module 5).
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Fig. 2. Detailed view of the CORE architecture. In module (1), CORE
acquires text from biomedical literature and then performs NERD to
generate entity-annotated sentences. These sentences are then manually
annotated by experts in module (2) to produce relation-annotated
sentences, which are used to generate the datasets for training RE
methods in module (3). Once trained, in module (4), the RE methods
are deployed over entity-annotated sentences to automatically generate
relation-annotated sentences. Finally, in module (5), relation-annotated
sentences undergo a knowledge enrichment component, which generates
facts, and a reliability testing component, which tags facts as reliable or
unreliable. Facts tagged as reliable are used to populate the KB, whereas
unreliable facts are returned to experts for re-annotation.

In the deployment workflow, the automatic annotations
expressing multi-aspect relationships between entities are
provided by the RE methods (module 4) previously trained in
the bootstrapping phase. Then, in the last module (module 5),
relation-annotated sentences are grouped by entity pairs and
used to generate facts to further populate the KB. Module 5 is
composed of (i) a knowledge enrichment component computing
the probabilities for all the aspect values and combining them
into tuples of aspect-probability sets; and (ii) a reliability
testing component that uses these probabilities to perform
multiple tests to tag the facts as reliable or unreliable. Only the
facts tagged as reliable are used to populate the KB. When the
deployment workflow is complete, unreliable facts are ranked
by ascending reliability score and the top-k automatically
annotated sentences associated with them are re-annotated by
experts. This process triggers an active learning workflow that
reinforces the RE methods.

Versioning
The active learning workflow makes CORE suited to iterative
KB versioning. We define a KB version as the graph Gj =

(Vj , Ej) obtained after the jth iteration of the bootstrap and
deployment workflows. Once the jth version of the KB has been
deployed, the active learning workflow starts by generating the
batch of unreliable sentences for bootstrapping the jth + 1

version of the KB. The unreliable sentences are manually
annotated and used to increase the size of the datasets to re-
train the RE methods from scratch, which then generate a new
set of automatic annotations to be included in the jth + 1 KB
version. Hence, once the bootstrap and deployment workflows
are completed, the jth + 1 version of the KB is re-built from
scratch and comprises all the available annotations.

4 NERD
CORE recognizes gene and cancer entities from text and links
them to relevant and authoritative KBs. In our setting, gene
entities are linked to NCBI Gene [56], whereas cancer entities
are linked to UMLS [57]. The choice of UMLS as the reference
KB for cancer aims to maximize the interoperability of the
CORE system with different existing biomedical resources, such
as DisGeNET, BioXpress, and OncoMX.

As NERD component, CORE integrates the PubTator
system [58, 59, 60]. Given biomedical text, PubTator
provides automated annotations from state-of-the-art text
mining systems for genes/proteins, genetic variants, diseases,
chemicals, species, and cell lines. In particular, PubTator
normalizes annotated genes to NCBI Gene identifiers and
annotated diseases to MeSH [61] identifiers. However,
the CORE system requires UMLS identifiers for diseases.
Therefore, a mapping process normalizes MeSH identifiers to
UMLS Concept Unique Identifiers (CUIs). Then, to restrict
to cancer, CORE only keeps UMLS CUIs that belong to
the neoplastic process semantic type. Once gene and cancer
entities have been extracted and linked to the reference KBs,
CORE splits biomedical text into sentences and keeps only
those sentences containing gene-cancer pairs. When a sentence
contains multiple gene-cancer pairs, CORE returns separate
entity-annotated sentences for each pair.

5 Manual Annotation
CORE involves experts to manually annotate some sentences
with multi-aspect relationships about gene expression-cancer
associations. For annotation, CORE adopts a common and
shared schema in the biomedical domain (e.g., CoMAGC [25]
and OncoSearch [26]), where experts are required to annotate
sentences with three different aspects: CGE, CCS, and GCI.
CGE represents the change of the gene expression level, CCS
represents the change of the cancer status, and GCI indicates
the interaction occurring between CGE and CCS aspects. Each
aspect can assume different values: Dom(CGE) = {up, down,

notinf}; Dom(CCS) = {progression, regression, notinf};
Dom(GCI) = {causality, correlation, notinf}.

Even though a huge amount of sentences contains gene-
cancer pairs in biomedical literature, only a small fraction
actually describe gene expression-cancer associations. It is
therefore essential to have a tool capable of limiting the amount
of noise introduced in the annotation process and maximizing
sentence utility. In this regard, CORE requires the annotation
of an additional aspect, the Gene-Cancer Context (GCC).
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GCC indicates the coarse-grained association between gene
and cancer, and serves as a filter that helps differentiating
between gene-cancer associations related to changes in the
gene expression levels and those encompassing other types of
gene-cancer relationships. To this end, GCC has the following
domain: Dom(GCC) = {expression, other}. The expression

value indicates that an altered gene expression is associated
with cancer, whereas the other value represents any other
gene-cancer association3 – including the absence of association.
Thus, the GCC aspect assesses the sentence utility in context,
because it is a filter limiting manual and automatic analysis
of sentences containing gene-cancer pairs not inherent to gene
expression-cancer associations.

Based on the annotation schema presented above, domain
experts perform multi-aspect manual annotations between
gene-cancer pairs and return relation-annotated sentences
(module 2). Depending on the considered workflow, the
sentences to be annotated come from different modules at
different stages. At the beginning of bootstrapping, (entity-
annotated) sentences come from module 1 as the output of the
NERD component. After active learning, (unreliable) sentences
come from module 5 due to the reliability testing. In both
cases, any errors associated with the NERD component are
corrected too. For training RE methods (module 3), the
CORE system employs the complete set of relation-annotated
sentences. Whereas, to populate the KB (module 5), CORE
keeps only the sentences with GCC = expression. The
sentences annotated with CGE = notinf are excluded to
limit noise injection, because CGE is the main aspect gene
expression-cancer associations driver [25].

6 Relation Extraction
CORE’s RE methods are trained to automatically annotate
multi-aspect relationships on sentences. Once trained, the RE
methods are applied on new, unseen sentences to generate
knowledge and thus update the KB.

For each aspect to be annotated, a different RE method
is trained (module 3) and deployed (module 4). Together,
the different aspect-based annotations compose the multi-
aspect relationship. Although simple, this approach reflects the
transparent and modular architecture of the CORE system,
where different components can be easily plugged-in and
plugged-out since every RE method can be re-trained – or
changed – without affecting others.

The RE methods serve two purposes: classify sentence
utility and extract gene expression-cancer aspects. Every
RE method presents the same architecture but addresses a
different aspect. As the underlying ML model, all RE methods
adopt SciBERT [62], a pretrained language model based on
BERT [63]. SciBERT addresses the lack of high-quality, large-
scale labeled scientific data by pretraining on scientific papers
from Semantic Scholar [64]. On top of it, a linear layer takes
SciBERT pooled output. Predictions are scores in [0, 1] for
target values. The higher the score for an aspect value, the more
the RE method believes the sentence expresses that particular
value. We formally define prediction scores as follows.

3 Note that other can be broken down into different and finer
values, thus leaving room for the integration of different types
of gene-cancer associations in the CORE system.

Definition 7 (Score Function). Let Ai be an aspect, aj one
of its values, and T a set of sentences. We define score : Ai ×
T → R[0,1]; score(aj , t) 7→ r as the score function that given a
sentence t returns how close the aspect value aj is to the truth.

Every RE method instantiates the score function tailored
for its aspect extraction task. A RE method returns a specific
sentence-aspect score always in the range [0, 1] of real numbers.

Remark 1. Given a sentence t and an aspect Ai = {aj}m
j=1,

then
∑

aj∈Ai
score(aj , t) = 1. Prediction scores for an aspect

Ai given a sentence t are a probability distribution over the
aspect values aj .

Thus, given an entity-annotated sentence (module 1),
CORE first masks gene and cancer entities with special tokens
to avoid bias, and then applies RE methods to extract CGE,
CCS, GCI, and GCC aspects. GCC extraction serves to assess
sentence utility, while CGE, CCS, and GCI extraction to
compose multi-aspect relationships. For each aspect, the CORE
system keeps the value associated with the highest score. For
manual annotation the scores are set to 1 if the aspect value is
present and 0 otherwise.

Afterwards, relation-annotated sentences where the extracted
GCC value is expression are kept, whereas those with GCC =

other are discarded. As in manual annotation, sentences with
CGE = notinf are also filtered out. The retained set of
automatic, relation-annotated sentences is used to populate the
KB (module 5).

7 Knowledge Enrichment
The relation-annotated sentences obtained from manual
annotation (module 2) and RE deployment (module 4) pass
through a knowledge enrichment component, which groups
annotated sentences by gene-cancer pairs and generates facts.
However, for a given gene-cancer pair, different sentences can
have different multi-aspect annotations. This situation occurs
because, in the literature, different studies and viewpoints
can lead to different conclusions. To address this intrinsic
uncertainty, the CORE system assigns to each aspect a
likelihood to be true.

Definition 8 (Aspect Value Likelihood). Let (v1, v2) be a pair
of entities, T(v1,v2) the set of sentences annotated with both v1

and v2, and aj ∈ Ai the target aspect value. Then, the aspect
value likelihood is

Pr(Ai = aj | (v1, v2)) =

∑
t∈T(v1,v2)

score(aj , t) · 1(aj , t)∑
t∈T(v1,v2)

max
ak∈Ai

(score(ak, t))
(1)

where 1(·, ·) represents the indicator function, defined as

1(aj , t) =


1

| argmax
ak∈Ai

(score(ak, t))|
, aj ∈ argmax

ak∈Ai

(score(ak, t))

0, otherwise
(2)

By modeling aspect value likelihoods this way, the CORE
system takes the beliefs of RE methods into account. The more
the RE methods are confident about an aspect value aj over
the others, the more its likelihood increases. Vice versa, if
RE methods have a larger degree of uncertainty across the
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different aspect values, then also the likelihood for aj decreases
accordingly.

Remark 2. Given a pair of entities (v1, v2), its set
of annotated sentences T(v1,v2), and an aspect Ai, then∑

aj∈Ai
Pr(Ai = aj | (v1, v2)) = 1.

Example 3. Let us consider a gene-disease pair (v1, v2), its set
of annotated sentences T(v1,v2) = {t1, t2, t3, t4}, and the CGE,
CCS, GCI aspects. For each sentence, the candidate aspect
value-score pairs are:

t1 :CGE(up, 0.7), CCS(progression, 0.6), GCI(notinf, 0.9)
t2 :CGE(down, 0.8), CCS(regression, 0.9), GCI(causality, 0.6)
t3 :CGE(notinf, 0.8), CCS(progression, 0.9), GCI(notinf, 0.9)
t4 :CGE(up, 1.0), CCS(regression, 1.0), GCI(observation, 1.0)

First, sentence t3 is filtered out since CGE = notinf.
Hence, the sentences used for computation are t1, t2, and
t4. Then, following Definition 8, CGE value likelihoods are
computed as Pr(up) = (0.7 + 0.0 + 1.0)/(0.7 + 0.8 + 1.0) = 0.68

and Pr(down) = (0.0 + 0.8 + 0.0)/(0.7 +0.8 + 1.0) = 0.32, lead-
ing to the aspect-probability set APCGE = {(up, 0.68) , (down, 0.32)}.
Similarly, CCS and GCI lead to aspect-probability sets
APCCS = {(progression, 0.24), (regression, 0.76), (notinf, 0.00)}
and APGCI = { (observation, 0.40), (causality, 0.24), (notinf, 0.36)}.
Thus, given the fact (v1, e, v2) obtained from the gene-disease
pair (v1, v2), we have that ϕ(e) = (APCGE, APCCS, APGCI)

consists of the aspect-probability sets defined above.

For each fact, CORE combines CGE, CCS, and GCI aspects
into the tuple of aspect-probability sets, which represents a
probability distribution over multi-aspect relationships, and
performs reliability tests to decide if the fact is reliable enough
to populate the KB.

8 Reliability Testing
The facts generated through the knowledge enrichment
component undergo a set of reliability tests, which are used
by CORE to identify those facts that are reliable enough to
populate the KB. These reliability tests are based on aspect-
probability sets and follow the inference rules defined in [25, 26]
and reported in Table 2 to map multi-aspect relationships
to signature types. Indeed, multi-aspect relationships can be
used to infer the prospective roles of genes in cancer and to
classify genes into three mutually exclusive classes according
to the inferred role: oncogene, tumor suppressor gene, and
biomarker4. For instance, an oncogene can be inferred from
(up, progression, causality) or (down, regression, causality)

multi-aspect relationships (rules #1 and #3 of Table 2). These
mutually exclusive classes represent the signature set S, and are
associated with edges of the KB through the tagging function
σ(·).

Thus, based on aspect-probability sets and inference rules,
CORE performs a two-stage reliability test that first verifies
that facts have sufficient evidence and then assesses the degree
of contradicting evidence. The two stages are divided into
sufficiency and consistency checks.

4 As in [25, 26], a gene classified as biomarker represents a gene
that exhibits altered expression levels in cancer, but which is
not (yet) identified as oncogene or tumor suppressor gene.

Given a fact (v1, e, v2), a sufficiency check monitors
whether the likelihood of not-informative aspect values is
large enough to undermine the reliability of the fact.
CORE applies the sufficiency check to CCS = notinf

and GCI = notinf aspect values. Hence, a fact fails
the sufficiency check and therefore is deemed unreliable if
Pr(CCS = notinf) > α ∨ Pr(GCI = notinf) > α, where α is a
fixed system threshold.

The facts that pass the sufficiency check are further
inspected for consistency. Given a tuple of aspect-probability
sets, associated with a fact (v1, e, v2) through ϕ(e), the
consistency check verifies that mutually exclusive signature
types are not similarly probable.

Definition 9 (Signature Type Likelihood). Let (v1, e, v2) be a
fact and S the set of mutually exclusive signature types. Then,
the signature type likelihood is defined as

Pr(σ(e) = type) =
∑

{(a1j ,...,anj) s.t.
s((a1j ,...,anj))=type}

n∏
i=1

Pr(aij) (3)

where Pr(aij) is the aspect value likelihood and σ(·) and s(·)
are the tagging and signature functions, respectively.

Since gene expression-cancer aspects can be treated as
independent events [25, 26], the signature type likelihood can
be computed for the gene classes. For instance, according to
rules #1 and #3 from Table 2, the likelihood of the oncogene

class is

Pr(oncogene) =Pr(up) · Pr(progression) · Pr(causality) +

Pr(down) · Pr(regression) · Pr(causality)

Given that gene classes are mutually exclusive, the
consistency check verifies whether the class likelihoods are too
close to each other. Indeed, similar likelihoods imply that a
fact is supported by contradictory evidence, thus showing some
inconsistency. Vice versa, a large difference between likelihoods
suggests a strong tendency towards a specific gene class, and
therefore a more consistent support for the fact.

Hence, for a target fact (v1, e, v2), CORE takes the gene
classes type-1 and type-2 with largest likelihoods and verifies
that the condition (Pr(type-1)− Pr(type-2)) > β is satisfied,
where β is a fixed system threshold. A fact that fails the
condition is therefore considered unreliable. In other words,
when no gene class has a likelihood large enough to overcome
the others by a margin of β, CORE tags the fact as unreliable.
Note that the consistency check admits that only one gene class
satisfies the condition.

Example 4. Let us consider two facts f1 = (v1, e1, v2) and
f2 = (v3, e2, v4). The not-informative likelihoods associated
with each fact are:

f1 :Pr(CCS = notinf) = 0.1, Pr(GCI = notinf) = 0.3

f2 :Pr(CCS = notinf) = 0.6, Pr(GCI = notinf) = 0.5

The signature type likelihoods associated with each fact, and
sorted in decreasing order of probability, are:

f1 :Pr(oncogene) = 0.7,Pr(tsg) = 0.2,Pr(biomarker) = 0.1

f2 :Pr(oncogene) = 0.5,Pr(tsg) = 0.4,Pr(biomarker) = 0.1

Then, let us set the sufficiency threshold α to 0.7 and the
consistency threshold β to 0.4. In this scenario, both f1 and
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f2 pass the sufficiency check, as Pr(CCS = notinf) and
Pr(GCI = notinf) are lower than α for both facts. On the
other hand, only f1 passes the consistency check, since none
of the signature type likelihoods of f2 is large enough to
overcome the others by a margin of β. In this regard, for f1,
we have Pr(oncogene)− Pr(tsg) > β, which makes oncogene the
candidate gene class for the fact. Conversely, for f2, we have
Pr(oncogene)− Pr(tsg) < β, which provides no candidate gene
class for the fact. Therefore, f1 is tagged as reliable and f2

as unreliable.

The facts that pass both sufficiency and consistency checks
are tagged as reliable and used to populate the KB. Prior to
population, the edges of reliable facts are labeled through the
tagging function σ(·) with the gene class having the highest
likelihood. Note that we do not claim that gene classes are
definitive. Rather, gene classes – and supporting sentences
– should be treated as complementary, textual evidence that
strengthens the hypotheses on the expected roles of genes in
cancer obtained through experimental data.

9 Active Learning
The facts deemed as unreliable by the reliability testing
component (module 5) are taken over by the active learning
process, which ranks them by ascending reliability score and
returns the top-k automatically annotated sentences to domain
experts for annotation.

Definition 10 (Reliability Score). Let (v1, e, v2) be a fact,
{Ai}l

i=1 a subset of the aspects associated with e, and S the
set of signature types. Then, by taking a specific value aij for
each aspect Ai of the subset, the reliability score is computed
as

rel(e) = −
∑l

i=1 Pr(aij)

l
·H(S), (4)

where H(S) is the entropy of the signature set S, computed as:

H(S) = −
∑

type ∈ S

Pr(σ(e) = type) · log Pr(σ(e) = type) (5)

In this work, we compute the reliability score by considering
the subset of CCS and GCI aspects and by taking their
not-informative values {CCS = notinf,GCI = notinf}. Once
computed, CORE uses the reliability score to perform
uncertainty sampling [65]. In other words, CORE ranks
unreliable facts by ascending order of reliability score. Then,
the top-k automatically annotated sentences associated with
these facts are returned to domain experts for manual
annotation (module 2).

10 Implementation and Experiments
We use CORE to build a KB for gene expression-cancer
associations. To this end, we conducted comprehensive
experiments to quantify the extracted knowledge and evaluate
the RE methods used to build the KB. In addition, we
performed a knowledge base reconstruction task against the
state-of-the-art showing CORE effectiveness.

Knowledge Base Creation
Data Processing. We use different resources to build the
KB, which increase with each subsequent iteration of the KB

construction process. Table 3 reports statistics for the resources
used to build each KB version. In the first iteration (KB0), we
only consider manually annotated data coming from CoMAGC,
OncoSearch, and BioXpress. We revised these annotations to
make them compliant with the annotation schema presented in
Section 5.

Then, in the second iteration (KB1), we introduce
DisGeNET data, on which the CORE system deploys the RE
methods. DisGeNET collects data on different coarse-grained
gene-disease associations from several resources and covers
most of human diseases. Regarding gene expression-cancer
associations, DisGeNET contains automatically extracted
data that has been identified from the literature using
text-mining techniques [66, 67, 28]. For each gene-disease
association, DisGeNET provides the publication(s) supporting
the association, a representative sentence from each publication,
the original source, as well as information on the gene and
disease involved in the association. Thus, sentences within
DisGeNET can be used as a high-quality starting point from
which to extract multi-aspect relationships.

After the construction of KB1, the active learning process
ranks unreliable facts and returns the top-k sentences for
manual annotation. This new set of manually annotated
sentences – together with a second batch from DisGeNET –
are added to previously used data and employed to build KB2.
In the last iteration (KB3), we collect from PubMed the articles
citing those stored within KB2. Then, the CORE system relies
on the NERD component to extract gene and cancer entities
from titles and abstract sentences and deploys RE methods on
them. Finally, PubMed and top-k unreliable sentences from
KB2 are integrated into KB3 construction.

Manual Annotation. The manual annotation process has
been carried out by a clinical expert. The annotator has been
given the target sentence to annotate/validate, together with
the corresponding PubMed article from which it has been
extracted – either from the title or the abstract.

System Parameters. The parameters required by CORE
are the sufficiency and consistency thresholds α and β, and the
number k of sentences to be returned for manual annotation
during active learning. Sufficiency and consistency thresholds
regulate the degree of reliability of the facts in the KB. A low
sufficiency combined with a high consistency threshold lead to
less facts but with a high level of reliability. Empirically, we
set α = 0.7 and β = 0.4. We set k = 250, meaning that
250 sentences are re-annotated after each iteration. Note that
system parameters can be adjusted as the KB size increases.

Knowledge Base Statistics. From the statistics reported
in Table 4, we draw some considerations. First, we can see that
the ratio between the sentences stored in the KB and the input
ones decreases at each iteration. From the first iteration, CORE
uses the 62% of the input sentences to build KB0, we move to
the 52% to build KB1, 26% for KB2, and only 14% for KB3.
Such a decrease reflects the use of reliability tests and active
learning, which make the system more selective and accurate.
In particular, active learning leads the system to refine the RE
methods at each iteration, thus reducing false positives as well
as unreliable facts as shown in Table 5 – which presents the
reduction statistics of unreliable facts. We see that the number
of facts deemed as unreliable in one iteration decreases in the
next ones, confirming the effectiveness of active learning.

Secondly, the large number of different genes and cancers in
KB3 highlights the scalability of the approach. In this regard,
KB3 contains 21, 005 genes, which cover the 70% of the 30, 000
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Table 3. Raw statistics for the KB versions. Rows represent the number of raw instances considered to build the KB.

KB0 KB1 KB2 KB3

Manual

CoMAGC (revised) 821 821 821 821
OncoSearch (revised) 157 157 157 157
BioXpress (revised) 74 74 74 74
DisGeNET (batch 1) – – 250 250
DisGeNET (batch 2) – – – 249

Automatic
DisGeNET (batch 1) – 184,859 184,609 184,609
DisGeNET (batch 2) – – 184,858 184,609
PubMed (citing papers) – – – 2,841,096

Total 1,052 185,911 370,769 3,211,865

Table 4. Partition, absolute, and conditional statistics for KB.

KB0 KB1 KB2 KB3

Partition
Manual 655 585 605 592
Automatic – 96,531 95,282 435,283

Absolute

Sentence 655 97,116 95,887 435,875
Article 411 69,462 65,236 161,449
Gene 329 9,483 9,981 21,005
Cancer 98 1,479 1,554 1,665
Fact 512 71,554 89,999 153,016

Conditional
Sentence/Article 1.59 1.40 1.47 2.70
Sentence/Fact 1.28 1.67 1.56 3.10
Article/Fact 1.09 1.67 1.56 2.10

Table 5. Reduction statistics for unreliable facts. For each KB
version (rows), we report the number of unreliable facts present in
that version that are also found in subsequent versions (columns).

KB0 KB1 KB2 KB3

Insufficient
KB0 10 5 5 5
KB1 – 9,055 2,308 1,135
KB2 – – 4,515 2,452

Inconsistent
KB0 22 18 15 17
KB1 – 6,135 3,837 3,704
KB2 – – 11,380 7,786

Table 6. Signature type statistics for each KB version.

Signature type KB0 KB1 KB2 KB3

Biomarker 390 59,147 69,409 105,089
Oncogene 87 8,833 13,501 35,520
Tumor Suppressor Gene 35 3,574 7,089 12,407

estimated genes in the human genome5. On the other hand,
through the integration of DisGeNET data, KBs 1–3 contain
most of the (known) cancer types involved in gene expression-
cancer associations. Combined, this large number of genes
and cancer types leads to more than 150, 000 reliable facts.
Table 6 presents the distribution of these facts according to the
corresponding signature type.

Finally, KB3 represents one of the largest literature-derived
KBs with fine-grained facts about gene expression-cancer
associations. Compared to KB3, BioXpress and OncoMX
– both relying on DEXTER text-mined results – contain
less literature-derived data. Specifically, BioXpress integrates
DEXTER gene expression-cancer associations for 2, 024 genes

5 https://www.genome.gov/human-genome-project/

in lung cancer, 115 glycosyltransferases in 62 cancers, and 826

microRNAs in 171 cancers [24]. On the other hand, OncoMX
integrates 22, 904 gene expression-cancer associations between
5, 524 genes/microRNAs and 272 cancer types, extracted by
DEXTER from 36, 196 sentences in 25, 860 PubMed articles.
Although larger, OncoMX is still an order of magnitude
smaller than KB3. Besides, both BioXpress and OncoMX
only report CGE values between cancer and normal samples,
thus providing less comprehensive information than CORE to
model gene expression-cancer associations. A different situation
occurs with OncoSearch, which contains 451, 798 sentences
expressing 7, 555 genes and 1, 717 cancer types leading to
2, 295 oncogenes, 1, 549 tumor suppressor genes, and 6, 779

biomarkers. Compared to OncoSearch, KB3 contains less
sentences and cancer types. However, OncoSearch does not
perform reliability tests and therefore ingests any annotated
sentence. If we also consider the facts deemed as unreliable by
CORE when building KB3, then the number of sentences and
cancer types becomes 1, 037, 845 and 1, 767, respectively. Thus,
KB3 integrates a smaller number of sentences and cancer types
to seek for a higher quality.

Relation Extraction Evaluation
Datasets. We evaluate the effectiveness of the CGE, CCS,
and GCI extraction methods using three incremental sets of
manually annotated data. Table 7 reports the statistics of these
aspect extraction datasets. The first dataset (DS0) derives from
the seed batch of manually annotated data used to build KB0.
The second (DS1) and third (DS2) ones integrate additional
data coming from the subsequent sets of 250 sentences returned
by the active learning process. DS0 contains 1052 annotated
sentences, which increased by 23% in DS1 and a further 19%
in DS2.

Regarding the GCC extraction method, which serves as
a sentence utility binary classifier, we use DisGeNET to
create a large-scale semi-automatically annotated dataset.
Similarly to [68], we employ automatically extracted data from
DisGeNET to build training and validation sets while relying
on manually curated data for the test set. Table 8 reports
the statistics for the sentence utility classifier dataset. For
training and validation, DisGeNET sentences conveying a gene
expression-cancer association were labeled as expression and
those conveying any other type of association as other. For
test, DS2 sentences were used as expression candidates and
manually curated sentences from DisGeNET as other.

We create a unique dataset for the sentence utility classifier
as the method is only applied to PubMed sentences during
KB3 construction. PubMed is very general and most of the
sentences are not about gene expression-cancer associations, so
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Table 7. Statistics of the aspect extraction datasets. We provide
the percentage increase from one version to the next.

Aspect Value DS0 DS1 DS2

CGE
up 524 604 (+15%) 679 (+12%)
down 219 263 (+20%) 311 (+18%)
notinf 309 430 (+39%) 550 (+28%)

CCS
progression 605 719 (+19%) 829 (+15%)
regression 134 147 (+10%) 162 (+10%)
notinf 313 431 (+38%) 549 (+27%)

GCI
causality 189 227 (+20%) 266 (+17%)
observation 548 634 (+16%) 719 (+13%)
notinf 315 436 (+38%) 555 (+27%)

TOTAL 1,052 1,297 (+23%) 1,540 (+19%)

Table 8. Statistics of the sentence utility classifier dataset.

Class Training Validation Test

expression 18,555 6,185 1,540
other 18,876 6,292 825

Table 9. Aspect extraction performances.

Dataset Aspect Accuracy Precision Recall F1

DS0
CGE 0.8812 0.8870 0.8812 0.8792
CCS 0.8593 0.8650 0.8593 0.8600
GCI 0.8194 0.8305 0.8194 0.8212

DS1
CGE 0.8543 0.8574 0.8543 0.8526
CCS 0.8404 0.8436 0.8404 0.8400
GCI 0.8150 0.8269 0.8150 0.8142

DS2
CGE 0.8760 0.8813 0.8760 0.8746
CCS 0.8481 0.8515 0.8481 0.8478
GCI 0.8266 0.8314 0.8266 0.8259

the sentence utility classifier is critical for the CORE extraction
process. Conversely, the sentence utility classifier is not needed
on DisGeNET sentences because they are of high quality, and a
filtering process has already taken place before their integration
within it.

Setup. For training, we set the batch size to 16 and the
learning rate to 2e-5 with linear warmup followed by linear
decay [63], as suggested in [62]. The CGE, CCS, and GCI
extraction methods perform multi-class classification and are
trained using a standard cross entropy loss function. The
sentence utility classifier performs binary classification and
employs a binary cross entropy loss.

We perform 10-fold cross validation to evaluate CGE, CCS,
and GCI methods. For each iteration, we train the RE
methods for 10 epochs, choose the best epoch on a validation
set consisting of 25% of the training folds, and report the
corresponding results for the test fold. Instead, given the large
size of the GCC extraction dataset, we train the sentence utility
classifier for 5 epochs, pick the best epoch on the validation set,
and report the results on the test set.

Results. Table 9 reports the average performances of the
CGE, CCS, and GCI extraction methods on the different
dataset versions.

We can see that all the three methods perform well on the
task – above 0.80 for each measure – with peak performances
on CGE and slightly lower for GCI. These results underline the
differences between aspects, where CGE is the most explicit
in sentences – and therefore easier to extract – whereas GCI

Table 10. CORE system performance on the BioXpress
reconstruction task. We also report DEXTER performance on DS2.

Dataset Method Accuracy Precision Recall F1

BioXpress
CORE0 0.9544 0.9601 0.9544 0.9572
CORE1 0.9703 0.9831 0.9703 0.9766
CORE2 0.9706 0.9827 0.9706 0.9766

DS2 DEXTER 0.3256 0.6034 0.3256 0.2882

is less evident – and therefore more difficult to predict. CCS
extraction is in between.

This experiment shows the effectiveness of the RE methods
and their stability as they do not regress as the dataset size
increases. In this regard, we recall that RE methods are
re-trained from scratch at each iteration and not fine-tuned
with new data from the active learning process. Thus, such
consistent performances across dataset versions highlight the
robustness and reliability of the RE methods.

Regarding GCC extraction, the sentence utility classifier
achieves 0.8825 accuracy and 0.8824, 0.8825, and 0.8803 of
precision, recall, and F1, respectively. The results highlight
the viability of training coarse-grained RE methods using
automatically annotated data from DisGeNET [68], and show
the effectiveness of the trained method on a manual test set.
Thus, the sentence utility classifier is reliable enough to be used
as filter on new and heterogeneous sentences gathered from
PubMed.

Knowledge Base Reconstruction
Setup. We further evaluate the effectiveness of the CORE
system on a knowledge base reconstruction task, in which we
hold out a portion of an existing KB with associated sentences
and we assess CORE ability to recover it. To this end, we
hold out from BioXpress the set of 9, 636 sentences annotated
by DEXTER (SoTA for gene-expression-cancer annotations),
and we evaluate the CORE system on them. Note that such
sentences are not part of those used to train the CORE
RE methods. Given that BioXpress only reports CGE values
between cancer and normal samples, we restrict our evaluation
to CGE extraction. As a further experiment, we also apply
DEXTER to DS2 to evaluate its ability to generalize to
heterogeneous sentences, whose syntactic structure can differ
from its predefined patterns.

Results. Table 10 reports the CORE system performance
on the BioXpress reconstruction task after each (re-)training of
the RE methods, as well as DEXTER performance on DS2.
We can see that each CORE version consistently achieves
performances above 0.95 for each measure. In particular,
CORE1 improves over CORE0 by about 2% and reaches
a performance plateau, where CORE2 also stabilizes with
accuracy of 0.9706 and precision, recall, and F1 equal to
0.9827, 0.9706, and 0.9766, respectively. The results show
the effectiveness of the CORE system in recovering BioXpress
using a limited amount of manual annotations to train the
RE methods. On the other hand, the poor performance of
DEXTER on DS2 highlights a lack of flexibility that hampers
its applicability to heterogeneous sentences. To further support
this intuition, we observe that for DEXTER, recall presents the
worst performance (0.3256) if compared to precision (0.6034).
This underlines DEXTER’s expert system nature based on
pattern-matching which, although precise, fails to generalize
beyond its set of predefined patterns.
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Fig. 3. The ten most involved genes (and their roles) in cancer diseases. From left to right, the figures present the ten most involved oncogenes,
biomarkers, and tumor suppressor genes, respectively. AKT1 is the most prominent oncogene, with wide expression in various tissues. Other known
oncogenes include MAPK1, MAPK3, and STAT3. Proto-oncogenes such as ERBB2, EGFR, and BCL2 show altered expression levels in cancer, but
lack sufficient evidence to be identified as oncogenes, thus fitting our definition of biomarkers. TP53 represents an interesting case, as it functions as a
biomarker and a tumor suppressor gene for several diseases, with its classification evolving over time.

11 Knowledge Base Exploration
We perform some exploratory queries to analyse the contents of
the largest KB produced by CORE, that is KB3. The SPARQL
queries used to explore KB3 can be found in Appendix A.

Genes Most Involved in Cancer Diseases
Figure 3 illustrates the top ten oncogenes, biomarkers, and
tumor suppressor genes associated with cancer. Among the
oncogenes, AKT1 emerges as the predominant gene implicated
in cancer diseases within KB3. AKT1 exhibits widespread
expression in various tissues [69, 70]. Other known oncogenes
are MAPK1 and MAPK3, frequently involved in oncogenesis,
tumor progression, and drug resistance [71], and STAT3 [72].
Regarding biomarkers, there are several known proto-oncogenes
such as ERBB2 [73], EGFR [74], and BCL2 [75]. Proto-
oncogenes fit our definition of biomarkers, i.e., genes that show
altered expression levels in cancer but do not (yet) have enough
evidence to be identified as oncogenes or tumor suppressor
genes. A different situation occurs with TP53, which presents
an interesting scenario as it is a biomarker and a tumor
suppressor gene for many diseases. Over the years, the scientific
understanding of TP53 has evolved, initially classifying it as an
oncogene [76], then recognizing it as a tumor suppressor [77],
and more recently, under certain conditions, acknowledging
its reemergence as an oncogene [78]. Thus, thanks to its
probabilistic, fact-centric, and evidence-based approach, the
CORE system can capture such a dynamic scenario – which
is proper for scientific discourse.

Most Discussed Genes, Cancer Diseases, and Facts
Figure 4 presents the genes, diseases, and facts that have
garnered the most attention in the scientific literature.
Naturally, the most discussed genes align with the ones
most involved in cancer diseases. The most discussed
topics concerning cancer predominantly revolve around breast,
colorectal, prostate, and lung cancer types. This outcome is
fitting, as these cancer types are the four most common cancer

types worldwide6. As a consequence, the most discussed facts
pertain to gene expression-cancer associations involving the
aforementioned genes and diseases.

Longest-discussed Fact in Literature
Figure 5 showcases the temporal progression of publications
concerning the fact most extensively discussed in KB3, that is
(ERBB2, BIOMARKER, Mammary Neoplasms). ERBB2 is a
known proto-oncogene that plays an important role in human
malignancies and is amplified or overexpressed in approximately
30% of human breast cancers [73]. Therefore, the relevance of
ERBB2 in breast cancer well motivates its prominence within
the scientific discourse.

12 Search Platform
The KB generated by CORE can also be accessed via
COREKB [30], an intuitive and easy-to-use search platform
for searching scientific facts over gene expression-cancer
associations. COREKB allows users to search for gene-cancer
associations and entities using free-text or structured search
queries. The interface provides several features, including
autocomplete facilities, entity cards summarizing the major
gene-cancer relationships, entity landing pages, and users can
easily switch between free-text and structured search interfaces.
The system also offers a simple toggle button to include/exclude
unreliable facts from the search results. The search results are
presented as a list of cards showing the information concerning
the scientific facts matching the user-provided query. Card
information can also be downloaded in JSON format via the
dedicated download button. Figure 6 shows the first result of
the Search Engine Result Page (SERP) for the query “AKT1
oncogene mammary neoplasms”.

Architecture
COREKB’s architecture consists of multiple components
synergically cooperating to facilitate the search and retrieval

6 https://www.wcrf.org/cancer-trends/

worldwide-cancer-data/
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Fig. 4. The ten most discussed genes, cancer diseases, and facts within the literature. The most discussed genes are those most involved in cancer
diseases, with a focus on breast, colorectal, prostate, and lung cancer – i.e., the most common cancer types worldwide. Consequently, the most discussed
facts refer to gene expression-cancer associations involving these specific genes and diseases.
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Fig. 5. Temporal progression of publications concerning the longest-discussed fact in literature: (ERBB2, BIOMARKER, Mammary Neoplasms). ERBB2
is a known proto-oncogene, amplified or overexpressed in around 30% of human breast cancers [73]. Its relevance in breast cancer justifies the prominent
presence of the corresponding fact in the scientific discourse.

of scientific facts – i.e., gene expression-cancer associations
supported by the scientific literature. The architecture includes
a web-based front-end interface built with React.js and a back-
end for the business logic, REST APIs, and services built
with the Python web framework Django. The system relies
on a PostgreSQL database coupled with a Virtuoso Resource
Description Framework (RDF) triple store to memorize the
KB. Moreover, Redis is exploited as an efficient in-memory
data store and access broker. A search and retrieval component
implemented in Python performs NERD on the user-provided
queries to identify entity mentions and, in turn, perform
a structured search on the database. To this aim, a Redis
in-memory dictionary of entities is exploited for fast entity
identification.

Specifically, when a user query is received, the system
assigns a score to each entity based either on an exact match
(if it occurs) or on the number of matching terms in case of
a partial match. The score is normalized based on the entity’s
length to avoid favoring longer entities at the expense of shorter
ones. Then, the retrieved facts are ordered according to their
scientific evidence support. In the case of multiple recognized

entities, the system promotes gene-cancer pairs with the most
matching associations.

Interface
The interface reports the search results by organizing them
into cards; it provides information such as gene class, symbol,
cancer label, supporting and conflicting sentences, associated
publications, gene class distribution, and bibliometrics. The
fact claim is emphasized using boldface and a colored circle,
indicating the informativeness and reliability of the fact - i.e.,
green, red, and gray colors, respectively, for reliable, unreliable,
and not-informative facts. Moreover, the interface includes links
and references to related entries in external platforms like NCBI
and Linked Life Data7.

For each gene or cancer entity, there is a dedicated
landing page that displays comprehensive information. The
landing page consists of two major cards. The first card
presents detailed information about the entity, for instance

7 http://linkedlifedata.com

Self
-A

rch
ive

d V
ers

ion

http://linkedlifedata.com


13

Fig. 6. COREKB SERP first result for the query “AKT1 oncogene mammary neoplasms”. The retrieved facts are organized as cards providing several
information concerning (A) the gene, cancer, and their relationship and (B) specific information concerning the entities - i.e., gene and the related
cancer expression - involved in the association. In addition, card (A) includes infometrics and bibliometrics information to provide further insights. The
contents of the cards are available for download in JSON format through the dedicated download button.

in the case of a gene, it shows its symbol, full name, type,
synonyms, designations, last modified date, summary, and gene
class distribution for different cancer diseases. Long textual
information can be expanded or collapsed on click for space-
saving purposes. Instead, a second card shows the sentences
involving the entity of interest, presented in a tabular form with
filtering and sorting features. Users can resize columns, hover
over sentences for getting information via tooltips, or click on
sentences for a separate pop-up view.

13 Conclusions and Future Work
In this work, we presented CORE, a KBC system based
on the combination of automated ML-based methods and
domain experts. CORE presents a seamless, transparent, and
modular architecture that can be easily modified and where
different components can be replaced without affecting the
others. Among its main features, the reliability tests and the
active learning process make the system suited to iterative
KB versioning. That is, CORE performs iterative tests that
measure the reliability of the extracted data and return small,
selected samples to domain experts for annotation. The high-
quality data generated through active learning is then used
to reinforce CORE subsequent versions. We used CORE to
build one of the largest literature-derived KBs containing fine-
grained facts about gene expression-cancer associations. To
show the robustness of the approach, we conducted extensive
experiments that highlighted the ability of CORE to scale to
large collections of heterogeneous data with limited human
annotations. The KB generated by CORE can be accessed via a
SPARQL endpoint (http://w3id.org/corekb/sparql) or through
the COREKB search platform (https://gda.dei.unipd.it).

The CORE system is an ongoing effort carried out in
partnership with medical centers. The expertise and insights
of clinicians have been instrumental in developing a robust
KBC system. Future work aims to improve the system by
integrating advanced Large Language Models (LLMs) as input
sources. Robust validation mechanisms and collaboration with
experts will be crucial to identify and ingesting reliable content
generated by LLMs.
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Appendix: SPARQL queries
Queries 1-3 can be used to find the most involved genes (and
their roles) in cancer diseases. Queries 4-6 can be used to
identify the most discussed genes, cancer diseases, and facts.
Query 7 can be used to find out the fact most extensively
discussed in the literature.
The code to cut and paste the queries in the SPARQL end-
point without syntax issues is available here: https://github.

com/GDAMining/core/blob/main/sparql/example-queries.txt.

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX core: <http://gda.dei.unipd.it/cecore/ontology/>

SELECT ?gene (COUNT(?fact) AS ?numFacts)

WHERE

{

?fact core:expressedBy ?gene;

core:hasType "ONCOGENE"^^xsd:string.

}

GROUP BY ?gene

ORDER BY DESC(?numFacts)

LIMIT 10

Query 1. Find the ten most involved oncogenes in cancer diseases.

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX core: <http://gda.dei.unipd.it/cecore/ontology/>

SELECT ?gene (COUNT(?fact) AS ?numFacts)

WHERE

{

?fact core:expressedBy ?gene;

core:hasType "BIOMARKER"^^xsd:string.

}

GROUP BY ?gene

ORDER BY DESC(?numFacts)

LIMIT 10

Query 2. Find the ten most involved biomarkers in cancer diseases.

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX core: <http://gda.dei.unipd.it/cecore/ontology/>

SELECT ?gene (COUNT(?fact) AS ?numFacts)

WHERE

{

?fact core:expressedBy ?gene;

core:hasType "TSG"^^xsd:string.

}

GROUP BY ?gene

ORDER BY DESC(?numFacts)

LIMIT 10

Query 3. Find the ten most involved tumor suppressor genes in cancer diseases.

PREFIX core: <http://gda.dei.unipd.it/cecore/ontology/>

SELECT ?gene (COUNT(DISTINCT ?article) AS ?numArticles)

WHERE

{

?fact core:expressedBy ?gene;

core:supportedBy ?evidence.

?evidence core:extractedFrom ?article.

}

GROUP BY ?gene

ORDER BY DESC(?numArticles)

LIMIT 10

Query 4. Find the ten most discussed genes in literature.

PREFIX core: <http://gda.dei.unipd.it/cecore/ontology/>

PREFIX umls: <http://linkedlifedata.com/resource/umls/id/>

SELECT ?disease (COUNT(DISTINCT ?article) AS ?numArticles)

WHERE

{

?fact core:involves ?disease;

core:supportedBy ?evidence.

?evidence core:extractedFrom ?article.

FILTER (?disease NOT IN (umls:C0086692, umls:C0027651,

umls:C0006826, umls:C1306459))

}

GROUP BY ?disease

ORDER BY DESC(?numArticles)

LIMIT 10

Query 5. Find the ten most discussed cancer diseases in literature.

PREFIX core: <http://gda.dei.unipd.it/cecore/ontology/>

PREFIX umls: <http://linkedlifedata.com/resource/umls/id/>

SELECT ?disease (COUNT(DISTINCT ?article) AS ?numArticles)

WHERE

{

?fact core:involves ?disease;

core:supportedBy ?evidence.

?evidence core:extractedFrom ?article.

FILTER (?disease NOT IN (umls:C0086692, umls:C0027651,

umls:C0006826, umls:C1306459))

}

GROUP BY ?disease

ORDER BY DESC(?numArticles)

LIMIT 10

Query 6. Find the ten most discussed facts in literature.
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PREFIX core: <http://gda.dei.unipd.it/cecore/ontology/>

SELECT ?gene ?relation ?disease ?pubDate (COUNT(DISTINCT ?

article) AS ?numArticles)

WHERE

{

?fact core:expressedBy ?gene;

core:hasType ?relation;

core:involves ?disease;

core:supportedBy ?evidence.

?evidence core:extractedFrom ?article.

?article core:publicationYear ?pubDate.

{

SELECT ?fact (COUNT(DISTINCT ?pubDate) AS ?numYears)

WHERE

{

?fact core:supportedBy ?evidence.

?evidence core:extractedFrom ?article.

?article core:publicationYear ?pubDate.

}

GROUP BY ?fact

ORDER BY DESC(?numYears)

LIMIT 1

}

}

GROUP BY ?gene ?relation ?disease ?pubDate

ORDER BY ASC(?pubDate)

Query 7. Find the longest-discussed fact in literature.
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