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ABSTRACT32

Amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) are debilitating diseases with unpredictable progression.
Artificial Intelligence-based tools for modelling disease progression could significantly improve the quality of life for patients
and caregivers while supporting clinicians in delivering more personalized and timely care. However, the limited availability
of data hinders the development, testing, and reproducibility of such predictive tools. To address this challenge, we curated,
in the context of the H2020 BRAINTEASER project, four datasets containing clinical data from a total of 2,290 ALS patients
and 723 MS patients. These datasets also include environmental data and information collected through wearable devices.
Unlike most existing resources, the BRAINTEASER datasets are gathered from clinical practice, offering a more accurate
representation of the data that an AI progression prediction tool would encounter in real-world scenarios. In addition to manual
and automated data quality checks, the research community has validated the datasets through three editions of the intelligent
Disease Progression Prediction challenges held within the Conference and Labs of the Evaluation Forum (CLEF).
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Background & Summary34

Amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) are severe neurological diseases, each with distinct mechanisms35

and disease progression. However, they share some common symptoms and features, such as multisystem involvement (motor,36

cerebellar, brainstem, sensory, sphincter, visual, and cognitive impairments) and the gradual accumulation of disability1, 2. Both37

diseases significantly affect the quality of life of individuals living with them and their caregivers3. The rapid, progressive38

neurodegeneration caused by ALS typically results in a deterioration of movement, speech, breathing, and swallowing abilities4.39

In contrast, the chronic and variable course of MS is generally characterized by periods of relapse, where symptoms worsen or40

new ones appear, followed by remission periods with a reduction in symptom severity2.41

A common and major challenge in managing ALS and MS is the difficulty in predicting their progression. Patients with42

these diseases often require hospitalization and varying levels of home-based assistance. The unpredictable nature of the43

diseases also makes it challenging for clinicians to provide timely care at different stages of progression. In this context,44

automatic predictive tools could greatly benefit patients, caregivers, and clinicians by forecasting disease progression. These45

tools would also help clinicians better stratify patients based on their phenotype, ensuring that interventions are administered46

tailored to the subjects’ characteristics. Furthermore, these tools could contribute to a better understanding of certain aspects and47

mechanisms of ALS and MS that remain only partially understood by the research community. Despite the importance of such48

tools, the absence of publicly available data hinders the development, training, and testing of reproducible automatic predictive49

tools5. The European project "Bringing Artificial Intelligence home for a better care of amyotrophic lateral sclerosis and50

multiple sclerosis" (BRAINTEASER)6 addresses these challenges by fostering collaboration between clinicians and engineers51

to advance the current state-of-the-art in automatic disease progression modelling for ALS and MS.52

In this work, we present the ALS and MS datasets we created within BRAINTEASER, designed to support the development53

of automatic disease progression modelling and prediction tools, improve their reproducibility, and help the research community54

better understand the underlying mechanisms of ALS and MS7. Specifically, we release four full datasets: two for ALS and55

two for MS. These datasets were collected from four medical institutions across Italy, Portugal, and Spain. Originally, the data56

was used in the iDPP@CLEF challenges8–10, where we divided it into eight task-specific datasets: five for ALS and three for57

MS. Besides the full datasets, we release the task-specific datasets as they appeared in the iDPP@CLEF challenges, preserving58

the same task splits, training, and test sets. This will allow future practitioners, who did not participate in the challenges, to59

compare their results with those of the challenge participants, favouring reproducibility. Additionally, the release of the full60

datasets will enable their use in different settings and tasks beyond those originally designed for the iDPP@CLEF challenges.61

The BRAINTEASER datasets offer real-world clinical, wearable, and environmental data for modelling ALS and MS62

progression. These datasets address the significant challenge of data scarcity in AI-based predictive tool development for these63

diseases. These datasets enable the development of improved disease progression models for personalized and timely patient64

care by predicting outcomes like the need for medical procedures or relapses. Its public availability also fosters collaborative65

research and accelerates knowledge transfer within the scientific community. The datasets are publicly available and made66

persistent through a Zenodo repository7.67

Background: ALS Datasets68

Regarding ALS, two major datasets are available in the literature: the PRO-ACT (Pooled Resource Open-Access ALS Clinical69

Trials Database) dataset11 and the Answer ALS dataset12. The PRO-ACT dataset contains data on treated and control patients70

from 30 Phase II/III clinical trials. However, it only includes patients whose characteristics met the inclusion criteria for clinical71

trials, which may not reflect the general population, and has a relatively short follow-up period. In contrast, the BRAINTEASER72

dataset includes data from patients in a real-world setting. Additionally, the PRO-ACT dataset does not provide information73

about genetic mutations, which are instead available in the BRAINTEASER data. Despite its limited representativeness of the74

general population and lack of gene mutation details, the PRO-ACT dataset remains one of the largest, with over 12,000 patients.75

Conversely, the Answer ALS dataset contains data from 861 ALS patients. Like the BRAINTEASER dataset, it includes76

real-world clinical and omics data. Answer-ALS provides a detailed omics profile, as blood-derived iPS motor neurons were77

generated from each patient and subjected to multi-omics analyses, including whole genome sequencing, RNA transcriptomics,78

ATAC-Seq, and proteomics. Conversely, it does not include environmental data or data collected through wearable devices,79

which are present in the BRAINTEASER dataset.80

Background: MS Datasets81

Regarding MS, four datasets are publicly available. These include the Brain MRI Dataset of Multiple Sclerosis13, the MICCAI82

2016 challenge dataset14, the MSSEG-2 challenge dataset15, and the Brain MRI Image DICOM Dataset16. The Brain MRI83

Dataset of Multiple Sclerosis13 includes multi-sequence MRI data from 60 MS patients, along with manual lesion segmentation,84

Expanded Disability Status Scale (EDSS) scores, general patient information, and clinical details. The MICCAI 2016 challenge85

dataset14 provides demographic and MRI data for 53 patients, while the MSSEG-2 dataset15 offers MRI data for 100 patients.86
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Both challenges focused on automating MRI annotation, so there is no information on disease progression, such as patient87

relapses. The Brain MRI Image DICOM Dataset16 contains MRI scans, demographic information, case descriptions, and88

preliminary diagnoses. However, it does not include relapse data and is only accessible for a fee, meaning it does not comply89

with the Findability, Accessibility, Interoperability, Reusability (FAIR) principles. While all these MS datasets focus on90

imaging, the BRAINTEASER data aims to describe disease progression, addressing a complementary task.91

On a different line, researchers can access registries that contain regional or national-level data from various national health92

systems. An example is the registry maintained by North American Research Committee on Multiple Sclerosis (NARCOMS)17.93

However, these registries are often not anonymized, and access is typically restricted to medical teams, with data usage94

governed by privacy regulations like General Data Protection Regulation (GDPR), due to the sensitive nature of the information.95

In contrast, the BRAINTEASER datasets are anonymized, allowing for unrestricted use regarding purpose and secondary96

applications.97

Background: iDPP@CLEF Challenges98

The BRAINTEASER datasets were created as part of the intelligent Disease Progression Prediction at the Conference and99

Labs of the Evaluation Forum (iDPP@CLEF) challenges. These three challenges, held between 2022 and 2024, focused on100

developing comparable and reproducible artificial intelligence approaches to predict the progression of ALS and MS. The101

challenges were organized as "coopetitions": teams competed while collaborating to build a shared evaluation framework and102

advance knowledge on predictive algorithms for ALS and MS. The main objectives of the challenges were: i) to openly and103

publicly validate the data and prediction algorithms developed by the BRAINTEASER project; ii) to allow external researchers104

to build their predictive models using the BRAINTEASER datasets; iii) to provide a shared evaluation framework to ensure105

the comparability of experimental results; iv) to accelerate knowledge transfer to and from the BRAINTEASER project and106

facilitate the adoption of best practices; and v) to foster the growth of a research community through annual workshops to107

discuss challenge results.108

We report here a brief overview of the iDPP@CLEF challenges:109

• iDPP@CLEF 20228: The first edition of the challenge focused exclusively on ALS. It included three tasks: predicting110

the need for Non-Invasive mechanical Ventilation (NIV) and Percutaneous Endoscopic Gastrostomy (PEG) and predicting111

the occurrence of death during the patient’s follow-up.112

• iDPP@CLEF 20239: The second edition of the challenge expanded on the three ALS tasks from the first edition by113

incorporating environmental data to predict the same events. Additionally, two MS tasks were introduced, focused on114

predicting disease worsening based on changes in the EDSS score, using two different definitions of "worsening."115

• iDPP@CLEF 202410: The final edition introduced a completely new prospective dataset for ALS. The two ALS tasks116

for iDPP@CLEF 2024 aimed at predicting changes in the Revised Amyotrophic Lateral Sclerosis Functional Rating117

Scale (ALSFRS-R) score, either assessed by clinicians or self-evaluated by patients. There was also a single MS task,118

which focused on predicting the occurrence of relapses, based on a subset of the MS full dataset used in iDPP@CLEF119

2023, extended with environmental data.120

Methods121

In this section, we describe the construction of the BRAINTEASER datasets. Of the four full datasets, three are retrospective and122

one is prospective. The retrospective datasets contain patient data collected before the start of the project, during real-life clinical123

practice. The prospective dataset includes patient information collected during the project itself. The full datasets contain124

demographic and static clinical data, environmental information (including details about pollutants), which are obtained through125

public interfaces for retrospective patients or smart devices for prospective ones, and data collected through wearables. In more126

detail: The retrospective ALS dataset contains data from 2,204 ALS patients, including static clinical variables, ALSFRS-R127

questionnaires, spirometry tests, and environmental/pollution data. The prospective ALS dataset includes information from 86128

patients, comprising static clinical variables, ALSFRS-R questionnaires (assessed either by clinicians and recorded with the129

clinical BRAINTEASER clinical tool, or by patients via the BRAINTEASER mobile application), and sensor data. Practically,130

the two sets of data – either collected by the clinicians or self-assessed by the patients – correspond to two different task-specific131

datasets, respectively Task 1 and Task 2, among the prospective data. A more detailed description of the collection of such data132

is available in the “Data Collection” Paragraph of the “Prospective Full Dataset Curation” Section. The two retrospective MS133

full datasets contain data on 723 and 280 patients, respectively. These datasets include static clinical variables, EDSS scores,134

evoked potentials, relapses, and numeric features derived from Magnetic Resonance Imagings (MRIs), with the latter dataset135

also including environmental and pollution data.136
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The dataset comprises over 250 variables, including static variables (e.g., patient demographics, previous surgeries and137

traumas, and health status), data collected during routine visits, disease onset details, diagnosis, and progression, as well as138

environmental and sensor-based observations. To maintain clarity, we highlight only the main variables and provide select139

examples in the remainder of the section. The complete list of variables is available at (https://docs.google.com/140

document/d/1KMadH9lMkFwGMMOFlN7uyjgxkbOyWdekO5Iw89CdaSk).141

Retrospective Full Datasets Curation142

Data Collection143

We describe here the raw data sources exploited to build the retrospective full datasets and the filtering process followed to144

ensure the quality of the datasets. Figure 1 illustrates visually the steps the data underwent to obtain the BRAINTEASER145

datasets.146

2nd iDPP@CLEF
(2023)

Retrospective Clinical 
data from local registries

Retrospective Clinical 
data from local registries

1st iDPP@CLEF
(2022)

3rd iDPP@CLEF
(2024)

BRAINTEASER STARTS
(2021)

4.8K patients

1.9K Patients

Data Filtering and 
normalization with BT Ontology

Started Patient recruitment and 
Wearable  & sensors data collection

Retrospective 
Environmental data

Retrospective 
Environmental data

2.2K Patients, 5.5K ALSFRS-R records

723 Patients, 803 Relapses, 4.5K EDSS records 280 Patients, 1.1K EDSS Records

86 Patients 247 ALSFRS-R by Clinicians, 323 self-assessed ALSFRS-R, 21.5K Sensors recordings

Prospective data

ALS

MS
Data Filtering and 

normalization with BT Ontology

ALS Retrospective
datasets

MS clinical-only
Retrospective datasets

MS clinical-environmental
Retrospective datasets

ALS Prospective
 datasets

Figure 1. The modifications and processing applied to the raw data to obtain the final BRAINTEASER datasets.

Regarding the collection and storage of informed consent, all patients had provided informed consent for the use of their data147

for research purposes, following Article 89 of EU Regulation 2016/679 (GDPR), either through their contribution to national or148

regional registries or as part of other research studies. Every reasonable effort was made to obtain project-specific consent.149

Following the positive opinion of the relevant ethics committees, project-specific consent was not collected only in cases where150

it was organizationally impossible to contact the individuals, despite exhaustive attempts to do so. These efforts included151

verifying patients’ vital status, reviewing clinical documentation, attempting contact via any available telephone numbers,152

and consulting relevant patient or population registries. In such cases, individuals were confirmed to be either deceased or153

uncontactable at the time of study enrolment.154

ALS Clinical Data The ALS retrospective full dataset was available to the clinical and research centres participating in the155

BRAINTEASER project before its commencement, hence it represents the variables typically collected during the clinical156

practice. This dataset is provided by the Neurology Departments of the University of Turin (UNITO) (Turin, Italy) and of the157

Instituto De Medicina Molecular João Lobo Antune (iMM) (Lisbon, Portugal). The UNITO dataset is based on the Piemonte158

and Valle d’Aosta Register for Amyotrophic Lateral Sclerosis (PARALS)18, a highly reliable dataset that covers two Italian159

regions, Piedmont and Valle d’Aosta. The register is anonymized, and the data is handled following the Italian Data Protection160

Code. Patients provided written informed consent to contribute to the registries and for their data to be used in anonymized form.161

The UNITO source dataset includes information about 3,257 ALS patients collected between January 1995 and December162

2018. Most of these patients were monitored at two ALS centres in Torino and Novara. Patients in the UNITO dataset were163

diagnosed with ALS based on the El Escorial Criteria (EEC)/Revised El Escorial Criteria (EEC-R)19. The source dataset164

contains demographic and static clinical data for each patient, and the date of death was retrieved from municipal records. The165

data provided by iMM covers 1,562 ALS patients who attended an ALS clinic in Lisbon from 1995 to October 2021. Similar166

to the UNITO dataset, this database is highly reliable. Moreover, a single group of clinicians used standardized methods to167

assess all patients, reducing the risk of data bias. Both datasets include demographic information such as the year of birth,168

sex, ethnic origin, and habits like smoking. They also provide clinical and disease history, including past traumas, surgeries,169

comorbidities, onset details, and diagnosis date. Additionally, the datasets include details about patients’ follow-up visits,170

conducted at intervals typical of clinical practice (about every 2–4 months) These records contain disease history, neurological171

4/17

Prep
rin

t a
uth

or'
s v

ers
ion

https://docs.google.com/document/d/1KMadH9lMkFwGMMOFlN7uyjgxkbOyWdekO5Iw89CdaSk
https://docs.google.com/document/d/1KMadH9lMkFwGMMOFlN7uyjgxkbOyWdekO5Iw89CdaSk
https://docs.google.com/document/d/1KMadH9lMkFwGMMOFlN7uyjgxkbOyWdekO5Iw89CdaSk


and laboratory findings (such as ALSFRS-R scores and respiratory test results), and treatment information. On average, each172

patient had five consultations.173

MS Clinical Data The two retrospective MS full datasets come from two different clinical and research centres: Fondazione174

Mondino IRCCS (FM), Pavia, Italy, and UNITO. The data provided by FM consists of 1,103 patients diagnosed with MS175

according to the diagnostic criteria valid at the time of the onset of the disease, while UNITO includes 750 MS patients. Note176

that diagnostic criteria, including clinical and paraclinical evidence, have changed over the years. Regarding FM, the dataset177

covers most of the disease phenotypes. The included patients originate from various Italian provinces. All patients are followed178

regularly at the outpatient of the FM center, and the frequency of the planned visits can vary from one to four per year, with the179

first year of visit ranging from 1957 to 2021. The dataset also includes, when available, the clinical information derived form180

each visit and the assessment of the clinical disability, measured via EDSS. Together with this information, demographic data,181

clinical and instrumental features for disease onset and progression, comorbidities, patients’ family history, patients’ medical182

history, and data about pharmacological treatments and other significant life events (e.g., pregnancy, vaccination) were also183

collected. As with UNITO, the patients are originally from the Piedmont region and are regularly followed at the outpatient of184

the UNITO center, with a frequency of one to four (planned) visits per year. The dataset contains first visits ranging from 1996185

to 2021 Together with the visits, when available, the dataset also provides the derived clinical information and the assessment186

of the patient’s clinical disability via EDSS. Again, demographic data, clinical, and instrumental features for disease onset and187

progression, comorbidities, patients’ family history, patients’ medical history, and data about pharmacological treatments and188

other significant life events were also collected. For both datasets, patients provided written informed consent to release their189

data, which has been completely anonymized.190

Environmental Data For both diseases, environmental data consists of patients’ exposure to air pollutants classified as191

significant public health risks in the World Health Organization (WHO) global air quality guidelines20. Such pollutants192

includes Particulate Matter (PM) with an aerodynamic diameter of 10 µm or less (i.e., PM10) or of 2.5 or less (i.e., PM2.5),193

Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), and Carbon Monoxide (CO). In addition, environmental data194

include several weather factors, including wind speed, relative humidity, sea level pressure, global radiation, precipitation,195

and average, minimum, and maximum temperatures. Air pollutant data are gathered daily by the European Air Quality Portal196

using the DiscoMap tool (https://discomap.eea.europa.eu/Index/). Patients are linked to pollutant exposure197

by identifying the nearest public monitoring station to their residence. On the other hand, weather data were collected daily by198

the European Climate Assessment and Dataset station network, which provides access to the E-OBS dataset, a daily gridded199

land-only observational dataset over Europe (https://www.ecad.eu/download/ensembles/download.php).200

Each grid is matched with the nearest monitoring station using Euclidean distance based on geographical coordinates to ensure201

that all environmental measurements are aligned with the same spatial and temporal granularity.202

More in detail, to obtain the environmental data, we downloaded time series of air quality measurements from official moni-203

toring stations, specifically focusing on E1a/validated data. In particular, the Air Quality e-Reporting platform provides detailed204

information on air quality assessment regimes and lists all individual sampling points and/or models applied for each pollu-205

tant within specific zones and agglomerations, as described on the official documentation: https://www.eea.europa.206

eu/data-and-maps/data/aqereporting-9/air-quality-assessment-regimes. Weather data were col-207

lected from the Copernicus E-OBS ensemble dataset, which was generated using a conditional simulation procedure, as doc-208

umented on the official website: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.209

php. According to the description:210

For each ensemble member, a spatially correlated random field is generated based on a pre-calculated spatial211

correlation function. The mean across all ensemble members is then computed and provided as the "best-guess"212

field. The spread, representing the 90% uncertainty range, is calculated as the difference between the 5th and 95th213

percentiles across the ensemble. Starting with version E-OBSv24.0e, all elements now consist of a 20-member214

ensemble.215

Data Filtering216

We apply a filtering phase for ALS and MS clinical data to check if each patient’s record provides useful and coherent217

information. More in detail, since the data sources were collected through manual data curation labour, they sometimes contain218

typographic errors, minor inconsistencies, duplicated information, and missing values. To maximize the quality of the final219

data release, we adopt a conservative approach, entirely removing patient records with incomplete or potentially inconsistent220

information. Specifically, only records satisfying the following criteria were included in the final dataset:221

• All the relevant dates are available (e.g., onset date, diagnosis date, date of death for deceased people);222

• The dates are in the correct order (e.g., onset before diagnosis, first visit after onset, death after any other event);223
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• The patient has at least one ALSFRS-R record associated (applicable only to ALS patients);224

• The patient has at least one EDSS record associated (applicable only to MS patients);225

• Relevant medical procedures for the ALS iDPP@CLEF tasks (i.e., NIV and PEG) occurred after the first visit (applicable226

only to ALS patients).227

If a patient fails the quality control, their record and corresponding visits are dropped. We remove duplicate visits, visits without228

a date, or with invalid or non-registered values. For instance, we discard ALSFRS-R records without a registered date or where229

no ALSFRS-R score was registered or the scores are invalid.230

About ALS retrospective data, UNITO originally provided 3,257 ALS patients, 15,006 visits with a recorded ALSFRS-231

R, and 2,890 spirometries, while iMM provided 1,562 ALS patients, 7,446 visits with a recorded ALSFRS-R, and 2,631232

spirometries. On the other hand, for MS retrospective data, FM originally provided 1,103 MS patients, 17,529 visits with a233

recorded EDSS, 4,571 relapses, 5,407 Evoked Potentials (EPs), 8,429 MRI records, and 2,250 records about MS clinical course.234

UNITO instead provided 750 MS patients, 11,133 visits with a recorded EDSS, 2,164 relapses, 853 EPs, 1,941 MRI records,235

and 1,510 records about MS clinical course.236

The PRISMA diagrams in Figure 2 show the number of removed patients for retrospective data, divided by the medical237

centre. Concerning ALS retrospective data, from UNITO data, we remove 1,260 patients due to visits without recorded238

ALSFRS-R and 143 due to issues related to event ordering, leaving us with 1,854 valid patients (57% of the raw dataset).239

Consequently, we remove 566 ALSFRS-R records due to dropped patients and 27 due to duplicated rows, resulting in 14,413240

valid visits (96%). About spirometries, we remove 359 records due to dropped patients and 17 duplicated rows, resulting in241

2,514 valid spirometries (87%). On the other hand, from iMM data, we remove 25 patients due to missing onset, seven due242

to missing diagnosis, 153 due to missing ALSFRS-R, and 672 due to issues in the order of events, leaving us with 705 valid243

patients (45%). Consequently, we remove 2,352 ALSFRS-R recordings due to dropped patients and 396 due to missing data,244

resulting in 4,698 valid visits (63%). About spirometries, we remove 928 records due to dropped patients and 51 missing values,245

leaving us with 1,652 valid spirometries (63%). We consider only patients with six months of visits from the ALS retrospective246

clinical data and linked them with environmental data to generate the ALS retrospective full dataset.247

(a) PRISMA Flow Diagram for ALS Data (b) PRISMA Flow Diagram for MS Data

Figure 2. PRISMA diagrams describing the data filtering for retrospective data. Patients are dropped if they satisfy at least
one of the conditions for removal. For simplicity, we consider the following macro-category: “Missing ALSFRS-R" (applicable
only to ALS patients), “Missing EDSS" (applicable only to MS patients), “Missing Diagnosis", “Missing Onset", “Event
Ordering". All conditions based on the order of two events fall into the last category.

About MS retrospective data, from UNITO data, we remove one patient due to missing onset, 17 due to missing diagnosis248

date, and seven due to missing EDSS visits, leaving us with 725 valid patients (97%). As a result, we are left with 10,810 valid249

EDSS visits (97%), 2,028 relapses (94%), 843 EPs (99%), 1,769 MRIs (91%), and 1,466 records related to MS clinical course250

(97%). From FM data, we remove 36 patients due to missing EDSS, resulting in 1,067 valid patients (97%). Consequently, we251

are left with 14,479 valid EDSS visits (83%), 4,169 relapses (91%), 5,369 EPs (99%), 5,938 MRIs (70%), and 2,180 records252

related to MS clinical course (97%). MS retrospective clinical data is further processed to generate the MS retrospective full253

dataset with clinical data only. In particular, visits are restricted to a 2.5-year window, and patients are excluded if they had an254

EDSS score higher than or equal to three but no other recorded EDSS within one year after the last visit. The MS retrospective255
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full dataset with environmental data instead is generated by considering a subset of 280 patients for which environmental data256

were available, i.e., with the first visit after 2013.257

Prospective Full Dataset Curation258

Data Collection259

The prospective ALS full dataset is based on observations of patients recruited within the BRAINTEASER project. The260

patients affected by ALS were recruited and followed by three medical centres in Lisbon (iMM), Turin (UNITO), and Madrid261

(Servicio Madrileño de Salud (SERMAS)). During the recruitment, patients were given a commercial fitness tracker (the262

Garmin VivoActive 4 smartwatch), a commercial personal air monitor that tracks exposure (Atmotubo PRO), and an app263

created within the project (BRAINTEASER Patient App21). During the follow-up (median duration of 270 days), the fitness264

tracker was used to record the vital parameters of the patients. The patients were encouraged to wear the tracker all the time, as265

long as they felt comfortable. Each day of data for each patient was summarized into a vector of 90 statistics related to heart266

rate and beat-to-beat interval, respiration rate, and nocturnal pulse oximetry. Additionally, every three months, the clinicians267

recorded the results of the ALSFRS-R questionnaire to monitor the progression of the disease using the BRAINTEASER268

clinical tool21. Furthermore, once a month, the patients self-assessed their progression through the ALSFRS-R questionnaire269

using the BRAINTEASER app on their smartphone. This allows the researchers to compare the observations made by a270

professional with the subjective patient experience. Both the BRAINTEASER clinical tool and the BRAINTEASER app were271

developed in the context of the BRAINTEASER project and are specifically tailored to handle the collection of data concerning272

patients affected by ALS and MS21. Cossu et al. (2024)22, 23 provide a complete description of the collection and processing of273

the wearable devices’ data.274

Informed consent was consistently collected from all patients who contributed to the prospective dataset and who were275

recruited during the BRAINTEASER project.276

Data Filtering277

The final BRAINTEASER ALS prospective full dataset is filtered to remove patients with insufficient information. In particular,278

we remove the records associated with patients with less than 3 months of follow-up data, patients’ records for which more than279

50% of the sensor data were missing across the entire monitored period, and those for which there are less than two clinical and280

self-reported ALSFRS-R. After applying these criteria, a dataset of 86 patients is obtained, with a median of 254 days of sensor281

data per patient.282

Task-specific datasets283

From the four BRAINTEASER full dataset, we derive eight task-specific datasets, which correspond to those used in the284

iDPP@CLEF challenges. Each task-specific datasets is split into training and test sets. Specifically, 80% of the data is285

allocated to the training set, and the remaining 20% to the test set. We randomly split the data except for the retrospective286

ALS task-specific datasets, where we stratify on the outcome time. In both cases, we ensure that the patient distribution in the287

training and test sets is similar in demographics (e.g., sex, ethnic origin) and relevant static clinical attributes (e.g., age at onset,288

onset site).289

Table 1. ALS Retrospective Dataset. For each subtask, we report the number of patients, the number of ALSFRS-R
questionnaires, the number of spirometries performed, and the number of environmental measurements. Since a patient could
be eligible for more than one task, we also report the number of unique entries in row “Total Unique”.

Dataset Patients ALSFRS-R Spirometry Environmental

Subtask A Training 1,432 3,636 1,185 2,549,665
Test 346 868 273 419,229

Subtask B Training 1,679 4,214 1,490 3,471,137
Test 422 1,039 358 769,209

Subtask C Training 1,716 4,306 1,518 3,566,689
Test 486 1,210 411 885,407

Total Unique - - - 2,204 5,519 1,930 4,455,326

We derive three task-specific datasets from the ALS retrospective dataset. These datasets focus on predicting when the290

patient required a NIV, a PEG, or when the patient died, respectively. The features used for prediction include demographic291

and static clinical data, environmental data, and six months of visit records (i.e., ALSFRS-R and spirometry results). Compared292

to the original full dataset, the task-specific datasets are refined to ensure that every patient has at least six months of visits293

after their first ALSFRS-R is recorded, and that the event being predicted either did not occur or occurred after more than six294
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Table 2. Comparison between training and test populations of the retrospective ALS task-specific datasets. Continuous
variables are presented as medians (interquartile range); categorical variables as count (percentage on available data), for each
level.

Subtask A (Outcome target = NIV) Subtask B (Outcome target = PEG) Subtask C (Outcome target = Death)
Train Test Train Test Train Test

Male 733 (51.19%) 185 (53.47%) 901 (53.66%) 236 (55.92%) 908 (52.91%) 268 (55.14%)
Female 699 (48.81%) 161 (46.53%) 778 (46.34%) 186 (44.08%) 808 (47.09%) 218 (44.86%)

Age at onset 64.87 [56.60-71.64] 64.70 [55.46-70.76] 65.04 [56.76-71.82] 64.76 [55.66-70.42] 65.35 [57.20-72.10] 65.01 [56.95-70.86]
Onset Axial 3 (0.21%) 3 (0.87%) 29 (1.73%) 11 (2.60%) 30 (1.75%) 12 (2.57%)
Onset Bulbar 442 (30.86%) 105 (30.35%) 489 (29.12%) 123 (29.15%) 543 (31.64%) 147 (30.25%)
Onset Generalized 4 (0.28%) 0 (0.00%) 7 (0.42%) 1 (0.24%) 7 (0.41%) 1 (0.20%)
Onset Limbs 983 (68.65%) 238 (68.79%) 1154 (68.73%) 287 (68.01%) 1136 (66.20%) 326 (67.08%)

C9orf72 normal 896 (62.57%) 229 (66.19%) 1013 (60.33) 274 (64.93) 1025 (69.74) 311 (63.99)
C9orf72 expansion 72 (5.03%) 23 (6.65%) 76 (4.53) 24 (5.69) 81 (4.71) 28 (5.76)
C9orf72 NA 464 (32.40%) 94 (27.16%) 590 (35.14) 124 (29.38) 610 (35.55) 147 (40.25)

ALSFRS-R slope 0.43 [0.24-0.79] 0.41 [0.23-0.80] 0.47 [0.25-0.84] 0.44 [0.24-0.85] 0.49 [0.26-0.88] 0.45 [0.24-0.85]
ALSFRS-R recorded 3.0 [2.0-3.0] 3.0 [2.0-3.0] 2.0 [2.0-3.0] 2.0 [2.0-3.0] 2.0 [2.0-3.0] 2.0 [2.0-3.0]

Outcome time 18.07 [11.43-31.33] 20.82 [11.47-36.94] 20.43 [12.87-37.12] 22.47 [13.30-38.59] 23.07 [14.16-39.13] 25.20 [14.62-42.47]
Outcome censoring 121 (8.45%) 32 (9.25%) 209 (12.45%) 51 (12.09%) 230 (13.40%) 69 (14.20%)
Outcome death 636 (44.41%) 152 (43.93%) 969 (57.71%) 251 (59.48%) 1486 (86.60%) 417 (85.80%)Outcome target 675 (47.14%) 162 (46.82%) 501 (29.84%) 120 (28.44%)

months from the first ALSFRS-R. The size of the retrospective ALS task-specific datasets (including the sizes of the training295

and test sets) is reported in Table 1. Table 2 reports the distribution of a sample of variables available in the ALS retrospective296

task-specific datasets. We report the comparison between training and test variables, showing comparable distributions. In297

detail, we report the median and the interquartile range for continuous variables (e.g., “age at onset”). On the other hand, we298

report the count and the percentage over the entire population for categorical data (e.g., “onset location”).299

Similarly, from the MS retrospective dataset containing only clinical data, we derive two task-specific datasets. In this case,300

the task aims to predict the risk of worsening in the condition, considering two different definitions of worsening. The first301

definition of "worsening" occurs if the patient’s EDSS exceeds the threshold of 3 twice within a year. The second definition302

considers the change in EDSS from the baseline (the values of the first EDSS recorded after 2.5 years from the first EDSS303

in absolute). A worsening is defined as an increase in EDSS by 1.5, 1, or 0.5, depending on the value of the baseline EDSS304

(i.e., ≤1, between 1 and 5.5, or >.5, respectively). Table 3 presents the sizes of these two MS clinical-only retrospective305

task-specific datasets. Table 4 reports the comparison between training and test populations for a subset of variables available306

in the clinical-only retrospective task-specific datasets. As before, we report the count and percentage for each level of the307

categorical variables. For continuous variables, on the other hand, we report the mean and the standard deviation.308

Table 3. MS Retrospective Dataset with only clinical data. For each subtask, we report the number of patients, the number of
relapses, EDSS scores, EPs, MRIs, and MS Course. Since a patient could be eligible for more than one task, we also report the
number of unique entries in row “Total Unique”.

Dataset Patients Relapses EDSS Scores EPs MRIs MS Course

Subtask A Training 441 481 2,661 1,211 960 310
Test 111 95 675 278 236 68

Subtask B Training 511 553 3,069 1,522 966 325
Test 129 125 813 299 266 75

Total Unique - - - 723 803 4,457 2,056 1,439 463

For the MS retrospective dataset that includes both clinical and environmental data, we derive a single task-specific dataset.309

The task is to predict the week of the first relapse, given the patient’s status at baseline. The size of this dataset is reported in310

Table 5, while Table 6 reports the comparison between the training and test populations within the task-specific dataset.311

Finally, from the prospective ALS full dataset, we derive two task-specific datasets. The first task involves predicting the312

ALSFRS-R score assessed by the clinician during the second visit, given the ALSFRS-R score from the first visit, along with313

demographic and static clinical data, environmental observations, and wearable sensor recordings. The second task focuses on314

predicting the self-assessed ALSFRS-R score at the second visit, given the first ALSFRS-R score and the same set of features315

available in the first task. Table 7 details the numerosity of the two prospective ALS task-specific datasets while Table 8 reports316
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Table 4. Training and test populations of the clinical-only MS task-specific datasets. Continuous variables are presented as
means (standard deviation); categorical variables as count (percentage on available data), for each level.

Subtask A Subtask B
Train Test Train Test

St
at

ic
V

ar
ia

bl
es

Sex Female 305 (69.32%) 76 (69.09%) 355 (69.61%) 85 (66.41%)
Male 135 (30.68%) 34 (30.91%) 155 (30.39%) 43 (33.59%)

Residence classification

Cities 120 (27.27%) 32 (29.09%) 152 (29.8%) 37 (28.91%)
Rural Area 100 (22.73%) 18 (16.36%) 106 (20.78%) 28 (21.88%)

Towns 208 (47.27%) 54 (49.09%) 236 (46.27%) 56 (43.75%)
NA 12 (2.73%) 6 (5.45%) 16 (3.14%) 7 (5.47%)

Ethnicity

Caucasian 424 (96.36%) 99 (90.00%) 491 (96.27%) 122 (95.31%)
Hispanic 0 (0.00%) 4 (3.64%) 0 (0.00%) 2 (1.56%)

Black African 0 (0.00%) 2 (1.82%) 0 (0.00%) 3 (2.34%)
NA 16 (3.64%) 5 (4.55%) 19 (3.73%) 1 (0.78%)

MS in pediatric age False 410 (93.18%) 103 (93.64%) 483 (94.71%) 116 (90.62%)
True 30 (6.82%) 7 (6.36%) 27 (5.29%) 12 (9.38%)

age at onset Mean (sd) 31 (9.427) 30 (8.775) 31 (9.816) 31 (10.642)

Diagnostic delay Mean (sd) 1029 (1727.8) 967 (1447.6) 1094 (1809.46) 1332 (2092.90)
NA 12 (2.73%) 1 (0.91%) 9 (1.76%) 5 (3.91%)

Spinal cord symptoms False 348 (79.09%) 83 (75.45%) 389 (76.27%) 95 (74.22%)
True 92 (20.91%) 27 (24.55%) 121 (23.73%) 33 (25.78%)

Brainstem symptoms False 305 (69.32%) 79 (71.82%) 367 (71.96%) 85 (66.41%)
True 135 (30.68%) 31 (28.18%) 143 (28.04%) 43 (33.59%)

Eye symptoms False 318 (72.27%) 82 (74.55%) 370 (72.55%) 95 (74.22%)
True 122 (27.73%) 28 (25.45%) 140 (27.45%) 33 (25.78%)

Supratentorial Symptom False 301 (68.41%) 74 (67.27%) 355 (69.61%) 91 (71.09%)
True 139 (31.59%) 36 (32.73%) 155 (30.39%) 37 (28.91%)

Other symptoms

Epilepsy 2 (0.45%) 0 (0.00%) 2 (0.39%) 0 (0.00%)
Sensory 4 (0.91%) 1 (0.91%) 5 (0.98%) 0 (0.00%)

RM+ 3 (0.68%) 2 (1.82%) 5 (0.98%) 2 (1.56%)
None 431 (97.95%) 107 (97.27%) 498 (97.65%) 126 (98.44%)

Time since onset mean (sd) 2524 (2448.3) 2446 (2235.9) 2871 (2775.14) 3773 (3595.14)

M
S

ty
pe MS type

CIS 99 (32.04%) 18 (26.87%) 108 (33.33%) 22 (29.73%)
RR 210 (67.96%) 49 (73.13%) 216 (66.67%) 48 (64.86%)
PR 0 (0.00%) 0 (0.00%) 0 (0.00%) 1 (1.35%)
SP 0 (0.00%) 0 (0.00%) 0 (0.00%) 3 (4.05%)

delta observation T0 Mean (sd) -718 (210.2) -715 (237.6) -726 (193.54) -726 (226.50)

E
D

SS EDSS as evaluated by clinician Mean (sd) 2 (0.716) 2 (0.655) 2 (1.2) 3 (1.7)
NA 37 (1.39%) 3 (0.45%) 39 (1.27%) 7 (0.86%)

delta EDSS T0 Mean (sd) -499 (251.6) -499 (254.4) -501 (248.58) -494 (253.84)

E
vo

ke
d

Po
te

nt
ia

ls

Altered potential

Auditory 280 (23.14%) 58 (20.94%) 341 (22.42%) 68 (22.82%)
Motor 101 (8.35%) 19 (6.86%) 130 (8.55%) 22 (7.38%)

Somatosensory 482 (39.83%) 111 (40.07%) 625 (41.09%) 130 (43.62%)
Visual 347 (28.68%) 89 (32.13%) 425 (27.94%) 78 (26.17%)

Location

Left 311 (25.70%) 73 (26.35%) 379 (24.92%) 73 (24.5%)
Lower left 126 (10.41%) 29 (10.47%) 167 (10.98%) 37 (12.42%)

Lower right 136 (11.24%) 31 (11.19%) 177 (11.64%) 36 (12.08%)
Right 316 (26.12%) 74 (26.71%) 387 (25.44%) 73 (24.5%)

Upper left 156 (12.89%) 34 (12.27%) 201 (13.21%) 40 (13.42%)
Upper right 165 (13.64%) 36 (13.00%) 210 (13.81%) 39 (13.09%)

Delta evoked potential T0 Mean (sd) -712 (206.3) -731 (213.3) -714 (196.78) -656 (252.93)

Relapses Delta relapse T0 Mean (sd) -561 (286.1) -551 (286.5) -561 (280.915) -595 (279.73)

M
R

I

MRI area

Brain Stem 681 (71.01%) 164 (69.79%) 688 (71.3%) 188 (70.94%)
Cervical Spinal Cord 62 (6.47%) 25 (10.64%) 67 (6.94%) 15 (5.66%)

Spinal Cord 201 (20.96%) 36 (15.32%) 191 (19.79%) 57 (21.51%)
Thoracic Spinal Cord 15 (1.56%) 10 (4.26%) 19 (1.97%) 5 (1.89%)

Lesions T1
False 175 (18.25%) 45 (19.15%) 155 (16.06%) 37 (13.96%)
True 149 (15.54%) 29 (12.34%) 164 (16.99%) 56 (21.13%)
NA 635 (66.21%) 161 (68.51%) 646 (66.94%) 172 (64.91%)

Lesions T1 gadolinium
False 575 (59.96%) 145 (61.70%) 566 (58.65%) 162 (61.13%)
True 247 (25.76%) 51 (21.70%) 243 (25.18%) 57 (21.51%)
NA 137 (14.29%) 39 (16.1%) 156 (16.17%) 46 (17.36%)

# Lesions T1 gadolinium Mean (sd) 0 (1.0) 0 (1.0) 0 (1.049) 0 (0.772)
NA 187 (19.5%) 48 (20.43%) 222 (23.01%) 57 (21.51%)

New or enlarged lesions T2
False 377 (39.31%) 107 (45.53%) 363 (37.62%) 116 (43.77%)
True 240 (25.03%) 52 (22.13%) 222 (23.01%) 55 (20.75%)
NA 342 (35.66%) 76 (32.34%) 383 (39.69%) 94 (35.47%)

# New or enlarged lesions T2 Mean (sd) 1 (1.486) 1 (1.401) 1 (1.54) 1 (1.32)

Lesions T2
False 55 (5.74%) 10 (4.26%) 61 (6.32%) 12 (4.53%)
True 275 (28.68%) 62 (26.38%) 256 (26.53%) 65 (24.53%)
NA 629 (65.59%) 163 (69.36%) 648 (67.15%) 188 (70.94%)

Delta MRI T0 Mean (sd) -512 (282.0) -534 (275.5) -526 (280.304) -525 (280.263)

Outcomes Outcome occurred False 367 (83.41%) 93 (84.55%) 384 (75.29%) 97 (75.78%)
True 73 (16.59%) 17 (15.45%) 126 (24.71%) 31 (24.22%)

Outcome time Mean (sd) 5 (4.4) 5 (4.1) 5 (4.396) 5 (4.396)
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Table 5. MS Retrospective Dataset with environmental data. For the training and test dataset, we report the number of patients,
EDSS scores, and environmental data. We also report the total number of entries in row “Total”.

Dataset Patients EDSS Scores Environmental
Training 199 834 113,923
Test 81 290 46,354
Total 280 1,124 160,277

Table 6. Comparison between training and test populations for MS clinical and environmental task-specific dataset.
Continuous variables are shown as medians (interquartile range); categorical variables as count (percentage on available data).

Train Test

Sex Female 148 (74.37%) 54 (66.67%)
Male 51 (25.63%) 27 (33.33%)

Ethnicity

Caucasian 181 (90.96%) 77 (95.06%)
Hispanic 2 (1.00%) 0 (0.00%)

Black African 2 (1.00%) 0 (0.00%)
NA 14 (7.04%) 4 (4.94%)

Residence classification
Cities 53 (26.63%) 20 (24.69%)

Rural Area 52 (26.13%) 22 (27.16%)
Towns 94 (47.24%) 39 (48.15%)

MS in pediatric age False 176 (88.44%) 77 (95.06%)
True 23 (11.56%) 4 (4.94%)

Age at onset median (IQR) 28 (22-36) 30 (24-34)

Age at baseline median (IQR) 38 (31-47) 38 (33-47)

Diagnostic delay median (IQR) 12 (4-47) 12 (3-28)

Spinal cord symptoms False 143 (71.86%) 54 (66.67%)
True 56 (28.14%) 27 (33.33%)

Brainstem symptoms False 146 (73.37%) 57 (70.37%)
True 53 (26.63%) 24 (29.63%)

Eye symptoms False 148 (74.37%) 59 (72.84%)
True 51 (25.63%) 22 (27.16%)

Supratentorial symptoms False 140 (70.35%) 50 (61.73%)
True 59 (29.65%) 31 (38.27%)

Other symptoms
Sensory 1 (0.50%) 1 (1.23%)

Epilepsy 1 (0.50%) 0 (0.00%)
False 197 (99.00%) 80 (98.77%)

EDSS median (IQR) 2.0 (1.5-3.0) 2.0 (1.5-3.5)
NA 3 (0.36%) 0 (0.00%)

Outcome time median (IQR) 59 (24-122) 53 (25-130)
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some statistics and the comparison between training and test populations for a subset of variables.317

Table 7. ALS Prospective Dataset. The two tasks share the same training dataset. Thus, we report the number of patients, the
number of ALSFRS-R questionnaires evaluated by clinicians (Column “Clinical ALSFRS-R”) or self-assessed by patients
(Column “Self ALSFRS-R”), and the number of sensor data rows, for the training and both test datasets. Row “Totale unique”
reports the number of unique entries inside the Resource Description Framework (RDF) dataset.

Dataset Patients Clinical ALSFRS-R Self ALSFRS-R Sensor Data
Training 52 189 301 13,946
Test-Task1 29 58 - - - 6,345
Test-Task2 11 - - - 22 2,347
Total Unique 86 247 323 21,456

Table 8. Comparison between training and test populations of the Prospective ALS task-specific datasets. Continuous
variables are presented as medians (interquartile range); categorical variables as count (percentage on available data), for each
level.

Train Test (Task 1) Test (Task 2)

Female 11 (21.15%) 9 (42.86%) 4 (36.36%)
Male 41 (78.85%) 12 (57.14%) 7 (63.64%)
Diagnostic delay (m) 0.8 [0.4-1.3] 0.9 [0.4-1.8] 1.0 [0.4-1.6]
Age at diagnosis 56 [49-64] 62 [57-66] 60 [52-66]
FVC 85 [79-95] 84 [79-98] 92 [79-113]
Weight 75 [64-81] 67 [60-71] 65 [60-70]
BMI 25 [23-27] 24 [22-26] 22 [21-25]
#N ALSFR-R CT 3.5 [2.0-5.0] - -
#N ALSFR-R APP 5.0 [3.0-8.0] - -
Sensor follow-up (m) 9.8 [5.2-13.6] 8.9 [5.3-14.2] 5.9 [5.5-8.3]
Sensor adherence 98% [89%-100%] 98% [85%-100%] 100% [99%-100%]

For more detailed information on each iDPP@CLEF challenge, the tasks, the expected outcomes, how these were computed,318

and the available patient attributes for each task, interested readers can refer to the iDPP@CLEF overview papers8–10
319

and the challenges’ websites (https://brainteaser.dei.unipd.it/challenges/idpp2022/, https://320

brainteaser.dei.unipd.it/challenges/idpp2023/, https://brainteaser.dei.unipd.it/challenges/321

idpp2024/).322

Data Anonymization323

The institutional ethics boards of each medical centre involved in the BRAINTEASER project approved the data collection and324

the study. Specifically, this study was conducted in compliance with the Declaration of Helsinki, and the BRAINTEASER325

project was approved in July 2021 by the Ethics Committees of the Lisbon Medical Academic Center, Portugal (Protocol326

number 162-2021), AOU Città della Salute e della Scienza di Torino, Italy (Protocol number 0079511), and IRCCS Mondino327

Foundation, Pavia, Italy (Protocol number 20210065554 and 20210080126), and on the 20th of September 2021 by the Ethics328

Committee of Gregorio Marañon Hospital in Madrid, Spain (Protocol id BRAINTEASER_01).329

Although the original data contains sensitive information, the released data has been fully anonymised, and multiple330

safeguards have been implemented to ensure that individuals cannot be identified, even through indirect identifiers.331

The dataset does not contain any direct identifiers or biometric data. It includes information on genetic mutations on relevant332

genes (e.g., C9orf72), which has been generalised to a binary value indicating the presence or absence of a mutation. In cases333

where a patient has not been tested, this value is recorded as null.334

The original dataset included certain personal quasi-identifiers, such as location, biological sex, ethnic group, and visit335

dates. To mitigate the risk of re-identification, substantial transformations were applied. Residency location was categorised336

into three general groups—city, town, and rural areas—using the European Nomenclature of Territorial Units for Statistics337

(NUTS) classification. Biological sex was encoded as a binary value, and the "ethnic origin" field was generalised into broad338

categories: “Black African,” “Caucasian,” and “Hispanic.” As for visit and environmental observation dates, these were made339

relative to a relevant date in the patient’s history, which is not disclosed.340
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The relevant dates, referred to as Time 0, serve as the reference for all other dates:341

• The date of the first recorded ALSFRS-R score for retrospective ALS data.342

• The first visit following recruitment for prospective ALS data.343

• The date of the first EDSS score after the patient received a confirmed diagnosis of MS for clinical-only MS data.344

• The date of the first recorded EDSS after January 1, 2013, for clinical and environmental MS data.345

Given the sensitive nature of the data, since all subjects are diagnosed with rare diseases (either ALS or MS), and most346

attributes concern health data, such as symptoms and disease onset, we have implemented multiple measures to minimise the347

risks associated with potential re-identification. Primarily, we followed the principle of data minimisation, releasing only those348

attributes that have been scientifically validated as relevant to disease progression. Moreover, the released data pertains to a349

specific time window before the event that needs to be predicted. We also applied extensive generalisation, with most fields350

containing either binary values or values from small, controlled dictionaries that represent highly generalised categories.351

Finally, any applicant wishing to access the data must sign a Data Usage Agreement (DUA), which ensures that the data352

will only be used for ethical and legal purposes. The agreement stipulates that users will not attempt to de-anonymise the data353

and must immediately notify us if any accidental breach occurs.354

Data Records355

Access to the datasets can be requested through Zenodo7 (https://zenodo.org/records/14857741), following the356

BRAINTEASER Data Sharing Policy. Figure 3 visually illustrates the structure of the repository. The repository contains two357

main directories: one for retrospective data and one for prospective data. The retrospective data directory is divided into two358

subdirectories: “ALS” and “MS”. The “MS” retrospective data directory is further split into two subdirectories: “clinical only”359

and “clinical and environmental”. The prospective data directory contains a single subdirectory, named “ALS”, which holds360

the ALS prospective data. Each of these four directories corresponds to a full dataset and includes an “RDF” subdirectory,361

which contains the full dataset in RDF format and the queries used to generate the task-specific datasets. Additionally, each362

full dataset directory includes a “CSV” subdirectory, containing the task-specific datasets derived from the dataset. Each363

task-specific dataset directory contains two subdirectories, one for training and one for test data. Each task-specific dataset364

directory also includes a .txt file that contains the description of all the fields in the associated CSV files.365

The BRAINTEASER Ontology366

The Full datasets are ingested into an RDF graph compliant with the BRAINTEASER Ontology (BTO)24 (https://w3id.367

org/brainteaser/ontology/). The BTO is an ontology specifically designed to represent clinical data related to368

ALS and MS in a comprehensive and modular way. It was developed through collaboration between engineers, medical369

professionals, and domain experts. The ontology unifies data schemas from multiple centres into a single, common structure,370

ensuring that it meets the diverse requirements of real-world clinical scenarios. This design approach enhances the portability371

and interoperability of the data. The BTO design is centred around patients and the clinical events that occur throughout372

each patient’s lifecycle. The BTO adheres to several design principles that ensure compliance with Open Biological and373

Biomedical Ontology Foundry (OBO) (https://obofoundry.org/principles/fp-000-summary.html) and374

the FAIR principles25 (https://www.go-fair.org/fair-principles/), promoting its adoption in diverse contexts.375

Additionally, BTO incorporates classification schemes that reference abstract concepts in other semantic resources, following376

the Simple Knowledge Organization System (SKOS) data mode (https://www.w3.org/TR/skos-reference/).377

This approach helps BTO avoid classism26, reducing the number of required URIs and simplifying query complexity. For378

in-depth technical details and the validation of BTO, we resort the interested reader to24.379

Technical Validation380

The data published here are collected from real-life clinical practice or obtained through wearable sensors, making it intrinsically381

of high quality. In the remainder of this section, we describe how such data have been validated using Shapes Constraint382

Language (SHACL) and by the research community when used in practice within the iDPP@CLEF challenges (held from 2022383

to 2024).384
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ALS Retrospective

datasetA (predict NIV)

datasetB (predict PEG)

datasetC (predict death)

path: retrospective/ALS/CSV/data/datasetA

path: retrospective/ALS/CSV/data/datasetB

path: retrospective/ALS/CSV/data/datasetC

path: retrospective/ALS/RDF

MS Retrospective
(clinical only)

datasetA (predict worsening def 1)

datasetB (predict worsening def 2)

path: retrospective/MS/clinical_only/CSV/data/datasetA

path: retrospective/MS/clinical_only/RDF

path: retrospective/MS/clinical_only/CSV/data/datasetB

path: retrospective/MS/clinical_environmental/RDF
    retrospective/MS/clinical_environmental/CSV

MS Retrospective
predict relapses

ALS Prospective

Task1 (predict clinician ALSFRS-R)

Task2 (predict self-assessed ALSFRS-R)

path: prospective/ALS/CSV/data/Task1

path: prospective/ALS/RDF

path: prospective/ALS/CSV/data/Task2

Demographic and static clinical data Environmental data Wearable data

Prospective dataset Retrospective dataset Full dataset Task-specific dataset

Figure 3. Structure of the Zenodo repository for the BRAINTEASER datasets. From each full dataset (in pink) we derive the
task-specific datasets (in green) corresponding to different tasks of iDPP@CLEF. The only exception is MS clinical and
environmental data, where the full dataset and task-specific dataset coincide. The icons indicate if the data are retrospective
(i.e., available before the beginning of the BRAINTEASER project) or prospective (i.e., collected during the BRAINTEASER
project) and which data are included in the dataset.
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SHACL Validation385

To ensure data consistency, the RDF graph resulting from the ingestion of ALS and MS patients from different medical centers,386

namely the BRAINTEASER Knowledge Base (KB), is validated using SHACL (https://www.w3.org/TR/shacl/).387

A W3C recommendation language for validating RDF data, SHACL validation is based on shapes, graph patterns establishing388

specific constraints and determining the nodes in a graph that should be evaluated against them. Validating data against a389

set of constraints is especially important for RDF graphs, as it helps identify issues within a dataset and validates synthactic390

data quality, facilitating reliable data exchange and interoperability27. To this end, we represent each quality condition of the391

retrospective full datasets as a SHACL shape, that is then applied to the BRAINTEASER KB to check for inconsistencies. To392

provide an example of such an approach, we report the shape to verify all patients are linked to a diagnosis in Listing 1.393

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix bto: <https://w3id.org/brainteaser/ontology/schema/> .

bto:Diagnosis4All
a sh:NodeShape ;
sh:targetClass bto:Patient ;
sh:property [

sh:path bto:undergo ;
sh:qualifiedValueShape [

sh:class bto:Diagnosis
] ;
sh:qualifiedMinCount 1 ;
sh:qualfiedMaxCount 1 ;

] ;.

Listing 1. SHACL Shape verifying all patients are linked to a diagnosis.

Community Validation of the ALS BRAINTEASER Data394

For the ALS track in iDPP@CLEF 2022 and 2023, we used the ALS retrospective full dataset split into three task-specific395

datasets.396

iDPP@CLEF 2022. The first iteration of iDPP@CLEF focused exclusively on predicting the progression of ALS. The397

challenge was organized into three tasks (and thus three task-specific datasets): i) predicting the patient’s need for NIV; ii)398

predicting the need for PEG; iii) predicting the occurrence of death. Each task was further divided into two subtasks: ranking399

patients by the risk of event occurrence or predicting the time window in which the event would occur. Participants could400

submit two types of answers: either using all available data for up to 6 months after the first visit (i.e., the entire dataset), or401

using all data available up until the first ALSFRS-R questionnaire was recorded.402

Five teams from four countries participated in the first edition of iDPP@CLEF: France, Greece, Italy, and Portugal. The403

first iteration allowed us to identify 48 patients lost to follow-up, with only a single ALSFRS-R recorded, for which the models404

failed to make predictions. This led to introducing a new filtering criterion: patients lost to follow-up must have at least two405

ALSFRS-R records. These patients were removed from the datasets released, as they were not used for evaluation in the first406

iDPP@CLEF.407

iDPP@CLEF 2023. In the second iteration of iDPP@CLEF, the three tasks from iDPP@CLEF 2022 were extended by408

incorporating environmental data. The objective was to rank patients based on the risk of requiring medical treatment (NIV or409

PEG) or the occurrence of death, while also using environmental data. Participants could submit three types of predictions: i)410

ignoring environmental data; ii) using up to 6 months of environmental data before and after the first recorded ALSFRS-R; iii)411

using any arbitrary window of environmental data. Two teams from Portugal and Tunisia participated in the ALS-related track412

in iDPP@CLEF 2023.413

iDPP@CLEF 2024. The final iteration of iDPP@CLEF introduced a new prospective dataset. The task was to predict414

ALSFRS-R scores, as assessed by clinicians and self-reported by patients enrolled in the BRAINTEASER project.415

A total of 7 teams participated in the ALS track of iDPP@CLEF 2024, with teams from institutions in Botswana, Italy,416

Portugal, Romania, and the United States. Most of the participating teams observed better performance from predictive417

algorithms when predicting clinician-assessed data. This is likely due to clinician assessments being more consistent and418

objective, whereas self-reported ALSFRS-R scores tend to be more variable and less precise, as they were provided by419

non-expert patients directly affected by ALS progression.420
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Community Validation of the MS BRAINTEASER Data421

The MS track was first introduced in iDPP@CLEF 2023 and continued in iDPP@CLEF 2024. There are two MS full datasets,422

one for each edition of the track. Both are retrospective, with one containing environmental data and the other not.423

iDPP@CLEF 2023. The second iteration of iDPP@CLEF was the first to feature the MS track. Specifically, iDPP@CLEF424

2023 introduced two tasks related to MS, both focused on predicting the risk of disease worsening, either in terms of probability425

or as a cumulative probability over time. Each task was further divided into two subtasks, with different definitions of worsening426

based on crossing EDSS threshold values. For each subtask, participants were given a dataset containing 2.5 years of visits,427

along with the occurrence and time of the worsening event. A total of 9 teams participated in at least one of the two MS428

tasks in iDPP@CLEF 2023, with 7 teams participating in both tasks and both subtasks. These teams came from 5 different429

countries: Bulgaria, Czech Republic, Italy, Portugal, and Spain. Overall, the performance on the MS tasks was promising, with430

participants achieving AUC scores as high as 92.4%.431

iDPP@CLEF 2024. The final iteration of iDPP@CLEF focused on predicting relapses using environmental data and EDSS432

subscores, examining whether exposure to different pollutants was a relevant feature for relapse prediction. To this end, the MS433

dataset from the previous year was extended by adding environmental data and revised by filtering out EDSS data and patients434

not aligned with the environmental data. The environmental data included information on patients’ exposure to various air435

pollutants identified as health risks, as well as weather factors such as wind speed, global radiation, and precipitation. For this436

task, participants were asked to predict the week of the first relapse after the baseline, using weekly-grained environmental data437

and the patient’s status at baseline (the first available visit in the considered time period). Two teams from Italy participated in438

the task in iDPP@CLEF 2024, underscoring that, while environmental data can improve relapse prediction, better methods for439

extracting and managing pollution exposure patterns are necessary to effectively leverage such data.440

Limitations441

There are several aspects to consider when using the BRAINTEASER datasets. First, while some examinations ideally should442

take place on the same day, in certain cases, they are delayed by a few days in our dataset. This delay is likely due to the443

unavailability of patients or clinicians, resulting in the examination being postponed. Secondly, there are missing values in the444

data. In real-life clinical practice, it is sometimes impossible to collect all data, perform certain examinations, or ensure patients445

attend every consultation. To address this limitation, statistical methods such as imputation techniques should be employed to446

replace missing data with plausible values. Additionally, as dropout rates and survival times differ among patients, the number447

of consultations per patient varies, and the time between visits is inconsistent for all patients. Finally, concerning prospective448

data, sensor recordings may not be available every day. Gaps in the data may occur due to patient non-adherence or technical449

issues during data collection. Despite these challenges, it is important to note that they reflect the realities of real-world clinical450

practice. These issues are common in any AI-driven monitoring and progression modelling technique applied to clinical451

data. Therefore, our datasets provide realistic and practical training and assessment, ensuring that the results are reliable and452

applicable in real-world conditions, the ultimate target scenario for AI-driven monitoring models.453

Usage Notes454

Data is publicly available upon completion and return of the Data Usage Agreement. In particular, the data-sharing policy is455

developed under the General Data Protection Regulation (GDPR, EU Regulation 2016/679), which provides the basis for sharing456

personal information. To obtain these datasets, the researcher should send a request (The request should be sent to brainteaser-457

data@dei.unipd.it). for access to the data, together with a detailed and structured study proposal that the BRAINTEASER458

Project Data Committee will evaluate to understand the use purposes. The proposal will be evaluated to ensure that the objective459

aligns with the BRAINTEASER Project objectives (i.e., improving the knowledge on ALS and MS and the quality of life of460

people living with it), and to ensure that the applicant has the means and the interest to protect the privacy of the individuals461

who contributed to the dataset with their data. After the decision and authorisation, the requesting research group will receive462

all the information and data. The subsequent passage, following the analysis and the potential results, will be characterized by463

the revision and validation process made by the BRAINTEASER Project Data Committee. The RDF graphs can be imported464

into an RDF-compliant Database Management System, such as GraphDB (https://graphdb.ontotext.com/).465

Code availability466

The code and models developed by the participants of the iDPP@CLEF 202228, iDPP@CLEF 202329, and iDPP@CLEF467

202430 challenges are publicly available and can be used to replicate the results.468
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Institutional Ethics Board Approval469

The institutional ethics boards of each medical centre involved in the BRAINTEASER project approved the data collection and470

the study. Specifically, this study was conducted in compliance with the Declaration of Helsinki, and the BRAINTEASER471

project was approved in July 2021 by the Ethics Committees of the Lisbon Medical Academic Center, Portugal (Protocol472

number 162-2021), AOU Città della Salute e della Scienza di Torino, Italy (Protocol number 0079511), and IRCCS Mondino473

Foundation, Pavia, Italy (Protocol number 20210065554 and 20210080126), and on the 20th of September 2021 by the Ethics474

Committee of Gregorio Marañon Hospital in Madrid, Spain (Protocol id BRAINTEASER_01).475
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