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ARTICLE INFO ABSTRACT

Keywords: Computational pathology can significantly benefit from ontologies to standardize the employed
Computational pathology nomenclature and help with knowledge extraction processes for high-quality annotated image
Ontology datasets. The end goal is to reach a shared model for digital pathology to overcome data
Semantic integration variability and integration problems. Indeed, data annotation in such a specific domain is still an
Histopathology unsolved challenge and datasets cannot be steadily reused in diverse contexts due to heterogeneity

issues of the adopted labels, multilingualism, and different clinical practices.

Material and Methods. This paper presents the ExaMode ontology, modeling the histopathol-
ogy process by considering three key cancer diseases (colon, cervical, and lung tumors) and
celiac disease. The ExaMode ontology has been designed bottom-up in an iterative fashion with
continuous feedback and validation from pathologists and clinicians. The ontology is organized
into five semantic areas that defines an ontological template to model any disease of interest in
histopathology.

Results. The ExaMode ontology is currently being used as a common semantic layer in (i) an
entity linking tool for the automatic annotation of medical records; (ii) a Web-based collaborative
annotation tool for histopathology text reports; and (iii) a software platform for building holistic
solutions integrating multimodal histopathology data.

Discussion. The ontology ExaMode is a key means to store data in a graph database
according to the RDF data model. The creation of an RDF dataset can help develop more accurate
algorithms for image analysis, especially in the field of digital pathology. This approach allows
for seamless data integration and a unified query access point, from which we can extract relevant
clinical insights about the considered diseases using SPARQL queries.

1. Introduction

In the past 20 years, we have witnessed a significant increment in the volume and complexity of the data produced
in the life science domain [1]. The progress in the high-throughput experimental techniques and the development of
new diagnostic methods, therapies, and medications have become a precious information flow used to support medical
applications [2]. Representing information as an open, machine-readable, and shared ontology can enhance data reuse
and limit issues related to data heterogeneity in the text produced in clinical practice [3]. To this end, an ontology is
a semantic data model defining the types of concepts and objects that exist in a given domain or subject area, as well
as the properties that can be used to describe them. It offers a shared representation of a domain of interest concepts
and relationships that can be read and, ideally, understood by computers [4, 5, 6]. Nowadays, ontologies are used in
many applications relying on domain-specific terms, including Natural Language Processing (NLP) [5, 1] and deep
learning [7].

Much effort has been made to produce standard ontologies and thesauri in the medical and biological domains [5, 8].
In this context, BioPortal! [9] and Ontobee? [10] are two of the most comprehensive repositories of biomedical
ontologies, comprising over 700 biomedical ontologies including the widely adopted Open Biomedical Ontologies
(OBO). National Cancer Institute Thesaurus (NCIT)? [11, 12] has been developed by the National Cancer Institute to
provide reference terminology in the biomedical domain. It is a widely recognized resource for biomedical reference
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since it covers a wide range of vocabulary for clinical care, especially for cancer and related diseases. NCIT is not a
proper ontology, but it is more of a nomenclature with ontological features. Medical Subject Heading (MeSH)* is a
thesaurus produced by the U.S. National Library of Medicine (NLM) which comprises health-related information of
subject headings that appears in MEDLINE/PubMed, the NLM catalog and other NLM databases. Unified Medical
Language System (UMLS)’ is a metathesaurus organized by meaning, and it links synonyms for the same concept
from nearly 200 different vocabularies. It aims to promote the creation of more effective and interoperable biomedical
information systems and services [13]. One of the main reasons to develop an ontology is to model a part of reality that
can be imported and reused in other ontologies, where we extend the existing one to represent our particular domain
and task best [14]. Thus, one can use external ontologies to model some medical and clinical aspects of general purpose
and define components specific to the considered domain.

Among the different disciplines in the life science field, Computational Pathology can significantly benefit from
ontologies to standardize the employed terminology and concepts and help with (semi-)automatic knowledge extraction
processes [7]. Computational pathology is an emerging domain centered on computer-assisted diagnosis tools to
automatically analyze histopathology data in images and text. This field revolves around digital pathology, a process
where specialized hardware is used to generate substantial high-resolution digital images — i.e., Whole Slide Imaging
(WSI) — of histological sections. WSIs can be processed by image analysis tools [15] to train Deep Learning (DL)
models [16] which can aid the diagnostic process [7, 17]. However, the few large image datasets publicly available
usually have some drawbacks preventing their use to train DL algorithms since annotations can be few, sparse,
unbalanced [16], and highly variable depending on the pathologist that performed them. Across different datasets,
the same concepts might be annotated with variable labels hampering machine interpretability, interoperability, and
reuse of training and test data [18]. One recently explored solution for constructing annotated image datasets is to
employ the diagnostic text (containing diagnoses and other expert observations) often associated with the WSI slides
to extract so-called weak labels to automatically annotate the WSI [19, 20]. Currently, this process is often manual
and time-consuming due to the high volumes of data and the lack of a standard shared terminology and structure
between institutions [21, 22]. Indeed, automatic knowledge extraction algorithms need a common and machine-
readable reference point to understand the concepts identified in the text. To this end, an ontology for digital pathology
can overcome data heterogeneity and integration problems as it provides a shared terminology that can be used to
produce high-quality annotated image datasets.

Little effort has been made to develop specific ontologies in the Digital Pathology area [16]. In [4], Serra et al.
developed the Cancer Cell Ontology (CL), which represents a variety of vertebrate cell types with special attention
to hematopoietic cell types. However, this ontology focuses on diagnosing hematologic malignancies thus, it does not
provide an ontology for histopathology diagnostics. In [23], Gurcan et al, introduce the Quantitative Histopathology
Image Ontology (QHIO), an ontology for Quantitative Histopathology Image (QHI) that eases interoperability across
data sets of pathological image data. This resource integrates different types and subtypes of pathological images
with imaging processes and techniques. However, it focuses on images and not on diagnosis. SNOMED-CT® is an
international clinical reference terminology [24, 25, 26] which was appointed as the best ontology for annotation
labeling of WSIs in [16]. Nevertheless, SNOMED-CT is a general-purpose biomedical ontology that does not
specifically model the diagnosis of histopathology images.

This paper presents the ExaMode ontology [27], modeling the diagnosis process using WSIs reports in histopathol-
ogy. Compared to previous efforts, the ExaMode ontology focuses on diagnosing histopathology exams, defining
components related to the annotation process of WSIs. Moreover, the proposed ontology is multilingual since
components are labeled in three different languages: English, Italian, and Dutch. It comprises five semantic areas
grouping components related to the same aspect of the diagnostic process: clinical case reports (i.e., general aspects),
diagnosis results, other tests performed, interventions or surgical procedures employed to retrieve the specimen, and
the anatomical location of the specimen. This classification provides an ontological template that can be used to
model any disease in the histopathology domain. We modeled four largely diffused and studied diseases: three cancer
diseases (colon, cervical, and lung tumors) and celiac disease. However, thanks to the modularity of this approach,
we can easily expand our ontology to include more use cases. The ontology design followed a bottom-up approach
starting from anonymized clinical reports about the four considered diseases provided by Azienda Ospedaliera per
I’Emergenza Cannizzaro (AOEC) in Italy and the Radboud University Medical Center (RUMC) in The Netherlands.

“https://www.nlm.nih.gov/mesh/meshhome . html
Shttps://www.nlm.nih.gov/research/umls/index.html
Shttps://www.nlm.nih.gov/healthit/snomedct/index.html
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We analyzed these textual records and worked together with the pathologists and physicians, employing a co-design
methodology to accurately identify the classes and relations to be included in the ontology. The ExaMode ontology is
designed to meet the OBO principles to ease interoperability with other biomedical ontologies. Hence, we maximized
the reuse of concepts defined in already available and well-known biomedical ontologies and vocabularies, limiting the
creation of new classes and relations to a minimum. The ontology was developed in the context of the Extreme-scale
Analytics via Multimodal Ontology Discovery & Enhancement (ExaMode) project’, co-financed by the European
Commission®. This project aims to allow weakly supervised knowledge discovery of multimodal heterogeneous data,
limiting human interaction. Important pathological concepts are extracted from medical reports, used to weakly
annotate WSIs associated with the records themselves, and used to train prediction algorithms such as Convolutional
Neural Networks (CNN) which finally translate to healthcare decision-making applications.

The rest of the paper is organized as follows: Section 2 introduces the domain requirements, the methodology used
to design the ontology, and the source datasets. Section 2.5 presents a detailed overview of the ExaMode ontology.
Section 3 describes downstream applications where the ontology is currently employed as a common semantic layer.
Section 4 illustrates how histopathology diagnoses are modeled in the ontology and provides some relevant queries for
the clinicians supported by the ontology. Finally, Section 4.2 presents some final remarks and future work.

2. Methods

2.1. Domain Requirements

ExaMode focuses on histopathological diagnosis of tissues to detect cancer-related diseases. Taking into account
the future cancer incidence and mortality burden worldwide, which is predicted to be increasing by 62% from today
until 2040 [28], it has been decided to focus on three cancer diseases and one non-cancerous disease: (i) Colon cancer;
(i1) Cervix cancer; (iii) Lung cancer; and (iv) Celiac disease.

2.1.1. Colon Cancer

The estimated number of colon cancer incidence from today to 2040 will increase by up to 75%, for both sexes
and all ages [29]. The American Cancer Society (ACS) recommends regular screening for colon cancer for people
over 45 years [30]. The screening can be done either with a stool-based molecular test or a visual exam. At this
stage, the screening process does not include a histopathological examination. The majority of colorectal cancers
derives from precursor lesions which can be identified using endoscopic procedure (colonoscopy), leading to the
excision of these lesions, known as polyps [31]. Good endoscopic practice, together with an accurate histopathological
diagnosis, decreases the incidence of colorectal cancer. There are different precursor lesions with different diagnostic
and prognostic significance [32].

The main task for a pathologist is to detect cancerous polyps (e.g., for population screening) and to identify the
degree of dysplasia. Moreover, in the microscopic analysis of colon excisional biopsy sample, pathologists provide
data about:

1. Type of the polyp. It is important to distinguish between the two main types of polyps: adenoma-serrated polyps
and malignant polyps. From the diagnostic perspective, it can also be useful to know the number of each type of
polyp.

2. The grade of the dysplasia if a polyp is present (low, medium, or high grade).

3. In case of malignant polyps (considered as cancer, e.g., Colon Adenocarcinoma or Metastatic Adenocarcinoma),
several critical histological features need to be assessed, which include tumor type, histological tumor grade,
lymphovascular invasion and margin involvement.

This information is a prognostic factor leading to the decision about the patient’s management. For example,
polyps with a negative polypectomy margin, low-grade histology, and no lymphovascular invasion can be safely
treated with endoscopic polypectomy. On the other hand, positive margin, high grade (poorly differentiated) histology,
and lymphovascular invasion are associated with an increased risk of adverse outcomes, and surgical resection is
indicated [33].

"https://www.examode . eu/
8https://cordis.europa.eu/project/id/825292
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2.1.2. Lung Cancer

According to the International Agency for Research on Cancer, lung cancer in both sexes and at all ages is estimated
to increase by 72% from today to 2040. In general, lung cancer is the second most common cancer in both men and
women - about 13% of all new cancers diagnoses are lung cancers. Moreover, lung cancer is the leading cause of cancer
death among men and women (18% of all cancer deaths), being the leading cause of cancer death in men [34, 35].
The average survival rate for metastatic lung cancer is very low, whereas early stages have higher survival rates. The
treatment of low-stage lung cancer is complete surgical resection. Instead, for metastatic lung cancer, the surgical
option is often impossible. An accurate diagnosis from lung biopsies targets the most correct prognostic and therapeutic
management for the patient.

The identification of new therapeutic targets over the past decade resulted in an urgent need for a classification
system for non-resection specimens (particularly small biopsies) and cytology samples. For this reason, an accurate
and specific pathology report is important to establish the diagnosis and patient’s treatment. Starting from the analysis
of lung biopsies, the microscopic analysis section of the clinical report on lung cancer biopsy samples must provide
the following information:

1. Histologic type

2. Histologic grade

3. Spread Through Air Spaces (STAS) — information about the presence of micropapillary clusters, solid nests
or single cells of tumor extending beyond the edge of the tumor into the air spaces of the surrounding lung
parenchyma

Visceral pleura invasion

Direct invasion of adjacent structures

Margins — information about the involvement of the tissue margins, indicating a negative outcome
Lymphovascular invasion - provides information about vascular/lymphatic vessel invasion

Pathologic stage classification — based on the classification system proposed by the WHO

Extranodal extension — indicates the presence of metastasis.

N

2.1.3. Uterine Cervix Cancer

Cervical cancer is the fourth most common cancer in women and the eighth most commonly occurring cancer
overall, with an estimated 604k new cases in 2022 [36]. Worldwide, approximately 570k cases of cervical cancer
and 311k deaths from the disease occurred in 2018 [37]. The ACS recommends regular screening starting at age
25 through age 65, involving an Human Papilloma Virus (HPV) test. Indeed, a strong association between cervical
precursor lesions and HPV infection has been observed, where Low-Grade Squamous Intraepithelial Lesion (LSIL)
is strongly associated with low intermediate-risk HPV, and High-Grade Squamous Intraepithelial Lesion (HSIL) is
associated with high-risk HPV [38]. Therefore, the first feature that has to be identified and reported is the presence
and the grade of dysplasia with possible HPV association.

The cervical biopsy (colposcopy) is a procedure done when previous tests provide evidence of precancerous/abnor-
mal or neoplastic lesions in the uterine cervix. The cervical tissue removed has to be analyzed by an expert pathologist
to identify if the tumor lesions are present or not. If present, the pathology report provides diagnostic information
and works as a prognostic tool for the patient’s treatment. Thus, the histopathologist aims to recognize and identify
these precursor lesions, known as Cervical Intraepithelial Neoplasia (CIN), which displays the proliferation of atypical
basaloid cells [39]. Based on proliferation spread, the World Health Organization (WHO) classification categorizes
cervical dysplasia into three grades: CIN1 (Mild Dysplasia) corresponds to LSIL, whereas CIN2 (Moderate Dysplasia)
and CIN3 (Severe Dysplasia or Carcinoma in Situ) correspond to HSIL.

In the presence of cervical carcinoma main microscopic features and measurements of uterine cervix colposcopy
biopsy are identified, and they should be provided in the pathology report:

1. Histologic Type

Histologic Grade

Stromal Invasion — provides information about cancer invasion into stromal tissue

Margins - indicate a negative outcome

Lymphovascular Invasion — provides information about vascular/lymphatic vessel invasion.

A

Also, the immunohistochemistry (pl6 and Ki-67 staining) assists in the differential histological diagnosis of
precursors to the reactive and metaplastic epithelium. For invasive cervical carcinoma, the stage is the strongest
prognostic factor [39].
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2.1.4. Celiac Disease

Celiac disease is now recognized as a global disease affecting about 0.7% of the world’s population [40], resulting
from environmental (gluten) and genetic factors [41]. For these reasons, celiac disease was chosen as a non-cancerous
disease to be included in the ExaMode priority list. Celiac disease is an immune-mediated disease with chronic
outcome and genetic predisposition to an intolerance to gluten and its proteins. This intolerance leads to an abnormal
immune response, followed by chronic inflammation and alteration of the small intestinal mucosa. The diagnosis of
this pathology is based on the description of the histopathological alterations of the small intestine (after duodenal
biopsy) by expert pathologists [42].

Microscopic analysis of small colon biopsy sample for celiac disease provides information about:

1. Orientation of biopsy — indicates biopsy position on cellulose acetate filter and is very important for the
diagnostic criteria;

2. Normal intestinal mucosa description — includes information about: villi, enterocytes, intra-epithelial lympho-
cytic infiltrate, and glandular crypts. The absence or alteration of these structures must be reported;

3. Pathological intestinal mucosa — including features that have to be reported and well described, with particular
attention to increased intraepithelial T lymphocytes, decreased enterocyte height, crypt hyperplasia, and villous
atrophy;

4. Pathologic Stage Classification — based on the classification system proposed by Marsh-Oberhuber [43, 44] and
Corazza-Villanacci [45], in presence of intestinal mucosa alterations previously described.

2.2. Design Principles

The ExaMode ontology has been developed in the context of the ExaMode Project’, where different European
partners were involved. For this reason, we adopted a co-design approach, collaborating with pathologists and clinicians
to embed their knowledge in the ontology and validate the design choices. To achieve this goal, we iteratively discussed
with medical partners to validate newly defined components so that they correctly describe the corresponding real-
world concepts.

In this section, we describe how the ExaMode ontology complies with the OBO principles .

e Open: The ontology is publicly available on the documentation web page'' and Zenodo'?, in three different
serialization formats: RDF/XML, Turtle, and JSON-LD.

e Common Format: The ontology is defined according to the OWL 1.2 Common Format.

o URI/Identifier Space: All components defined in the ontology are identified by the namespace https://w3id.
org/examode/ontology/. In the following sections, we use the prefix “exa" when referring to the ExaMode
ontology namespace.

e Versioning: Different versions are described as part of the documentation of the Examode ontology. In particular,
for each version of the ontology, we provided an ontology version IRI in the documentation and previous versions
can be accessed in zenodo.

e Scope: The ExaMode ontology is meant to model the histopathology process of diagnosis using WSIs, focusing
on four use cases: three cancer diseases (colon, cervix, and lung tumor), and celiac disease.

o Textual Definitions: We associate textual definitions with the definition source with each ontology component
to favor its re-usage.

e Relations: None of the relations defined in the ExaMode ontology have the same meaning of Relations available
in the Relations Ontology (RO). Thus, they could not have been replaced with one of the RO.

e Documentation: A detailed documentation of the ontology is available on its web page.

‘https://www.examode . eu/

10The description of OBO principles is available at https://obofoundry.org/principles/fp-000-summary.html
http://examode.dei.unipd.it/ontology/

2https://doi.org/10.5281/zenodo . 7669237
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Table 1
ExaMode data size. For each medical center, we report the number of provided diagnostic reports for each of the four
diseases we considered. Symbol “~" indicates that the medical center did not share data about the specific use case.

‘ Language ‘ Colon Cancer Cervix Cancer Lung Cancer Celiac Disease

AOEC | ltalian 4,020 4,810 2,077 1,965
RUMC | Dutch 14,147 5,861 - 962

e Documented Plurality of Users and Commitment to Collaboration: The ExaMode ontology has been
developed in the context of the ExaMode Project, which includes multiple European partners. Thus, its
collaborative nature is intrinsic to the development and usage of ontology.

¢ Locus of Authority: The ExaMode ontology identifies its Locus of Authority into its creators, who are indicated
in the documentation of the ontology.

e Naming Conventions: We define the naming conventions followed during ontology design in Section 2.4.

e Maintenance: The ExaMode consortium is working on the ontology’s maintenance, and a European research
grant supports it.

2.3. Source Datasets

The ExaMode ontology has been developed in collaboration with two European medical centers namely AOEC
and RUMC. The AOEC clinical reports include diagnostic reports written in Italian for colon, cervix, lung cancer,
and celiac disease. The RUMC clinical case reports are written in Dutch and consist of diagnostic reports concerning
colon and cervix cancer cases. Each diagnosis is associated with the corresponding WSIs in both cases, allowing a
one-to-many correspondence between diagnoses and WSIs. Note that the case reports span several years, different
pathologists, and work modalities — e.g., RUMC reports are created via speech recognition, whereas AOEC reports
are usually more structured and concise. Diagnostic reports contain the outcome of pathology tests, and they follow
the College of American Pathologists (CAP) international guidelines'? for pathology reports [46, 47]. Each report
comprises the patient’s personal and clinical-specific information, the description of the analyzed specimen at the
microscope, and the final histopathology diagnosis. We provide some samples of the diagnostic reports we handled in
Section 4.1; the provided reports have been anonymized and modified to prevent any information leakage about patient
data. Table 1 reports the total number of diagnostic reports for each of the four diseases we consider and each medical
center. This work presents the ExaMode ontology, which models the histopathology diagnostic process by analyzing
data from AOEC and RUMC. In this study, we do not release any diagnostic reports from the medical centers that
participated in the ontology design because the data is confidential.

2.4. Implementation

This section describes the shared guidelines we adopted to design the ontology components concerning external
referencing, annotation properties, naming conventions, and modeling choices. When modeling medical information,
it is preferable to reuse entities and properties already defined in other ontologies [48] or thesauri to provide
correspondence with largely adopted medical terminology. For this reason, we maximized the reuse of concepts defined
in well-known biomedical knowledge resources, limiting the creation of new classes and relations to a minimum.
Under the term “knowledge resource” lies a multitude of different and heterogeneous resources, which share common
characteristics. Depending on the complexity of the underlying model and the relations considered, different types
of knowledge resources can be defined. In this context, we focus on four types: nomenclatures, thesauri, taxonomy,
and ontologies. Note that we use the terms “terminology" and “vocabulary" as synonyms for “nomenclature”. A
nomenclature (lit. “list of names”) is a naming system for a given domain, formed according to strict linguistic rules.
Nomenclatures are composed of terms collected by domain specialists and approved by scientific authorities. The
purpose of nomenclatures is to standardize the use of the domain language to avoid ambiguity. A thesaurus is a
controlled vocabulary and terminology, which denotes concepts and relations in a specific domain or subject area.
It consists of systematized lists of synonyms, antonyms, and otherwise related terms. Thesauri use preferred terms to

Bhttps://www.cap.org/protocols-and-guidelines
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Table 2
List of the mandatory annotation properties for the ExaMode classes. We report the values for the example class "Surgical
Procedure" (URI: https://w3id.org/examode/ontology/SurgicalProcedure).

Annotation Property ‘ Value

rdfs:label “Surgical Procedure"@en

rdfs:label “Intervento Chirurgico"Qit

rdfs:label “Chirurgische Ingreep"@nl

rdfs:comment A diagnostic or treatment procedure performed by manual and/or instrumental means,

often involving an incision and the removal or replacement of a diseased organ or tissue;
of or relating to or involving or used in surgery or requiring or amenable to treatment
by surgery. [Definition Source: NCI]

rdfs:isDefinedBy http://purl.obolibrary.org/obo/NCIT_C15329
dcterms:conformsTo http://linkedlifedata.com/resource/umls/id/C0543467
exa:hasSemanticArea https://w3id.org/examode/ontology/procedure

refer unambiguously to concepts, avoiding the need to impose additional model constraints. Thesauri can form part
of ontologies. Terms can be grouped in a taxonomy that formalizes the hierarchical relations among concepts. There
are many definitions of an ontology. For the purposes of this paper, referring to https://protege.stanford.edu/
publications/ontology_development/ontologyl01-noy-mcguinness.html,an ontology is a formal explicit
description of concepts in a domain of discourse (classes), and properties of each concept describing various features
and attributes of the concept.

In general, external referencing can be realized by using the URI of the term in the original taxonomy or by
using an annotation property to state the mapping between the two URIs. In the ExaMode ontology, we used the
ExaMode namespace to define all classes. All the concepts also defined in relevant external vocabulary are related
to the ExaMode class via the “rdfs:isDefiniedBy" annotation property. We defined all the other components
— e.g., individuals and annotation properties — by using the URI of the taxonomy of reference. The main external
reference we relied on is NCIT [12]. NCIT is used as a reference thesaurus in a wide variety of ontologies in the
medical domain [49, 50, 51, 52]. We also employed other well-known resources when no information is available
in NCIT or to ensure compatibility with already-developed tools within the ExaMode consortium'#. Besides NCIT,
the external resources used in the ExaMode ontology are Mammalian Phenotype Ontology (MP)'® [53], BRENDA
Tissue Ontology (BTO)'° [54], MONDO Disease Ontology17 [55], Human Phenotype Ontology (HPO)'® [56], Gene
Ontology (G0)'” [57, 58], UNIPROT? [59], UBERON?! [60] and Foundational Model of Anatomy (FMA)?? [61].

All components of the ExaMode ontology have metadata in the form of annotation properties. We defined a list of
essential properties to add when a new resource is added to the ontology. Table 2 reports all the required annotation
properties and their values for the example class “Surgical Procedure". We require these metadata to be filled for each
class, but we can have classes with additional properties based on specific cases. We recall the ExaMode ontology
is a multilingual resource. Hence, each component has three different labels corresponding to the three languages we
model: English (“@en"), Italian (“@it"), and Dutch (“@nl"). We also add a comment for each class that briefly defines
the concept and its source, if available. As we explained above, if the class we defined has a corresponding term in
NCIT or in any of the resources we listed before, we also add a reference to the term URI with the annotation property
“rdfs:isDefinedBy". Most biomedical vocabularies are defined in the UMLS Metathesaurus with a Concept Unique
Identifier (CUI). Thus we map each class to the corresponding CUI using the property “dcterms:conformsTo",
defined by the Dublin Core (DC) Metadata Terms>>. Finally, we recall our ontology is divided into five semantic areas.

141n this case we add the reference to the NCIT term using the annotation property “rdfs:seeAlso"
Bhttps://www.ebi.ac.uk/ols/ontologies/mp

16t tps://www.ebi.ac.uk/ols/ontologies/bto
Thttps://wuw.ebi.ac.uk/ols/ontologies/mondo

Bnttps://hpo. jax.org/app/

http://geneontology.org/

Whttps://www.uniprot.org/

2Ihttps://www.ebi.ac.uk/ols/ontologies/uberon
2https://bioportal.biocontology.org/ontologies/FMA
Bhttps://www.dublincore.org/specifications/dublin-core/dcmi-terms/
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Table 3
List of classes modeled using the SKOS data model. For each class, we specify the corresponding semantic resource of
reference which we use to define the majority of concepts.

Class ‘ Resource of Reference

Gender National Cancer Institute Thesaurus (NCIT)

Onset Human Phenotype Ontology (HPO)

Disease Mondo Disease Ontology (MONDO)

Intervention Type National Cancer Institute Thesaurus (NCIT)
Anatomical Entity UBERON, Foundational Model of Anatomy (FMA)
Positive Outcome Type | National Cancer Institute Thesaurus (NCIT)
Finding National Cancer Institute Thesaurus (NCIT)

Thus, we assert each class’s semantic area with the custom annotation property “exa:hasSemanticArea". Regarding
other components, we still require the three language labels, the comment, the semantic area, and the UMLS mapping
if available. Even though the ontology models four specific diseases, its modularity enables the expansion to all the
other diseases in the field. To this end, we created an annotation property called “exa:associatedDisease" which
is used in all components created for a specific use case to differentiate between the different diseases. For instance,
“Colon Biopsy" is a component specifically instantiated for the colon use case; thus it is associated to “Colon Cancer."

We used self-explanatory labels for objects, annotation, and data properties regarding naming conventions. In
particular, object properties have labels where we include the property range, and the comment explains the relationship
between the two classes involved. For instance, the object property “exa:detectedHPV" describes the object property
that links an outcome from a cervix clinical case to the HPV. Similarly for data properties, from the property
name “exa:duodenitisSeverity" we can already infer its meaning. Concerning data properties, we also provide
consistency in datatypes, for instance, all literal properties have datatype “xsd:string".

As mentioned, we use external taxonomies and thesauri to model common terminology in the medical domain.
In the ExaMode ontology, the taxonomies of terms are modeled by employing the Simple Knowledge Organization
System (SKOS) data model?*; thus following a consolidated modeling practice in the semantic web community. The
list of taxonomies modeled in the ExaMode ontology via the SKOS data model is listed in Table 3. Given a specific
taxonomy, say the positive outcomes for colon cancer diagnoses, we model a single term, say “Adenocarcinoma”, as
a named individual belonging to two classes: “skos:Concept" and “exa:ColonPositiveType", which is the class
describing for which type of colon cancer the clinical case tested positive. This is possible because, in these cases, we
are interested in modeling the abstract concept behind the medical term. The ExaMode ontology models diagnostic
reports of pathology exams; hence we have no additional information about the specific disease affecting a patient or
the procedure performed to obtain the specimen. We employed such a design principle for each class that refers to a
set of abstract terms for which we do not have additional information describing the peculiarity of the specific term for
the specific clinical case, i.e., ontology components without specific object or data properties. This approach reduces
the complexity of our queries and allows us to save space since we reduce the number of needed URISs.

To better explain this design choice, Figure 1 shows how the taxonomy related to the “Cervix Surgery
Type” is modeled. We can see that we are considering four terms, modeled as named individuals belonging
to classes “skos:Concept” and “exa:CervixSurgeryType". “Hysterectomy” is a broader concept than “Rad-
ical Hysterectomy” and “Total Abdominal Hysterectomy”; this hierarchical dependency is modeled with the
“skos:broaderTransitive" property. “Conization” is another type of cervix surgery, but unrelated to hysterectomy.
The SKOS data model allows us to express the hierarchical relationships between the taxonomy terms. On top of this,
all the concepts are also related to class “exa:CervixSurgeryType" which defines to which taxonomy these concepts
belong.

2.5. The ExaMode Ontology
The ExaMode ontology has been developed using Protégé editor”> [62] and is publicly available in several
serialization formats along with its documentation”®. In the following section, we provide an overview of the ExaMode

24https://www.w3.org/TR/2009/REC- skos-reference-20090818/
Zhttps://protege.stanford.edu/
Zhttp://examode.dei.unipd.it/ontology/
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Figure 1: Example of a taxonomy modeled following the SKOS data model. The hierarchical relationships between the
terms are asserted using the object property “skos:broaderTransitive". Classes are represented with circles, while rhombuses
identify named individuals.
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Figure 2: General semantic area. Circles specify ontology's classes while rhombus-shaped components are modeled with
named individuals. The core of this area is the “Clinical Case Report" together with data about the patient and the
associated images. These classes are common for all use cases since they do not embody information specific to a disease.
The only exception is the “Colon Clinical Case Report" Class which refers to the studied disease. In this figure, for instance,
we report the modeling of the Colon Cancer use case. Components related to all use cases are identified by the color green,
while purple identifies components specific to the colon cancer use case.

ontology, focusing on the general aspects concerning each semantic area to describe the modeling schema underlying
any use case. To clarify how we deployed such a model in practice, for each semantic area we illustrate a use case in
detail and provide some insights on the other use cases’ peculiarities. The online documentation provides a detailed
description of all the ontology components for all the modeled diseases.

The ExaMode ontology is organized into five semantic areas, each concerning different aspects of the histopathol-
ogy process. The General Area comprises entities that are common to all use cases, such as patients’ information
and clinical case reports. We report the schema of the general area referring to colon cancer in Figure 2, yet the
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Figure 3: Diagnosis semantic area for colon cancer. Each colon clinical case report is associated with an outcome, that can
be inconclusive, negative, or positive. Classes for inconclusive and negative outcomes are the same for all use cases, while
the positive outcome one, i.e. “exa:ColonPositiveOutcome", differs based on the disease. In fact, different diseases have
different positive outcome types. We also model some annotations specific to the use case, i.e., the presence of dysplasia
in colon polyps.

following reasoning applies to all use cases. As we mentioned before, to ensure modularity in the ExaMode ontology,
each use case has its own classes which are subclasses of a general-purpose class. For instance, clinical case reports
concerning colon cancer are instances of the Class “exa:ColonClinicalCaseReport", which is a subclass of the
general-purpose class “exa:ClinicalCaseReport". The same reasoning is applied to most classes, such as outcomes,
interventions, and locations. Therefore, each clinic case report is classified based on the use case and we associated
the corresponding disease through the object property “exa:isAboutDisease". Clinical case reports are described
by means of some data properties concerning the corresponding diagnosis text, an identifier, and information about
the associated images. Each report is associated with a patient that presents information about gender and the age at
which they manifested the first symptoms, which complies with the domain requirements. Indeed, since the ExaMode
ontology models the histopathology diagnosis process, the focus is on the clinical case report rather than on the patient.
We link the WSIs corresponding to the specific clinical case report through the object property “exa:hasSlide",
which ranges to instances of the class “Slide Device", describing the specific WSI. Finally, we associate each clinical
case report to the organization that provided it, e.g. AOEC or RUMC in our case, through the property “foaf :maker",
imported from the Friend-Of-A-Friend (FOAF) ontology?’.

The Diagnosis Area describes the diagnosis associated with a specific clinical case report. In particular, this area
contains all classes related to the different outcomes one can expect from a clinical case report concerning a specific
use case. All use cases have the same structure, yet the components describing positive outcomes differ based on
the considered disease. We report the modeling of the diagnosis area for colon cancer in Figure 3. In general, each
clinical case report is associated with its outcome using the object property “exa:hasOutcome" and outcomes can be
negative, inconclusive, or positive. Classes concerning negative and inconclusive outcomes are the same for all use
cases, while positive outcomes differ based on the disease. Positive outcomes describe the type of cancer or disease that
has been diagnosed in the examined specimen and it can be associated with additional information for some types of

Thttp://xmlns. com/foaf/0.1/
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Figure 4: Location semantic area for colon cancer. Each colon outcome or intervention can be associated with an anatomical
location. The specific locations follow the SKOS data model and they depend on the considered use case.

diseases. For instance, in the colon cancer use case, if the specimen has been diagnosed as “Polyp of Colon" or any of
its subclasses, we might have additional information about the degree of dysplasia the polyp presents. We refer to this
additional data as "Annotations to the Case" and we modeled them as subclasses of the general-purpose class called
“exa:Finding". For lung cancer, additional information regards the presence of necrosis or metastasis in a specimen
of “Lung Carcinoma" or any of its subclasses. In celiac disease, a positive outcome can be enriched with information
about the presence of immune cells such as granulocytes or lymphocytes, the presence of intestinal abnormalities such
as edema or intestinal fibrosis, or data about the villi status, such as their atrophy degree or length. Finally, for cervix
cancer, we could detect the presence of koilocytes, or the specimen could test positive for HPV.

The Location Area models the anatomical locations of the retrieved specimen used for diagnosis or where an
intervention has been performed. All classes include locations specific for each use case and are modeled as subclasses
of the general-purpose class “exa:AnatomicalEntity". The specific components, i.e. anatomical locations, of this
semantic area highly depend on the different use cases. Figure 4 reports the location semantic area for colon cancer.
The class “exa:ColonAnatomicalEntity" comprises all anatomical locations concerning colon cancer, such as the
ileum, colon, and its subparts.

The Procedure Area describes the intervention or surgical procedure performed to obtain the specimen used
for the diagnosis. As for the other semantic areas, the general-purpose classes are “exa:Intervention” and
“exa:SurgicalProcedure", which is actually a subclass of the former. All interventions or surgeries performed
for a specific clinical case are instances of the corresponding classes specific for the considered use case. For instance,
interventions concerning cervix clinical cases are instances of the class “exa:CervixIntervention". The type of
intervention or surgery is modeled following the SKOS data model and we use as taxonomy of reference NCIT. The
classification between interventions or surgical procedures also complies with the NCIT taxonomy. Figure 5 reports the
procedure semantic area for the cervix cancer use case. Each outcome can be associated with an intervention using the
object property “exa:hasIntervention" and we can add information about the anatomical location of the procedure
with the property “exa:hasLocation".
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Figure 5: Procedure semantic area for cervix cancer use case, identified by color peach. Each cervix outcome can be
associated with the intervention performed for retrieving the specimen used for diagnosis. The specific type of interventions
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Figure 6: Test semantic area for lung cancer use case, identified by color pink. Each lung outcome can be associated with
a test for different receptors, each resulting in a boolean or float-valued result.

The Test Area comprises all classes corresponding to additional tests on the specimen to identify additional
information useful for the diagnosis. In fact, Immunohistochemistry (IHC) is an important field of study that determines
the tissue distribution of antigens and it is widely used for the diagnosis of diseases, especially for identifying the type of
cancer in atissue [63]. For this reason, we identify a general-purpose class called “exa: ImmunohistochemicalTest"
and all the specific tests for each use case are modeled as subclasses of it. We link an outcome with the additional test
through the object property “exa:hasTest" and each test can have a boolean, float or string-valued result embodied
in three different data properties corresponding to the different result datatype. We report the test semantic area for
lung cancer in Figure 6.
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We added some restrictions to allow for consistency checking and data cleaning leveraging the ontology. In
particular, following OWL syntax, we added some universal restrictions for some subclasses to avoid the ingestion
of noisy data. For instance, if we try to instance a “Colon Clinical Case" with a diagnosis of a type of cancer belonging
to the cervical cancer domain, a reasoner running on the ontology will raise an “InconsistentOntologyException".

3. Results

3.1. Entity Linking

One of the most relevant tasks that can be performed with an ontology is Entity Linking (EL) [64]. EL is the task
of assigning unique meanings to entities mentioned within text. In a nutshell, the aim of EL is to determine if a given
(extracted) entity refers to a specific concept within a reference ontology. To this end, [65] developed the Semantic
Knowledge Extractor Tool (SKET), an unsupervised hybrid knowledge extraction system that combines a rule-based
expert system with pre-trained machine learning models to extract relevant concepts from pathology reports. The
system presents a modular architecture, where different components or methods can be easily plugged-in. First, if
needed, SKET performs (English) translation and curation over pathology reports. For translation, the system exploits
the open-source, pre-trained Marian Neural Machine Translation (NMT) models [66], which rely on a Transformer-
based encoder-decoder architecture [67]. Due to the complexity of the task, automated approaches introduce systematic
translation errors that, if propagated, could affect the quality of the extraction process. Therefore, SKET performs a
curation step in which recurring, manually identified translation errors are corrected through the use of handcrafted
rules. Once the reports are translated, SKET combines pre-trained Named Entity Recognition (NER) models with
unsupervised EL methods to extract relevant entities from translated reports and link them to the ExaMode ontology.
To handle negated entities, SKET integrates NegEx [68] within the NER component. NegEx is a negation detection
algorithm that evaluates whether extracted entities are negated within text or not. It uses regular expressions to identify
the scope of trigger terms that are indicative of negation, such as “no” or “ruled out”. Then, the entities extracted within
the scope of a trigger term are marked as negated. In this way, SKET identifies — and removes — those entities that NegEx
considers as negated. For instance, in the phrase “free of dysplasia”, NegEx identifies the trigger term “free of” and
marks “dysplasia” as negated, which is then removed. SKET has been adopted to extract concepts from pathology
reports coming from the clinical workflow of AOEC and RUMC medical centers, considering reports from the use
cases modeled by the ExaMode ontology. To evaluate its effectiveness, SKET has been tested on 500 colon cancer
and 500 cervix cancer reports, manually annotated by experts, coming from both AOEC and RUMC medical centers,
together with 250 lung cancer reports from AOEC. SKET achieved high performance on each use case, with a (micro)
F1 score of 0.8861 on colon cancer, 0.8322 on cervix cancer, and 0.9375 on lung cancer. Given its high performance,
we deployed SKET on all the ExaMode data. Table 4 reports the statistics of the extraction process for each use case,
including celiac disease. The extracted concepts can then be used in different applications as (i) weak annotations to
train models for computer aided diagnosis [20] or (ii) automatic annotations to support semi-automatic tagging [69].
Indeed, the use of pre-trained NER models and unsupervised EL methods makes SKET suitable for weak supervision
tasks [20, 65]. Therefore, SKET can be used in the clinical workflow without the expensive and time-consuming cost
of human annotations. This demonstrates the importance of developing medical ontologies, which empower many
different computer-aided diagnosis tools [70, 71].

3.2. Decision Support Systems and Tagging

The designed ExaMode ontology, alongside with other domain ontologies (ICD-10, ICD-O, UMLS, SNOMED,
Human Disease Ontology®®, PathLex?’, Mondo’’, ProstateCancer’') was integrated with patient data into the
“HistoGrapher demonstrator”>? for decision support systems and triaging. Such integration with other well-known
biomedical resources provides further validation for the ExaMode ontology. HistoGrapher is a software platform for
building holistic solution integrating multimodal histopathology data. This solution supports pathologists in making
more informed decisions based on a larger amount of data (judging from similarity to other cases in their clinical
practice or the identified likelihood in scientific literature). Prioritization of cases is considered, so that the cases with

2nttps://disease-ontology.org/
2https://bioportal.biocontology.org/ontologies/PATHLEX
https://mondo.monarchinitiative.org/
3lhttps://bioportal.bioontology.org/ontologies/PCAQ
?http://examode . ontotext . com/
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Table 4

SKET extraction statistics. Columns represent, from left to right, the considered hospital, the considered use case, the total
number of reports, the total number of concepts, the maximum number of concepts per report, and the mean number of
concepts per report. The “—" symbol represents the lack of pathology reports for the considered hospital and use case.

Hospital ‘ Use case ‘ N. of rep.s ‘ N. of conc.s ‘ Max conc.s/rep. ‘ Mean conc.s/rep.

Colon 4,020 17,056 15 4.24
Cervix 4,810 28,110 26 5.84
AOEC Lung 2,077 11,924 22 5.74
Celiac 1,965 9,716 21 4.94
Colon 14,147 57,411 47 4.06
RUMC Cervix 5,861 24,847 27 4.24
Lung - - - -
Celiac 962 4,747 10 4.93
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Figure 7: NER pipeline consists of multiple text pre- and post-processing resources (PRs) and ontology-based semantic
annotation PR "gazetteer-based-enrichment", which normalizes the identified phrases to ontology terms.

higher severity and likelihood of specific diseases will be presented for confirmation first, while the cases with smaller
likelihood - later when there is enough time. The data model of the HistoGrapher platform is based on the defined
ExaMode ontology, which is used for information extraction and semantic data normalization of medical synopsis
texts provided by the laboratory information management system (LIMS). The platform applies machine translation in
order to translate the source text data, provided in Italian and Dutch, into corresponding English representations. All
translated text fields from the synopsis record are processed with a NLP pipeline (Figure 7). The pipeline is based on
the ExaMode ontology and all created semantic annotations in-lined in the source text are referred to concepts from the
ontology or to other biomedical terminologies, which are part of the platform semantic solution (Figure 8). The output
of the NLP pipeline, in the form of RDF triples, is imported in GraphDB>?, which is the semantic RDF triples store
used to build the knowledge graph behind the Histographer platform. As the NLP pipeline output is fully harmonized
with the ExaMode ontology, the extracted data can be further explored in the context of the ontological model and the
terminologies included in the knowledge graph of the system. The HistoGrapher platform provides fully configurable
semantic search and data exploration dashboards that are adapted to the specific data schema and ontologies used. The
system provides capabilities for intuitive faceted filtering for relevant clinical case records and both semantic (concept)
and free-text search. The focused data exploration dashboards provide different views over the data in the knowledge
graph. An important dashboard component is the case report similarity widget used to retrieve similar case reports. The
similarity of case reports is based on graph embedding configured per certain knowledge graph class and its DataType
and ObjectType properties.

Bhttps://www.ontotext . com/products/graphdb/
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Figure 8: Semantically annotated synopsis report with highlighter terms from various annotation classes (in different colors).

Table 5
MedTAG statistics on manual annotations. We report the number of diagnostic reports annotated per language and
use-case. Symbol “=" represents the lack of annotated reports for the considered language and use case.

‘ Use-case

Language ‘ Total
‘ Colon Cancer ‘ Cervix Cancer ‘ Lung Cancer ‘ Celiac Disease

Dutch 2,322 | 889 1,433 - -
English | 9,893 | 2,996 4,880 2,017 2,576
Italian 4911 | 1,132 1,828 1,951 -
Total | 17,126 | 5,017 | 8,141 | 3,968 2,576

3.3. MedTAG

MedTAG [69] is an open-source collaborative biomedical annotation tool whose aim is to support, organize, and
speed up the annotation process. Indeed, semantic annotators and NLP methods for NER and EL require lots of training
and test data, especially in the biomedical domain. However, despite the abundance of unstructured biomedical data,
there is a lack of richly-annotated datasets. On top of that, manual annotation of biomedical documents by experts is
a costly and time-consuming operation. MedTAG is a tool easy to install and supported by every platform that eases
manual annotation of unstructured information. It has been employed in the histopathology domain by physicians and
experts to manually annotate thousands of clinical reports in three different languages (Dutch, English, and Italian) from
two health-care institutions — AOEC and RUMC. MedTAG annotations rely on terms defined in the ExaMode ontology,
which allows interoperability among medical centers and clinical experts who use this tool to annotate unstructured
biomedical data. Table 5 reports statistics about the manual annotation process, displaying the number of diagnostic
reports annotated per language and use-case.

4. Discussion

The development of the ExaMode ontology allows modeling information about clinical case reports, WSIs, and
diagnostic outcomes for the four use cases considered within the ExaMode project. We defined five semantic areas
populated with relevant components for each considered use case. As a result, the ExaMode ontology is easily
extensible to new components of interest and can be applied to any disease studied in the histopathology domain.
According to the RDF data model, the ontology ExaMode is a key means of storing data in a graph database. Creating
an RDF dataset can help develop more accurate algorithms for image analysis, especially in digital pathology. In the
following section, we provide examples of how clinical reports data are stored based on the ExaMode ontology. We
also show some queries that can extract relevant clinical insights about the considered diseases.

4.1. Diagnosis

In Figure 9 we can see a diagnosis for each of the four diseases we modeled. In particular, for each case, we report the
plain text of the diagnosis and the semantic graph created via entity extraction and linking to the ExaMode ontology.
We recall the ExaMode ontology models clinical reports containing information about the diagnosis, patients, and
WSIs, but we focus only on the diagnosis part for this example.
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Concerning the colon cancer use case, Figure 9a, we instantiate a specific colon clinical case report (individ-
ual “exa:report_colonl"), an outcome (individual “exa:outcome_colonl"), and an intervention (individual
“exa:intervention_colonl"). The specimen tested positive for tubular adenoma, so the specific outcome is an
instance of the class “exa:ColonTubolulovillousAdenoma". Since the adenoma has low grade dysplasia, following
the SKOS data model, the specific outcome is linked with the instance “Mild Colon Dysplasia". The specimen was
retrieved through a colon biopsy located in the transverse colon. The type of intervention is stored using the object
property “exa:interventionType" pointing at “Colon Biopsy". Following the SKOS data model, the location
information is embedded using the object property “exa:hasLocation" pointing at “Transverse Colon".

About the cervix cancer use case, Figure 9b, we instantiate a specific cervix clinical case report (individ-
ual “exa:report_cervixl"), an outcome (individual “exa:outcome_cervix1"), and an intervention (individual
“exa:intervention_cervixl). Since the diagnosis was inconclusive, the specific outcome is an instance of
the class “exa:InconclusiveOutcome”. The result was inconclusive due to insufficient material, so the spe-
cific outcome is linked with the named individual “exa:insufficientMaterial” using the object property
“exa:inconclusiveType". The specimen was retrieved through a cervix biopsy with no additional information
about the location. The type of intervention is stored using the object property “exa:interventionType" pointing
at “Cervical Biopsy", modeled following the SKOS data model.

Regarding the lung cancer use case, as reported in Figure 9c, we instantiate a specific lung clinical case report
(individual “exa:report_lungl"), an outcome (individual “exa:outcome_lungl"), an intervention (individual
“exa:intervention_lungl"), and two tests, (individual “exa:test_lungl") and (individual “exa:test_lung2").
The specimen tested positive for adenocarcinoma. Thus, “exa:outcome_lungl" is a named individual of the class
“exa:LungAdenocarcinoma". The outcome is located in the pleura, which presents metastasis. The specific outcome
is linked with the instance “Metastasis”, using the object property “exa:presence0f". The location information is
embedded using the object property “exa:hasLocation" pointing at “Pleura". The specimen was retrieved through
a bronchial biopsy located in the left main bronchus. The type of intervention is stored using the object property
“exa:interventionType" pointing at “Bronchial Biopsy", and the location information is embedded using the object
property “exa:hasLocation” pointing at “Left Main Bronchus", modeled following the SKOS data model.

As for the celiac disease use case, Figure 9d, we instantiate a specific celiac clinical case report (individ-
ual “exa:report_celiacl"), an outcome (individual “exa:outcome_celiacl"), an intervention (individual
“exa:intervention_celiacl"), and one laboratory finding (individual “exa:finding_celiac1"). The specimen
tested positive for celiac disease (type 3c 'of marsh-oberhuber). Thus, the specific outcome is an instance of
the class “exa:PositiveToCeliacDisease" and the marsh classification is stored as a data property called
“exa:marshStage". The location information, i.e. duodenal mucosa, is embedded using the object property
“exa:hasLocation" pointing at “Duodenal Mucosa". The specimen presented also erosion, flattening of the villi, and
severe villi atrophy. The first information can be stored by linking the specific outcome to the concept “Erosion" with
the object property “exa:presenceOf IntestinalAbnormality". Data about villi status is embedded in the specific
laboratory finding instance through two data properties. In particular, we set the data property “exa:hasFlatVilli"
to “True", and we set the “exa:villiAtrophy" property to “severe degree of atrophy". The specimen was retrieved
through a duodenal biopsy. The type of intervention is stored using the object property “exa:interventionType"
pointing at “Biopsy of Duodenum". The location is embedded using the object property “exa:hasLocation" pointing
at “Duodenum”, which is inferred from “duodenal biopsy".

4.2. Example Queries

The ExaMode ontology models histopathology clinical case reports. Thus, diagnoses are stored in the form of
RDF graphs, as we reported in Figure 9. This approach allows for seamless data integration and a unified query access
point, from which we can extract valuable information using SPARQL queries. For instance, we can investigate the
most common anatomical location for a specific type of cancer, or check if our dataset confirms the correlation between
HPV and cervical cancer. All insights we can extract from a dataset modeled using the ExaMode ontology can support
decisions on cancer-prevention policies or can highlight an unexpected research path. In the following section, we
provide some example queries related to the use cases modeled in the ExaMode ontology that extract some valuable
information regarding histopathology diagnoses. Due to the confidential nature of the data we used in this study, we
cannot release the diagnostic reports coming from the involved medical centers (i.e., AOEC and RUMC). Nevertheless,
for each query, we report a table with the statistics derived from the diagnostic reports.
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Table 6

Result sample for Query 1: “Investigate the most common locations for Colon Adenocarcinoma: Count the number of
cases of Colon Adenocarcinoma (NCIT:C4349) grouped by anatomical location.". Each column is named after the selected
variables in the query.

location | adenoCases
Rectal Mucous Membrane | 1,052
Colon, NOS 845
Sigmoid Colon 424
Abdomen 311
Rectum, NOS 102
Rectosigmoid Junction 76
Right Colon 74
Ascending Colon 68
Caecum 63
lleum 52
Descending Colon 25
Left Colon 16
Colorectum 9
Transverse Colon 2

Query 1 investigates the distribution of Colon Adenocarcinoma based on the anatomical location. In fact, it could
be useful to see the most common anatomical location where a specific type of cancer develops for determining
prevention strategies. For instance, research has shown that serrated adenomas are more commonly found in the
proximal colon, while polypoid adenomas are more common in the distal colon [72]. In the ExaMode ontology, “Colon
Adenocarcinoma" is modeled following the SKOS data model and it is stored with its NCIT URI, i.e. “NCIT:C4349".
To extract this type of information, we perform a COUNT operation, grouping the cases with outcome type “Colon
Adenocarcinoma" based on the anatomical location where the diagnosis has been assessed. Table 6 reports the query
result obtained from the colon diagnostic reports.

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
PREFIX exa: <https://w3id.org/examode/ontology/>
PREFIX ncit: <http://purl.obolibrary.org/obo/NCIT_>

SELECT 7location (COUNT(?case) AS 7adenoCases)
WHERE {
7case a exa:ColonClinicalCaseReport;
exa:hasOutcome 7outcome.
?outcome exa:positiveType ncit:C4349;
exa:hasLocation 7locationURI.
?locationURI rdfs:label 7location.
FILTER(langMatches (lang(?location), ’en’))
}
GROUP BY 7location
ORDER BY DESC (?adenoCases)

Query 1: Investigate the most common locations for Colon Adenocarcinoma: Count the number of cases of Colon
Adenocarcinoma (NCIT:C4349) grouped by anatomical location.

HPV has been discovered to be one of the major causes of cervical cancer and cervical dysplasia [73]. For this
reason, it can be interesting to see if such a correlation is expressed in a dataset modeled using the ExaMode ontology.
Query 2 counts the number of clinical case reports diagnosed with Cervical Dysplasia of grade 2 or higher and groups
the result based on the detection of HPV infection. “Cervical Dysplasia" is a type of positive outcome for cervix cancer,
thus we extract all cases that had an outcome of the above-mentioned type or any of its narrower concepts and we count
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Table 7

Result sample for Query 2: “Investigate HPV correlation with Cervix cancer: Count how many cases of moderate or severe
dysplasia (mondo:0006137 or any of its narrower concepts) resulted positive to HPV (mondo:0005161) and how many did
not.". Each column is named after the selected variables in the query.

hpvDetected | numCases

noHPV 4,044
HPV 795

such cases based on the presence of an HPV infection. Note that the presence of HPV can be assessed by the existence
of the object property “exa:detectedHPV" pointing at the individual “HPV Infection". Table 7 reports the query
result obtained from the cervix diagnostic reports.

PREFIX exa: <https://w3id.org/examode/ontology/>
PREFIX skos: <http://www.w3.o0rg/2004/02/skos/core#>
PREFIX mondo: <http://purl.obolibrary.org/obo/MONDO_>

SELECT ?7hpvDetected (COUNT(DISTINCT ?case) AS 7numCases)
WHERE{
7case a exa:CervixClinicalCaseReport;
exa:hasOutcome 7outcome.
?outcome exa:positiveType 7type.
FILTER(?type = 7neoplG23)
{
SELECT ?7neoplG23 WHERE{
?neoplG23 skos:broaderTransitive* mondo:0006137.
}
}
BIND (IF (
EXISTS {?outcome exa:detectedHPV mondo:0005161.3%},
"HPV", "noHPV") AS ?hpvDetected)
}
GROUP BY ?7hpvDetected

Query 2: Investigate HPV correlation with Cervix cancer: Count how many cases of moderate or severe dysplasia
(mondo:0006137 or any of its narrower concepts) resulted positive to HPV (mondo:0005161) and how many did not.

Query 3 investigates the distribution of different types of lung carcinoma diagnoses. There are several types of
lung cancer, such as Non-Small Cell Lung Cancer (NSCLC) or Small Cell Lung Cancer (SCLC), with very different
incidences and courses of treatments. In fact, SCLC is a highly malignant type of cancer and accounts for 15% of
lung cancer cases, the remaining 85% of cases present a form of NSCLC or any of its pathologic subtypes, i.e.,
adenocarcinoma, squamous cell carcinoma and large cell carcinoma [74]. The 5-year survival rate is much greater
in early-stage cancers; thus better screening methods could help prevent late-stage discovery. For instance, if we aim at
developing software for the early detection of lung cancer cells, it is crucial to have a representative dataset for training
models. For this reason, it could be useful to see what is the incidence of different types of lung carcinoma in a dataset
modeled using the ExaMode ontology and check data is aligned with cancer studies statistics. To do so, we count the
cases with a diagnosis of “Lung Carcinoma" or any of its subclasses and group the results based on the type of cancer.
In this case, it was not possible to model “Lung carcinoma" following the SKOS data model because we can have
additional information about the presence of necrosis and metastases in the specimen. Therefore, we modeled lung
carcinoma as a class with URI belonging to our namespace and we reference external resources, such as UMLS and
MONDO. Table 8 reports the query result obtained from the lung diagnostic reports.

Celiac disease has a highly variable clinical expression, the most common pathologic lesions are a flattened small
intestinal mucosa with lymphocytic infiltrate, crypt hyperplasia and villous atrophy [75]. There is a correlation between
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PREFIX exa: <https://w3id.org/examode/ontology/>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf -schema#>

SELECT ?7diagnosis (COUNT(DISTINCT ?7case) AS ?numCases)
WHERE {
?case a exa:LungClinicalCaseReport;
exa:hasOutcome 7outcome.
?outcome a ?7lungCarcinoma.
FILTER (?lungCarcinoma = 7descendants)
{
SELECT 7descendants WHERE{
7?descendants rdfs:subClassOf* exa:LungCarcinoma.
}
}
?lungCarcinoma rdfs:label 7diagnosis.
FILTER(langMatches (lang(7diagnosis), ’en’))
}
GROUP BY 7diagnosis
ORDER BY DESC(7numCases)

Query 3: Investigate the incidence of different types of Lung Carcinoma: Count the number of cases of Lung Carcinoma
grouped by its types, i.e. Lung Carcinoma or any of its subclasses.

Table 8

Result sample for Query 3: “Investigate the incidence of different types of Lung Carcinoma: Count the number of cases
of Lung Carcinoma grouped by its types, i.e. Lung Carcinoma or any of its subclasses.". Each column is named after the
selected variables in the query.

diagnosis ‘ numCases
Lung Adenocarcinoma 991
Non-Small Cell Squamous Lung Carcinoma | 564

Lung Carcinoma 520
Malignant Lung Neoplasm 401
Non-Small Cell Lung Carcinoma 371
Metastatic Neoplasm 322

Small Cell Lung Carcinoma 140

Lung Large Cell Carcinoma 64

Clear Cell Adenocarcinoma 5

the presence of flattened villi and celiac disease, thus we can investigate how high is such a correlation by means
of data modeled using the ExaMode ontology. Query 4 counts how many cases of celiac disease present flattened
villi or not. Such information is embedded in a boolean data property called “exa:hasFlatVilli" whose domain
is the class “Villi Finding". Thus we count cases with celiac disease and check the ones that have a “Villi Finding"
instance connected with “exa:hasFlatVilli" setto “True". Table 9 reports the query result obtained from the celiac
diagnostic reports.

Conclusions and Future Work

In this work, we presented the ExaMode ontology modeling the histopathology diagnostic process by considering
four diseases: colon cancer, cervix cancer, lung cancer, and celiac disease. In particular, we modeled the components
related to the annotation process of WSIs, storing information about clinical case reports, diagnoses, histopathology
images, anatomical locations, and interventions. The ontology was developed in the context of the ExaMode project,
which aims to allow weakly supervised knowledge discovery of multimodal heterogeneous data, limiting human
interaction. For this reason, the ontology design followed a bottom-up approach starting from anonymized clinical
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PREFIX exa: <https://w3id.org/examode/ontology/>
PREFIX xsd: <http://www.w3.o0rg/2001/XMLSchema#>

SELECT 7flatVilli (COUNT(?case) AS ?numPositiveCases)
WHERE{
7case a exa:CeliacClinicalCaseReport;
exa:hasOutcome 7outcome.
7?outcome a exa:PositiveToCeliacDisease.
BIND (IF (EXISTS {
7?outcome exa:hasLabFinding 7finding.
7finding a exa:VilliFinding;
exa:hasFlatVilli "true"~~"xsd:boolean.},
"flattenedVilli", "notFlattenedVilli") AS ?flatVilli)
}
GROUP BY 7flatVilli

Query 4: Investigate the correlation between flattened villi presence and celiac disease diagnoses: count how many
cases positive to celiac disease presented flattened villi and how many did not.

Table 9

Result sample for Query 4: “Investigate the correlation between flattened villi presence and celiac disease diagnoses: count
how many cases positive to celiac disease presented flattened villi and how many did not..". Each column is named after
the selected variables in the query.

hpvDetected - | numCases

flattenedVilli 19
notflattenedVilli | 558

reports provided by two European medical centers in Italy and in The Netherlands. For modeling the ontology we
followed an iterative co-design process with continuous feedback and validation from pathologists and clinicians.
To ease interoperability, we designed the ExaMode ontology to meet the OBO principles and we defined some basic
guidelines to adopt when defining each component to guarantee semantic consistency. We also connected every defined
concept to widely used medical taxonomies and thesauri as UMLS and SNOMEDCT. The ExaMode ontology is
organized into five semantic areas, which group together components related to the same aspect of the diagnostic
process: General Area, Diagnosis, Intervention, Location and Test. We applied this methodology to model three types
of cancer and celiac disease. The ExaMode ontology is openly available on the Web®* and it is currently being used
as a common semantic layer in several downstream applications. In particular, the ExaMode ontology is used in an
entity linking tool called SKET, which is a hybrid knowledge extraction system useful for the extraction of concepts
from pathology reports. Histographer is a software platform for building holistic solutions integrating multimodal
data, integrated several biomedical resources, including the ExaMode ontology, to develop a decision support system
for pathologists. Finally, MedTAG is a Web-based collaborative annotation tool for histopathology reports whose
annotations rely on terms defined in the ExaMode ontology.

Comprising five semantic areas, the structure of the ExaMode ontology provides an ontological template that can
be used to model any disease in the histopathology domain. As future work, we plan to integrate other high-profile
diseases, such as breast and prostate cancer. In this regard, we simply need to define specific concepts related to each
semantic area. To model all the possible outcomes related to breast cancer, for instance, we can define a new class called
“BreastCancerOutcome" as a subclass of “exa:0utcome" and include specific diagnoses as subclasses or individuals.
A similar procedure can be applied to prostate cancer as well. Furthermore, the modular design of the ExaMode
ontology allows not only the integration of additional diseases but also the expansion of the ontology itself. In this
regard, we can easily broaden the scope of the ontology by including new concepts or adding new semantic areas. For
instance, we can model different staining procedures for WSIs, such as IHC staining, in addition to the Hematoxylin and

3http://examode.dei.unipd.it/ontology/
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Eosin (H&E) one; or we can add a whole new semantic area concerning molecular genetics, where all the corresponding
information would be modeled via classes and properties.

Regarding downstream applications, we plan to integrate SKET in the “HistoGrapher demonstrator” to leverage its
semantic similarity capabilities and negation detection features. By performing semantic match, as opposed to exact
match, SKET can bypass the hurdles associated with typos and identify concepts that are misspelled. At the same
time, integrating SKET within HistoGrapher will empower the latter with negation detection mechanisms, which can
improve its performance and provide more valuable insights about synopsis records.
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