
Fact Verification in Knowledge Graphs Using LLMs
Farzad Shami

farzad.shami@studenti.unipd.it
Dept. of Information Engineering,

University of Padua
Padua, Italy

Stefano Marchesin
stefano.marchesin@unipd.it

Dept. of Information Engineering,
University of Padua

Padua, Italy

Gianmaria Silvello
gianmaria.silvello@unipd.it

Dept. of Information Engineering,
University of Padua

Padua, Italy

Abstract
Automated fact-checking systems often struggle with trustworthi-
ness, as they lack transparency in their reasoning processes and
fail to handle relationships in data. This work presents FactCheck,
a fact verification system topped by a web platform that shows
how Large Language Models (LLMs) can be collectively used to
verify facts within Knowledge Graphs (KGs). While the underlying
verification engine implements a system that combines Retrieval
Augmented Generation (RAG) with an ensemble of LLMs to vali-
date KG facts, the platform focuses on making the results of this
complex process as transparent and accessible as possible. Users can
explore how different models interpret the same evidence, compare
their reasoning patterns, and understand the factors that lead to
the final verification result. The platform supports technical users
who want to analyze the model behavior and general users who
need to verify whether the facts in the dataset are correct.

CCS Concepts
• Information systems → Web searching and information
discovery; • Search interfaces;

Keywords
Fact Verification, Knowledge Graphs, Large Language Models, Re-
trieval Augmented Generation
ACM Reference Format:
Farzad Shami, Stefano Marchesin, and Gianmaria Silvello. 2025. Fact Ver-
ification in Knowledge Graphs Using LLMs. In Proceedings of the 48th In-
ternational ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR ’25). ACM, New York, NY, USA, 5 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction
Knowledge Graphs (KGs) have become an indispensable component
of modern information systems, playing an essential role in a wide
range of applications, including search engines[11], recommenda-
tion systems [13], and question-answering platforms [1, 19]. KGs
comprise knowledge that links entities through relationships to
form a network that machines can analyze and interpret. However,
the effectiveness and reliability of KGs depend on the accuracy of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’25, July 13–18, 2025, Padua, Italy
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

the individual pieces of information they contain – i.e., statements
or facts represented as subject-predicate-object triples – and how
these pieces are connected [6, 20].1

Auditing facts stored by KGs is a critical and time-consuming
task [9, 18]. Indeed, to evaluate a claim conveyed by a specific triple,
humans would need to search through potentially many sources
to find supporting or conflicting evidence, assess the reliability of
each source, and make a decision. This process can take assessors
several minutes per claim [16]. Therefore, given the size of current
large-scale KGs, comprising hundreds of millions to billions of facts,
manual validation of the entire contents of a KG is unfeasible [9].

To overcome scalability issues, a standard approach consists of
automated fact-checking systems. Traditional fact-checking meth-
ods are heavily based on probabilistic or rule-based techniques [2, 8].
While these methods are practical for commonly defined claims,
they falter when asked to verify ambiguous statements or require
extensive contextual interpretation [23]. In response to these limi-
tations, the last decade has witnessed a growing adoption of fact-
checking systems based on machine/deep learning solutions [14].
Notably, the recent Large Language Models (LLMs) have shown
great promise in this area, given their extensive knowledge and
robust reasoning capabilities [12, 17]. Nevertheless, current LLMs
are also known to produce hallucinated and unfaithful responses
especially for fact-based tasks [24], making their adoption as “black-
boxes” a risky, non-transparent, and potentially harmful choice.
Hence, there is a need for systems that can leverage the cutting-
edge capabilities of LLMs, while ensuring a transparent, “white-box”
solution for fact verification.

Contributions. To this end, we present FactCheck, a fact ver-
ification system topped by a web-based platform enabling users
to inspect every step involved in the KG fact-checking process,
and publicly available at https://factcheck.dei.unipd.it/. FactCheck
employs multiple LLMs to verify facts, empowering them through
a Retrieval Augmented Generation (RAG) pipeline, and labels facts
for correctness based on the consensus between the LLM responses.
Specifically, the system first converts the target fact into several
natural language queries and retrieves, for each query, relevant
evidence through a Web search. Then, it independently employs
four state-of-the-art LLMs to analyze such evidence, asking them
to reason about the veracity of the fact and provide a conclusion
on its correctness. Finally, a consensus mechanism determines the
correctness of the fact when at least 3 out of 4 LLMs agree.

FactCheck has been adopted to estimate the accuracy of three
prominent KG datasets: FactBench [10], YAGO [18], and DBpe-
dia [16]. Table 1 outlines the core characteristics of the datasets.

1In this work, we use the terms fact and triple interchangeably.

Draf
t v

ers
ion

, a
uth

or'
s c

op
y

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://factcheck.dei.unipd.it/


SIGIR ’25, July 13–18, 2025, Padua, Italy Farzad Shami, Stefano Marchesin, and Gianmaria Silvello

Table 1: Number of facts and gold accuracy of FactBench,
YAGO, and DBpedia datasets

FactBench YAGO DBpedia

Num. of Facts 2,800 1,386 9,344
Gold Accuracy (𝜇) 0.54 0.99 0.85

Each dataset comes with a gold accuracy, which represents the pro-
portion of true versus false facts, as originally determined by the
dataset creators. FactBench consists of true facts from DBpedia [4]
and Freebase [5] KGs, while it generates false facts by modifying
true ones. We consider the configuration where false facts are a
mix produced by different negative example generation techniques.
This process resulted in a gold accuracy of 0.54, which indicates
an almost equal split between true and false facts. On the other
hand, both YAGO and DBpedia contain exclusively human-made
fact assessments. YAGO presents 1,386 facts with a gold accuracy
of 0.99, while DBpedia 9,344 facts and a gold accuracy of 0.85.

When used to predict the correctness of facts stored within these
KGs, FactCheck achieved prediction performance of 90% on Fact-
Bench, 87% on YAGO, and 70% on DBpedia, obtained by comparing
FactCheck output with gold standard labels. Hence, FactCheck rep-
resents an effective system for KG verification that, paired with the
presented web platform, provides a transparent and explainable
process, where users can inspect inputs, outputs, and reasoning
steps involved in every component of the verification pipeline.

The rest of the paper is organized as follows: Section 2 presents
an overview of the related work, discussing previous approaches
to fact verification in KGs and the tools that exist for general fact
verification. Section 3 describes the FactCheck system in detail,
including its verification engine, the architecture of the Web plat-
form, and user interaction capabilities within the system. Section 4
provides concluding remarks, summarizing the key contributions
of this work and outlining potential directions for future research.

2 Related Work
Fact-checking methods can be broadly divided into two categories:
those that rely on unstructured textual sources [10, 25, 26] and
those that exploit structured information [25]. In this study, we
focus primarily on approaches based on unstructured textual data,
as they are most relevant to our research objectives. For a detailed
discussion of methods using structured information sources, re-
fer to [25]. DeFacto [10] is designed to validate KG triples using
web-based evidence retrieval in multiple languages. It employs su-
pervised learning methods that rely on large-scale training data
and combines trustworthiness metrics with textual evidence to
compute an evidence score for each fact. Syed et al. [26] presented
a fact validation approach based on machine learning and textual
evidence collected from a reference corpus. They convert triple
into natural language and retrieve similar sentences from a static
corpus to create evidence. Then they find the confidence score for
the triple by extracting reliable evidence and features and feeding
them to a trained machine learning model. In contrast to [10, 26],
our FactCheck integrates multiple LLMs within an RAG framework

for fact verification. There are also tools for general claim verifica-
tion, the Google FactCheck Tool2 allows users to easily browse and
search for fact checks. This tool does not endorse or create any of
these fact checks, simply collecting the results from various publish-
ers. Originality.ai’s Automated Fact Checker3 evaluates each fact by
assigning it a status that indicates whether it is potentially true or
false. The system offers an explanation and links to sources for its
assessment, ensuring that users understand the reasoning behind
the classification; however, it does not offer complete transparency
and requires payment for access. In contrast, our FactCheck archi-
tecture enables users to use the power of LLMs and even replicate
the entire system on their own machines.

3 FactCheck
In this section, we first present the FactCheck verification engine
and then introduce the architecture of the web platform, together
with its features and user capabilities.

Figure 1: The FactCheck verification engine. A KG triple is
converted into a natural language format to generate ques-
tions. The evidence is filtered, ranked, and analyzed by an
ensemble of LLMs.

Verification Engine. Figure 1 shows the core verification engine
of the FactCheck system.

We implement a multistage pipeline that begins with transform-
ing KG triples into human-readable text through an LLM. Let a KG
triple be denoted by 𝑡 . The transformation function 𝑓LLM (·) converts
𝑡 into a sentence: 𝑠 = 𝑓LLM (𝑡).

The system then generates 10 distinct questions about each
transformed triple. That is, we generate a set of questions Q =

{𝑞1, 𝑞2, . . . , 𝑞10} for the sentence 𝑠 , where each 𝑞𝑖 is extracted from
the corresponding LLM response. We adopt a cross-encoder archi-
tecture to compute similarity scores between the transformed triple
𝑠 and each generated question 𝑞𝑖 . The questions are then sorted in
descending order of similarity, and the top 3 questions are selected
for further processing. In other words, we select a subset Qtop ⊂ Q,
consisting of top-3 questions.

2https://toolbox.google.com/factcheck/explorer/search
3https://originality.ai/automated-fact-checker

Draf
t v

ers
ion

, a
uth

or'
s c

op
y

https://toolbox.google.com/factcheck/explorer/search
https://originality.ai/automated-fact-checker


Fact Verification in Knowledge Graphs Using LLMs SIGIR ’25, July 13–18, 2025, Padua, Italy

The top 3 questions and the transformed triple 𝑠 are submitted to
Google Search to retrieve the first 100 results. The query parameters
used for fetching the data are as follows: lr = “lang_en”, gl = “us”, hl
= “en”, num = “100”. For each submitted query𝑞 ∈ {𝑠}∪Qtop, denote
the retrieved documents by D(𝑞) = {𝑑1, 𝑑2, . . . , 𝑑100}. We consider
the documents to be composed only of the textual content that can
be extracted from the crawling of the URLs on the Google Search
Engine Results Page (SERP) page. The total pool of documents is
thus D =

⋃
𝑞∈{𝑠 }∪Q D(𝑞). A filtering step is then applied to re-

move references to the original KG source – e.g., Wikipedia pages
when auditing facts from DBpedia and FactBench – thereby prevent-
ing circular verification and ensuring independence. We denote the
set of documents that pass this filtering phase as Dfiltered.

We again use a cross-encoder architecture to identify the 10 most
similar documents. For each document 𝑑 ∈ Dfiltered, a similarity
score is computed. The documents are ranked in descending order
of similarity, and the top 10 compose the final set: Dfinal. These
documents are divided into smaller, overlapping chunks using a
sliding-window chunking strategy and processed using the bge-
small-en-v1.5 model [27] to generate semantic embeddings.

The processed documents are then analyzed by an ensemble of
4 distinct lightweight LLMs: Qwen2.5:7b [21], LLama3.1:8b [3, 7],
Mistral:7b [15], and Gemma2:9b [22]. Let the predictions from these
models be 𝑝1, 𝑝2, 𝑝3, and 𝑝4 respectively, where each 𝑝𝑖 is the predic-
tion of the 𝑖th LLM about the correctness of a triple 𝑡 . The majority
vote determines the final prediction label 𝑦 = mode{𝑝1, 𝑝2, 𝑝3, 𝑝4}.
In cases where there is a tie (2 models versus 2), the system identifies
the two models whose outputs differ the most in terms of their con-
sistency in performance. One of these models has produced more
consistent results across the dataset, while the other has shown less
consistent performance. The system then makes the final decision
by referring to a higher-parameter variant of the most/least consis-
tent model. Finally, the procedure results in a binary classification
categorizing the facts as correct (true) or incorrect (false). As RAG
components setup, we set Gemma2:9b [22] as transformation
function and question generator, Jina-reranker-v14 for question
similarity, and ms-marco-MiniLM-L-6-v25 for document re-ranking.

Web Platform Architecture. The FactCheck web platform con-
sists of (i) a static file storage that contains all the procedural logs
and data assets of the core engine, (ii) a web-based front-end inter-
face built with React.js, and (iii) a back-end built using the Django
framework integrated with a PostgreSQL DB. When a user searches
for a specific fact representing their query, the system searches the
stored KG triples by examining exact and partial matches in the
subject, predicate, and object fields. All relevant suggestions are
then displayed, ensuring users receive a complete set of possible
matches for their query. After selecting a specific triple, the relevant
data are retrieved from static file storage and shown to the user
step by step, following the process described in Paragraph §3.

User Interaction and Features. FactCheck enables users to
verify facts through a dedicated fact search engine. The system
supports structured query input and is complemented by an auto-
completion module. The verification interface contains (1) a search

4https://huggingface.co/jinaai/jina-reranker-v1-turbo-en
5https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2

history, (2) a fact verification procedure, (3) an error analysis, and
(4) a feedback system.

The sidebar interface allows users to track the search history
and manage previous fact-checking queries in the browser’s local
storage. History entries show a verified fact, its source database,
and precise timestamp. At the bottom, a "Clear History" button
enables users to remove all stored searches at once.

The KG fact verification procedure presents the results of each
component of the verification engine, organized into five sections,
labeled from A to E as shown in Figure 2. Section A presents the
KG triple processing interface, where users can view the input triple
structure. The example shows a triple about “Romain_Padovani”,
presenting subject, predicate, and object components (A.1). The
system generates a human-readable output, displayed in a blue-
highlighted box, which transforms the structured data into natural
language (A.2). The "Show/Hide" button indicated by (A.3) in the
interface allows users to see the prompt used in each section.

Moving to Section B , the question generation and ranking inter-
face provides insight into fact exploration. The questions generated
and ranked by FactCheck based on similarity with the transformed
triple are depicted. The interface displays 10 questions, each with an
assigned cross-encoder similarity score (B.4). The top-3 questions
are distinguished with unique tags – i.e., “Best Match”, “Second
Best”, and “Third Best” – thus clarifying which questions are the
most similar to the target KG triple (B.5). We recall that these top-3
questions are those submitted to Google Search.

The SERP management interface, shown in Section C , provides
access to the sources collected as evidence for each triple. The
interface displays four distinct sources, each retrieved by Google
Search, with individual "View Content" buttons. These results refer
to the top-3 questions and the transformed triple. The interface
includes two clickable buttons, labeled (C.6) and (C.7). Clicking the
"View Content" button (C.6) opens a pop-up displaying the Google
page retrieved during the verification process. On the other hand,
clicking the link button (C.7) redirects the user to the up-to-date
Google results page, allowing users to compare whether the data
has been affected over time.

Section D introduces the documentmanagement interface, which
manages the top 10 most relevant documents retrieved with the
original query (i.e., the transformed triple). Each document includes
a "View" button (D.8), allowing users to access the actual text con-
tent of the crawled webpage for verification purposes.

The LLM verification interface in Section E displays results from
four different LLMs. Each LLM response includes a verification
status indicator, either a green checkmark for "Verified" or a red
X for "Not Verified" (E.10), along with the response generated by
the LLM itself (E.11). This allows users to see the LLM’s output
in response to the input prompt. The upper section (E.9) shows
the actual label assigned to the fact based on the KG dataset. In
addition, there is a bar indicator that clearly visualizes the response
distribution. Finally, the majority vote decides the final predicted
label, which is visible at the top of each page.

The final interface, called the tiebreaker verification interface,
is only activated when the majority vote results in a 2-2 tie. In
such cases, the same interface as Section E is displayed, but only
with two models chosen based on their consistency for the dataset.
These models are now responsible for making the decision.

Draf
t v

ers
ion

, a
uth

or'
s c

op
y

https://huggingface.co/jinaai/jina-reranker-v1-turbo-en
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2


SIGIR ’25, July 13–18, 2025, Padua, Italy Farzad Shami, Stefano Marchesin, and Gianmaria Silvello

Figure 2: FactCheck system visualization for the triple Romain_Padovani birthPlace Nice. The interface is structured into
cards: (A) sentence generation—converting the KG triple into human-readable text; (B) question generation—ranking generated
questions with similarity scores; (C) evidence retrieval—Google search results for the top-3 questions and transformed triple;
(D) document processing—top-10 most similar documents; and (E) model verification—results from four language models.

The error analysis section offers insights to experts by iden-
tifying specific weaknesses and reasoning fallacies behind LLM’s
incorrect decisions. This section highlights areas for improvement
by categorizing the errors observed in the wrongly predicted triples.
Errors are grouped into the following categories: Unlabeled, Rela-
tionship, Role attribute, Geo/nationality, Genre/classification, and
Identifier/biographical errors. Furthermore, for DBpedia, FactCheck
offers a stratified error analysis that groups errors by the popularity
of affected triples, helping users to quickly identify which triples
are more commonly represented or prone to errors.

In addition, in the feedback section, users can log in using their
Google or ORCID accounts to submit feedback, which is stored in
the database and made accessible to other users. The interactive
feedback mechanism within the FactCheck interface allows users to
contribute to real assessments, thereby improving the effectiveness
of human-LLM interaction. Feedback is collected using the options:
"uncertain," "agree," "disagree," and free text input. These feedbacks
are then displayed anonymously, helping to create a transparent
and collaborative environment for further investigation.

4 Final Remarks
We presented FactCheck, which shows both the potential and the
challenges of using multiple LLMs for fact verification. The predic-
tion performance of FactCheck – measured against gold standard

labels – are 90% on FactBench, 87% on YAGO, and 70% on DBpedia.
These results emphasize the potential of using LLMs to address fact
verification in KGs. The FactCheck web-based interface allows users
to inspect the inputs, outputs, and reasoning steps involved in each
component of the verification process by LLMs. While FactCheck is
designed for KG fact verification, the same model can be adapted to
other fact-checking tasks, such as verifying claims in news articles,
scientific literature, or social media content.

One of our observations is that LLMs can reach different conclu-
sions despite accessing the same evidence. This variation occurs
because they rely on contextual reasoning, and differences in their
underlying architectures lead them to interpret the evidence dif-
ferently. Also, in fact verification tasks, when a binary evaluation
is requested (i.e., determining whether a statement is correct or
incorrect), LLMs often explain when they classify a statement as
incorrect. However, when predicting a statement is correct, they
typically do not explain further.

One direction for future research is to address (1) how to mini-
mize disagreement in predicting the correctness of the same fact,
(2) how to combine the LLMs output better, and (3) how to improve
verification transparency.

Acknowledgments
We used Claude [claude.ai] to help rephrase some sentences.

Draf
t v

ers
ion

, a
uth

or'
s c

op
y



Fact Verification in Knowledge Graphs Using LLMs SIGIR ’25, July 13–18, 2025, Padua, Italy

References
[1] Garima Agrawal, Dimitri Bertsekas, and Huan Liu. 2023. Auction-Based Learning

for Question Answering over Knowledge Graphs. Information 14, 6 (2023). https:
//doi.org/10.3390/info14060336

[2] Naser Ahmadi, Joohyung Lee, Paolo Papotti, and Mohammed Saeed. 2019.
Explainable Fact Checking with Probabilistic Answer Set Programming.
arXiv:1906.09198 [cs.DB] https://arxiv.org/abs/1906.09198

[3] Meta AI. 2023. Introducing LLaMA 3: Advancing Open Foundation Models.
https://ai.meta.com/blog/meta-llama-3-1/. Accessed: 2024-10-17.

[4] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. DBpedia: a nucleus for a web of open data. In Proceedings
of the 6th International The Semantic Web and 2nd Asian Conference on Asian
Semantic Web Conference (Busan, Korea) (ISWC’07/ASWC’07). Springer-Verlag,
Berlin, Heidelberg, 722–735.

[5] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data (Vancouver, Canada) (SIGMOD ’08). Association for
Computing Machinery, New York, NY, USA, 1247–1250. https://doi.org/10.1145/
1376616.1376746

[6] O. Deshpande, D. S. Lamba, M. Tourn, S. Das, S. Subramaniam, A. Rajaraman, V.
Harinarayan, and A. Doan. 2013. Building, maintaining, and using knowledge
bases: a report from the trenches. In Proc. of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27,
2013. ACM, 1209–1220. https://doi.org/10.1145/2463676.2465297

[7] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, et al. 2024. The Llama 3 Herd of Models. arXiv:2407.21783 [cs.AI]
https://arxiv.org/abs/2407.21783

[8] Mohamed H. Gad-Elrab, Daria Stepanova, Jacopo Urbani, and Gerhard Weikum.
2019. ExFaKT: A Framework for Explaining Facts over Knowledge Graphs and
Text. In Proceedings of the Twelfth ACM International Conference onWeb Search and
Data Mining (Melbourne VIC, Australia) (WSDM ’19). Association for Computing
Machinery, New York, NY, USA, 87–95. https://doi.org/10.1145/3289600.3290996

[9] Junyang Gao, Xian Li, Yifan Ethan Xu, Bunyamin Sisman, Xin Luna Dong, and Jun
Yang. 2019. Efficient Knowledge Graph Accuracy Evaluation. arXiv:1907.09657
https://arxiv.org/abs/1907.09657

[10] Daniel Gerber, Diego Esteves, Jens Lehmann, Lorenz Bühmann, Ricardo Usbeck,
Axel-Cyrille Ngonga Ngomo, and René Speck. 2015. DeFacto—Temporal and
multilingual Deep Fact Validation. Journal of Web Semantics 35 (2015), 85–101.
https://doi.org/10.1016/j.websem.2015.08.001 Machine Learning and Data Mining
for the Semantic Web (MLDMSW).

[11] Google-Blog. 2012. Introducing the Knowledge Graph: things, not strings. https:
//blog.google/products/search/introducing-knowledge-graph-things-not/ Ac-
cessed: 2024-12-09.

[12] Tanya Goyal and Greg Durrett. 2021. Annotating and Modeling Fine-grained
Factuality in Summarization. arXiv:2104.04302 [cs.CL] https://arxiv.org/abs/
2104.04302

[13] Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong,
and Qing He. 2020. A Survey on Knowledge Graph-Based Recommender Systems.
arXiv:2003.00911 [cs.IR] https://arxiv.org/abs/2003.00911

[14] Zhijiang Guo, Michael Schlichtkrull, and Andreas Vlachos. 2022. A
Survey on Automated Fact-Checking. Transactions of the Associ-
ation for Computational Linguistics 10 (02 2022), 178–206. https:
//doi.org/10.1162/tacl_a_00454 arXiv:https://direct.mit.edu/tacl/article-
pdf/doi/10.1162/tacl_a_00454/1987018/tacl_a_00454.pdf

[15] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,
Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. arXiv:2310.06825 [cs.CL] https:
//arxiv.org/abs/2310.06825

[16] Stefano Marchesin, Gianmaria Silvello, and Omar Alonso. 2024. Utility-Oriented
Knowledge Graph Accuracy Estimation with Limited Annotations: A Case Study
on DBpedia. Proceedings of the AAAI Conference on Human Computation and
Crowdsourcing 12, 1 (Oct. 2024), 105–114. https://doi.org/10.1609/hcomp.v12i1.
31605

[17] Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh,
Mohit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023. FActScore: Fine-
grained Atomic Evaluation of Factual Precision in Long Form Text Generation.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for
Computational Linguistics, Singapore, 12076–12100. https://doi.org/10.18653/
v1/2023.emnlp-main.741

[18] Prakhar Ojha and Partha Talukdar. 2017. KGEval: Accuracy Estimation of Auto-
matically Constructed Knowledge Graphs. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, Martha Palmer, Rebecca
Hwa, and Sebastian Riedel (Eds.). Association for Computational Linguistics,

Copenhagen, Denmark, 1741–1750. https://doi.org/10.18653/v1/D17-1183
[19] Reham Omar, Ishika Dhall, Panos Kalnis, and Essam Mansour. 2023. A Universal

Question-Answering Platform for Knowledge Graphs. arXiv:2303.00595 [cs.AI]
https://arxiv.org/abs/2303.00595

[20] J. Pujara, E. Augustine, and L. Getoor. 2017. Sparsity and Noise:Where Knowledge
Graph Embeddings Fall Short. In Proc. of the 2017 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September
9-11, 2017. ACL, 1751–1756. https://doi.org/10.18653/v1/d17-1184

[21] Qwen-Team. 2024. Qwen2.5: A Party of Foundation Models. https://qwenlm.
github.io/blog/qwen2.5/

[22] Morgane Riviere, Shreya Pathak, and Pier Giuseppe Sessa et al. 2024. Gemma 2:
Improving Open Language Models at a Practical Size. arXiv:2408.00118 [cs.CL]
https://arxiv.org/abs/2408.00118

[23] Prakhar Singh, Anubrata Das, Junyi Jessy Li, and Matthew Lease. 2022.
The Case for Claim Difficulty Assessment in Automatic Fact Checking.
arXiv:2109.09689 [cs.CL] https://arxiv.org/abs/2109.09689

[24] Kai Sun, Yifan Ethan Xu, Hanwen Zha, Yue Liu, and Xin Luna Dong. 2024. Head-
to-Tail: How Knowledgeable are Large Language Models (LLMs)? A.K.A. Will
LLMs Replace Knowledge Graphs?. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), NAACL 2024, Mexico City, Mexico,
June 16-21, 2024, Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (Eds.).
Association for Computational Linguistics, 311–325. https://doi.org/10.18653/
V1/2024.NAACL-LONG.18

[25] Zafar Habeeb Syed, Michael Röder, and Axel-Cyrille Ngonga Ngomo. 2019. Un-
supervised Discovery of Corroborative Paths for Fact Validation. In The Semantic
Web – ISWC 2019, Chiara Ghidini, Olaf Hartig, Maria Maleshkova, Vojtěch Svátek,
Isabel Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon
(Eds.). Springer International Publishing, Cham, 630–646.

[26] Zafar Habeeb Syed, Michael Röder, and Axel-Cyrille Ngonga Ngomo. 2018.
FactCheck: Validating RDF Triples Using Textual Evidence. In Proceedings of
the 27th ACM International Conference on Information and Knowledge Manage-
ment (Torino, Italy) (CIKM ’18). Association for Computing Machinery, New York,
NY, USA, 1599–1602. https://doi.org/10.1145/3269206.3269308

[27] Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. 2023.
C-Pack: Packaged Resources To Advance General Chinese Embedding.
arXiv:2309.07597 [cs.CL]

Received 18 February 2025

Draf
t v

ers
ion

, a
uth

or'
s c

op
y

https://doi.org/10.3390/info14060336
https://doi.org/10.3390/info14060336
https://arxiv.org/abs/1906.09198
https://arxiv.org/abs/1906.09198
https://ai.meta.com/blog/meta-llama-3-1/
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/2463676.2465297
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/3289600.3290996
https://arxiv.org/abs/1907.09657
https://arxiv.org/abs/1907.09657
https://doi.org/10.1016/j.websem.2015.08.001
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://arxiv.org/abs/2104.04302
https://arxiv.org/abs/2104.04302
https://arxiv.org/abs/2104.04302
https://arxiv.org/abs/2003.00911
https://arxiv.org/abs/2003.00911
https://doi.org/10.1162/tacl_a_00454
https://doi.org/10.1162/tacl_a_00454
https://arxiv.org/abs/https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00454/1987018/tacl_a_00454.pdf
https://arxiv.org/abs/https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00454/1987018/tacl_a_00454.pdf
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.1609/hcomp.v12i1.31605
https://doi.org/10.1609/hcomp.v12i1.31605
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/D17-1183
https://arxiv.org/abs/2303.00595
https://arxiv.org/abs/2303.00595
https://doi.org/10.18653/v1/d17-1184
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2109.09689
https://arxiv.org/abs/2109.09689
https://doi.org/10.18653/V1/2024.NAACL-LONG.18
https://doi.org/10.18653/V1/2024.NAACL-LONG.18
https://doi.org/10.1145/3269206.3269308
https://arxiv.org/abs/2309.07597

	Abstract
	1 Introduction
	2 Related Work
	3 FactCheck
	4 Final Remarks
	Acknowledgments
	References



