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Marek Wodzinski, Riccardo Fratti, Damian Podareanu, Alessandro Caputo,
Svetla Boytcheva, Simona Vatrano, Filippo Fraggetta, Iris Nagtegaal, Gian-
maria Silvello, Manfredo Atzori, Henning Müller

• Automatic weak labels can be adopted as weak labels to train deep
learning algorithms to analyze biomedical samples, allowing the ex-
ploitation of large unannotated datasets.

• Algorithms generating weak labels with around 10% of mislabeled sam-
ples can be used to provide automatic weak labels.



Automatic Labels are as Effective as Manual Labels in

Digital Pathology Images Classification with Deep

Learning

Niccolò Marini*a, Stefano Marchesin*b, Lluis Borras Ferrisa, Simon
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Abstract

The increasing availability of biomedical data is helping to design more
robust deep learning (DL) algorithms to analyze biomedical samples. Cur-
rently, one of the main limitations to training DL algorithms to perform a
specific task is the need for medical experts to label data. Automatic meth-
ods to label data exist; however, automatic labels can be noisy, and it is
not completely clear when they can be adopted to train DL models. This
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paper aims to investigate under which circumstances automatic labels can
be adopted to train a DL model on the classification of Whole Slide Images
(WSI). The analysis involves multiple architectures, such as Convolutional
Neural Networks (CNN) and Vision Transformer (ViT), and 10’604 WSIs as
training partition, collected from three use cases: celiac disease, lung cancer,
and colon cancer, which include respectively binary, multiclass and multil-
abel data. The results allow identifying 10% as the percentage of noisy labels
that lead to train effective models for the classification of WSIs, reaching re-
spectively F1-score 0.906, 0.757, 0.833. Therefore, an algorithm generating
automatic labels needs to fit this criterion to be adopted. The application
of the Semantic Knowledge Extractor Tool (SKET) algorithm to automatic
extract concepts and use them as labels leads to performance comparable
to that obtained with manual labels since it generates a percentage of noisy
labels between 2% and 5%. Automatic labels are as effective as manual ones,
achieving solid performance comparable to that obtained by training models
with manual labels.

Keywords: Automatic Weak Labels, Deep Learning, Histopathology Image
Classification, Noisy Labels,

1. Introduction

1.1. Background

Developing deep learning (DL) algorithms fosters the design of new tools
that can be trained on clinical data without human intervention, especially in
domains where annotations are expensive, such as histopathology. Histopathol-
ogy is the gold standard to diagnose cancer (Van der Laak et al., 2021;
De Matos et al., 2021). The domain involves the analysis of small tissue
slices to identify microscopic findings related to dangerous diseases (Gurcan
et al., 2009), such as cancer. Tissue slices undergo microscopic examina-
tion by a medical expert named a pathologist, who usually needs several
minutes to analyze a single sample (Krupinski et al., 2013). Despite the in-
creasing digitization of tissue samples, histopathological samples are rarely
analyzed exploiting digital aid in clinical practice (Fraggetta et al., 2017,
2021). Digital pathology is a domain involving the management and dig-
itization of tissue specimens, called Whole Slide Images (WSI). WSIs are
high-resolution images stored with a pyramidal format, to capture different
magnification levels of details (Merchant and Castleman, 2022). Usually, the
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highest resolution levels result in a spatial high-resolution of 0.25–0.5µm per
pixel, corresponding to an optical resolution of 20-40x. WSIs are usually cou-
pled with pathology reports. Pathology reports are semi-structured free-text
documents containing information about the patient’s anamnesis, the tissue
specimen type, and the findings and observations identified by a patholo-
gist during the tissue examination (Hewer, 2020; Hanna et al., 2020). WSIs
and reports are usually stored in the Laboratory Information System (LIS),
which easily enables sample retrieval. The increasing collection of biomedical
samples encourages the design of automatic tools to analyze WSIs under the
computational pathology domain (Van der Laak et al., 2021; Madabhushi
and Lee, 2016; Litjens et al., 2022). Most of the computational domain algo-
rithms are currently based on deep learning, such as CNNs (Convolutional
Neural Networks) or ViT (Visual Transformers) (Xu et al., 2023; Cifci et al.,
2023).

Even if computational pathology algorithms show accurate and robust
performance, in tasks such as WSI classification or segmentation, several
challenges are still open, such as data labels (Madabhushi and Lee, 2016;
Campanella et al., 2019; Van der Laak et al., 2021; Abels et al., 2019; Chen
et al., 2022; Marini et al., 2024). Data labels are required to train super-
vised learning algorithms. However, the collection of labels is not trivial,
considering both strong and weak annotations. Even if strong labels (i.e.,
pixel-wise annotations) usually achieve the most accurate performance when
training a deep learning model, they require a pathologist to analyze sam-
ples, which can be time-consuming and often unfeasible (Karimi et al., 2020).
Therefore, the research based on the analysis of WSIs is mostly based on the
exploitation of weak (i.e., image-level) labels. Weak labels are related to
the global image, even if they originate from a region of the image, includ-
ing specific characteristics, such as cancer (Deng et al., 2020). Weak la-
bels are inherently more noisy than pixel-wise annotations since the regions
leading to a specific label may be a small percentage of the whole image
(e.g., 1-2%). For this reason, algorithms based on weak labels require larger
training datasets to reach accurate performance. Currently, most weakly-
supervised algorithms in computational pathology are based on the Multiple
Instance Learning (MIL) framework (Carbonneau et al., 2018), which mod-
els the whole image as a bag of instances, where only global annotations are
available. MIL framework includes several algorithms, which lately showed
high performance when adopted on large-scale datasets (Campanella et al.,
2019; Ilse et al., 2018; Wang et al., 2019; Lu et al., 2021; Hashimoto et al.,
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2020; Chen et al., 2022). For example, Campanella et al. (2019) showed that
it is possible to reach almost perfect predictions on binary classification (can-
cer vs. non-cancer) using around 10’000 weakly annotated WSIs on three use
cases: skin, breast, and prostate images. Weak labels are produced faster
than strong ones, since they can be extracted from reports. For example,
analyzing a report may take approximately 30 seconds/1 minute, compared
with analyzing an image, which takes around an hour. However, human in-
tervention is usually still required to analyze reports unless the Laboratory
Information System (LIS), where the samples and corresponding reports are
stored, has a specific structure to retrieve data automatically according to
the characteristics that can be used as labels. Unfortunately, most LISs do
not show this feature since they are organized in heterogeneous ways.

Automatic methods for extracting concepts from reports and using them
as weak labels already exist (Marini et al., 2022), but noisy characteristics
of weak labels can make automatic labeling ineffective. This paper investi-
gates under which circumstances automatic labels (i.e., labels automatically
generated by an algorithm) can be adopted to train deep learning models,
alleviating the need for experts to annotate data. In particular, the goal is
to identify when the results achieved using this type of label reach results
comparable to those obtained using manual labels (i.e., labels produced by a
medical expert) so that data included in LISs can be fully exploited to build
more robust and accurate tools to diagnose diseases. The characteristics in-
vestigated in the paper involve the percentage of wrongly automatic labels
necessary to reach comparable performance obtained with manual labels, the
nature of labels (e.g., binary, multiclass, and multilabel), and the deep learn-
ing architecture (robust or less robust to noise). Wrongly automatic labels
are annotations that are automatically produced by an algorithm and do not
match the ground truth (i.e., they are manually made).

1.2. Contribution

The paper includes a comparison of deep learning architecture trained
with automatic and manual labels on the classification of WSIs. The com-
parison involves two sets of experiments: a controlled scenario and a real-case
scenario. In the controlled scenario, manual labels are randomly perturbed
with different percentages of noise, simulating the output of an algorithm
to generate automatic labels. The random perturbation involves modifying
the labels. In the celiac disease use case, labels are flipped since the dataset
includes binary annotations. A different class is assigned to a sample in the
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lung cancer use case since the dataset includes multiclass annotations. In
the colon cancer use case, the modifications involve one or more classes for
every sample since the dataset includes multilabel annotations. In the real-
case scenario, the Semantic Knowledge Extractor Tool (SKET) (Marchesin
et al., 2022) is used to extract meaningful concepts from reports that are
weak labels for the corresponding samples.

The analysis involves three tissue use cases, celiac disease, lung cancer,
and colon cancer, composing a training dataset with over 10’000 WSIs, used
to train three deep learning architectures: CLAM (Lu et al., 2021), transMIL
(Shao et al., 2021) and Vision Transformer (ViT) (Chen et al., 2022).

Celiac Disease

Lung Cancer

Colon Cancer

Figure 1: Overview of the tissue use cases analyzed in the paper. The upper line includes
examples of duodenal tissue samples related to celiac disease. The central line includes
examples of lung tissue samples. The bottom line includes examples of colon samples.

Celiac disease (CD) is an autoimmune disorder leading to damage in the
small intestine, resulting in a range of gastrointestinal and systemic symp-
toms (Caio et al., 2019). Globally, celiac disease affects about 1-2% of the
population (Lebwohl and Rubio-Tapia, 2021), with variations across regions.
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In particular, the examination of biopsies aims to identify villous atrophy,
crypt hyperplasia and increased intraepithelial lymphocytes. This paper la-
bels duodenal samples with celiac disease or normal tissue (binary labels).

Lung cancer is the leading cause of death related to cancer worldwide
(Schabath and Cote, 2019; Organization, 2023). It is categorized into two
main primary groups: Non-Small Cell Lung Cancer (NSCLC), which repre-
sents the large majority of cases (about 85% of cases), and Small-Cell Lung
Cancer (SCLC), which is less common, but more aggressive. Furthermore,
NSCLC is further described with subtypes, such as LUng ADenocarcinoma
(LUAD), LUng Squamous cell Carcinoma (LUSC). Diagnosis of lung cancer
through biopsies often involves the identification of irregular cell patterns,
architectural distortion, and increased cellular density (Travis, 2011). In
this paper, lung samples are labeled with SCLC, LUAD, LUSC, and Normal
Tissue.

Colon cancer is the fourth most often diagnosed cancer worldwide (Benson
et al., 2018). Colon cancer diagnosis involves the identification of multiple
concepts, such as the presence of cancer and the evaluation of polyp shapes
and possible abnormalities leading to dysplasia. In this paper, colon sam-
ples are labeled with colon cancer, high-grade dysplasia (HGD), low-grade
dysplasia (LGD), hyperplastic polyp and normal tissue (multilabel labels).
Figure 1 shows some histopathological samples corresponding to the three
tissues.

2. Materials and Methods

2.1. Dataset composition

The dataset used in this paper includes WSIs and reports (paired to-
gether) of celiac disease, lung cancer, and colon cancer collected from two
hospitals: the Catania cohort and Radboudumc (RUMC).

WSIs are used to train and test different computer vision architectures
on image-level classification. WSIs are gigapixel images, including tissue
samples, that can exhibit significant heterogeneity, for example, in terms of
staining (Marini et al., 2021a, 2023) and sample types. Image heterogeneity
is a consequence of different acquisition procedures across laboratories related
to the chemical reagents applied to the specimen and to the slide scanners
as a whole. One of the main consequences of the heterogeneity is the stain
variability, leading to different color variations, intensity, and uniformity of
stains across different slides (as shown in Figure 1). The WSIs collected in
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this dataset also show the same characteristics, aiming to replicate a common
scenario in digital pathology. WSIs collected from the Catania cohort were
scanned with two 3DHistech scanners and two Aperio scanners and stored
with a magnification of 20-40x; WSIs collected from RUMC were scanned
using 3DHistech scanners, mainly stored at 40x magnification.

Reports are used to extract meaningful concepts used as weak automatic
labels to train the model to classify WSIs. Reports include free-text de-
scriptions summarizing the findings from tissue examination. The findings
are reported in a field named ‘Conclusion’, containing either macroscopic or
microscopic observations. Even if a report includes many fields, only the find-
ings are relevant for the analysis proposed in the paper. Therefore, additional
patient information, such as family history or personal data, is discarded.
Textual reports show heterogeneity, mainly related to the source language
and the textual content. Reports are collected from an Italian and a Dutch
hospital, therefore they have to be translated into English, to standardize
the analysis. The textual content slightly differs across sources because the
Catania cohort reports are related to a single slide, while the RUMC reports
include a specific field for the findings identified in a tissue block, which may
encompass multiple slides related to different images. The textual content
slightly differs across sources because the Catania cohort reports contain a
field specifically for the findings identified in a single slide, while the RUMC
reports include a field specifically for the findings identified in a tissue block,
which may encompass multiple slides. Therefore, RUMC reports needed a
pre-processing step to separate the content and link it to the corresponding
WSI. Furthermore, samples are collected over the ears and produced by many
different pathologists, each adopting a unique style of writing.

The dataset includes samples collected from three different use cases:
celiac disease, lung cancer, and colon cancer. Data are randomly selected
from LISs to simulate a real-case scenario. The goal is to show that the
approach can be generalized to different types of tissue (both in terms of
images and reports). Different labels are used: celiac disease samples are
annotated with binary labels, lung samples with multiclass labels, and colon
samples with multilabel samples.

Table 1 includes a detailed composition of data related to celiac disease
collected from pathology reports, split into training and testing partitions.
Data are labeled with binary labels: celiac disease and normal tissue.

Table 2 includes a detailed composition of data related to lung cancer
collected from pathology reports, split in training and testing partitions.
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Table 1: Composition of the samples related to the celiac disease use case, considering
automatically generated labels (automatic labels) and ground truth labels (manual labels).
Data are labeled with binary labels: celiac disease and normal tissue. The dataset is split
into training and testing partitions. The model is trained and validated, adopting a 10-fold
cross-validation approach.

Source Celiac Disease Normal Tissue Total
Training dataset: Automatic Labels

Catania 47 711 758
RUMC 217 524 741
Total 264 1235 1499

Training dataset: Manual Labels
Catania 61 697 758
RUMC 223 518 741
Total 284 1235 1499

Testing dataset
Catania 10 83 93
RUMC 37 63 100
Total 47 146 193

Table 2: Composition of the samples related to the lung cancer use case, considering
automatically generated labels (automatic labels) and ground truth labels (manual labels).
Data are labeled with multiclass labels: Small-Cell Cancer, Non-Small Adenocarcinoma
Cell Cancer, Non-Small Squamous Cell Cancer, Normal Tissue. The dataset is split into
training and testing partitions. The model is trained and validated, adopting a 10-fold
cross-validation approach.

Source SCLC LUAD LUSC Normal Total
Training dataset: Automatic Labels

Catania 49 526 250 226 1051
RUMC 1 262 195 1041 1499
Total 50 788 445 1267 2550

Training dataset: Manual Labels
Catania 50 519 271 211 1051
RUMC 1 260 173 1065 1499
Total 51 779 444 1276 2550

Testing dataset
Catania 12 62 67 32 173
RUMC 0 55 29 110 194
Total 12 117 96 142 367

Data are labeled with multiclass labels: Small-Cell Cancer, Non-Small Ade-
nocarcinoma Cell Cancer, Non-Small Squamous Cell Cancer, Normal Tissue.
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Table 3: Composition of the samples related to the colon cancer use case, considering
automatically generated labels (automatic labels) and ground truth labels (manual labels).
Data are labeled with multilabel annotations: Adenocarcinoma, High-Grade Dysplasia
(HGD), Low-Grade Dysplasia (LGD), Hyperplastic Polyp, Normal Tissue. Due to the
multilabel nature of labels, the total samples for each class may not correspond to the
total number of samples. The dataset is split into training and testing partitions. The
model is trained and validated adopting a 10-fold cross-validation approach.
Source Adenocarcinoma HGD LGD Hyperplastic Normal Total

Training dataset: Automatic Labels
Catania 776 761 1288 511 596 3095
RUMC 383 377 853 943 1341 3460
Total 1159 1138 2141 1454 1937 6555

Training dataset: Manual Labels
Catania 865 774 1273 535 570 3095
RUMC 394 362 878 965 1309 3460
Total 1259 1136 2151 1500 1879 6555

Testing dataset
Catania 111 96 113 32 98 348
RUMC 75 65 146 119 193 520
Total 186 161 259 151 291 868

Table 3 includes a detailed composition of data related to colon cancer col-
lected from pathology reports, split into training and testing partitions. Data
are labeled with multilabel labels: Adenocarcinoma, High-Grade Dysplasia
(HGD), Low-Grade Dysplasia (LGD), Hyperplastic Polyp, Normal Tissue.

2.2. Data analysis pipeline

The training schema is based on computer vision algorithms to classify
WSIs, comparing the performance of automatic and manual labels during
the training. Those algorithms are based on weak labels since they are eas-
ier to collect, even if they still require the intervention of medical experts.
This paper adopts three different MIL backbones: two CNNs, CLAM and
transMIL, and a ViT. The architectures are trained to evaluate the effect
that automatic labels may have on the training of models to classify WSIs.
Firstly, they are trained with noisy labels, randomly generated to perturb the
manual labels with a different percentage (1,2,5,10,20,50%) of noise. This ex-
periment’s goal is to evaluate the effect that noisy labels have on a model’s
performance. However, this setup does not fit a real-case scenario where au-
tomatic labels are adopted. Noisy labels may be considered wrongly labeled
samples, but not all label mistakes are equally likely to occur. Consider, for
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Automatic labels

A

B Predictions

Computer Vision
algorithm

Textual Report
Analysis

Figure 2: Overview of the data analysis pipeline proposed in the paper. It includes two
steps. The first step (A) involves the analysis of textual reports to extract meaningful
concepts that can be used as weak (automatic) labels for WSIs. The second step (B)
involves image analysis through computer vision algorithms that are transparent to the
user and can be exchanged to predict the content of the images.

example, weak labels inferred by reports: some reports, due to their con-
tent, may be more easily mislabeled. For this reason, a real tool to extract
concepts from reports is adopted: the Semantic Knowledge Extractor Tool
(SKET) (Marchesin et al., 2022). The goal of its application is to evaluate a
real-world scenario in which a tool to generate automatic labels is adopted.
The adoption of SKET allows to have samples that are not randomly misla-
beled, but rather mislabeled due to the content of the corresponding reports,
that can be hard to interpret. This condition also helps test the rules on
the percentage of mislabeled samples identified with randomly perturbated
samples.

Figure 2 shows an overview of the data analysis pipeline.

2.3. Computer vision architectures

The paper compares three computer vision algorithms to classify WSIs
as backbones to evaluate the effect of noisy labels on different architectures,
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including two CNNs and a ViT. The CNNs have a ResNet34 backbone, while
the ViT has a backbone similar to the one shown in Chen et al. (2022),
considering a single magnification level. In both cases, the backbones are
designed to output an embedding of size 128 representing a single WSI, so
that the same classifier can be adopted for all architectures, modifying the
output classes based on the use case.

CLAM. Clustering-constrained Attention Multiple Instance Learning (CLAM)
(Lu et al., 2021) is a MIL framework based on an attention-based network
that highlights relevant regions inside the WSI to improve the WSI-level pre-
diction. CLAM exploits a mechanism on the single instances to aggregate
them on clusters, according to the instance similarity, to enrich the WSI
representation and reach higher WSI-level predictions. CLAM can have one
or more attention branches, depending on the number of classes. In this
paper, a single attention branch (CLAM SB) is used when the model is used
on celiac disease (binary labels), while instead a multiple attention branch
(CLAM MB) is used on the other two use cases.

transMIL. transMIL (Shao et al., 2021) is a MIL framework developed to
exploit the morphological and spatial characteristics of WSIs. Even if mor-
phological and spatial characteristics of images are important, the attention
mechanism does not consider them when evaluating input instances. trans-
MIL exploits Transformer architectures (Vaswani et al., 2017) to highlight re-
lationships between single instances, modeling input instances as a sequence
of tokens and evaluating the similarity among instances.

Vision Transformer. Vision Transformer (Sharir et al., 2021; Han et al.,
2020) is a deep learning architecture adopted to analyze images, adopting
the self-attention mechanism to process input data instead of convolutional
layers, showing more competitive performance in terms of accuracy and effi-
ciency. The architecture processes input data as a sequence of input tokens
that are small sub-regions of the input image (usually 16x16 pixels). The
architecture includes 12 encoder layers producing the embedding to feed the
classifier.

2.4. Semantic Knowledge Extractor Tool (SKET)

SKET (Marchesin et al., 2022) is an unsupervised algorithm combin-
ing a rule-based expert system with machine learning models, chosen to
extract meaningful concepts from reports and use them as weak labels for
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WSIs (Marchesin et al., 2022; Menotti et al., 2023). The algorithm includes
Named Entity Recognition, Entity Linking and Data Labeling. Named En-
tity Recognition involves pre-trained models (ScispaCy models (Neumann
et al., 2019)), developed to work on biomedical data, and large Word2Vec
word vectors (Mikolov et al., 2013) trained on the PubMed Central Open
Access Subset (Mikolov et al., 2013). Entity Linking combines similarity-
matching techniques to match ad-hoc concepts to a reference ontology. Data
Labeling involves mapping the concepts with a set of annotation classes.
SKET is an unsupervised model; therefore, no training data are required to
tune it. This feature is relevant because it does not require data annotation
for training, unlike other Natural Language Processing (NLP) algorithms.

3. Experimental Setup

3.1. Image pre-processing

Image pre-processing includes the WSI splitting into patches. Because of
their gigapixel characteristics, WSIs usually do not fit modern GPU hardware
memory; therefore, they have to be split into patches. In this paper, WSIs
are split 224x224 pixel patches using the Multi Scale Tools library (Marini
et al., 2021b). The choice of the size is related to the characteristics of
ResNet34 backbone, requiring fixed input size. Patches are extracted from
magnification 5x, considering celiac samples, while lung and colon patches
are sampled from magnification 10x. The magnifications are chosen consider-
ing that the magnification allows the identification of peculiar morphological
features, which are useful for the classification task.The choice of the magni-
fication to examine is driven by the characteristics of the problem to solve:
celiac disease diagnosis requires to identify the villous shape and the crypts,
therefore 5x magnification is chosen; on the other hand, lung and colon re-
quire a more refined level of magnification, because the shape of glands is
as relevant as the cell infiltration, therefore 10x is chosen. Not all sampled
patches are selected: the ones from background regions are discarded, being
not informative. Identifying background regions involves applying HistoQC
tool (Janowczyk et al., 2019), which generates tissue masks.

3.2. Report pre-processing

The report pre-processing only involves their translation into English.
Original reports are stored in Italian and Dutch, depending on the work-
flow from which they are collected. The translation is necessary because
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state-of-the-art NLP algorithms are mostly developed to work with inputs in
English. MarianMT neural machine translation models (Junczys-Dowmunt
et al., 2018) are used to translate the content of the reports to English.

3.3. Architecture pre-training

The backbones of deep learning algorithms to analyze images are pre-
trained using self-supervised algorithms: simCLR (Chen et al., 2020) for the
CNNs (CLAM and transMIL), DINO v2 (Oquab et al., 2023) for the ViT.

Both algorithms are adopted to learn meaningful features from unan-
notated input data, exploiting similarities and dissimilarities between input
samples. In this paper, the input data for the algorithms are the patches
sampled from the training partition. Since data are unannotated, no infor-
mation is available regarding patch similarity. Therefore, data augmentation
is adopted: samples are similar to their augmented versions and dissimi-
lar from the other samples within a batch. The algorithms differ in the
data augmentation strategy. simCLR is designed for CNNs and its aug-
mentation pipeline includes several operations, applied with a probability
of 0.5: random rotations (90/180/270 degrees), vertical/horizontal flipping,
hue-saturation-contrast (HUE) color augmentation, RGB shift, color jitter,
gaussian noise, elastic transformation, grid distortions. DINO is designed
for ViT and involves a knowledge distillation mechanism: two networks, a
teacher and a student, are involved in the training. The teacher is a larger
model producing outputs that the student aims to mimic and replicate. Both
models are directly trained with two different augmented versions of input
samples. However, the student is also trained with a cropped version (96x96
pixels) of the teacher inputs. The DINO v2 augmentation pipeline includes
two pipelines: the first one includes color jitter, horizontal/vertical flipping,
Gaussian blur, and solarization.

3.4. Image data augmentation pipeline

Augmentation library (Buslaev et al., 2020) is adopted to apply data
augmentation to input images. The operations involved are random rota-
tions (90/180/270 degrees), vertical/horizontal flipping and hue-saturation-
contrast (HUE) color augmentation. The operations from the data augmen-
tation pipeline are selected with a probability of 0.5 and applied at image-
level, so that all the patches are augmented consistently.
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3.5. Metric to evaluate the performance
The performance of the models is evaluated in terms of WSI classification

using the weighted F1-score. The classification problem can be defined as bi-
nary (celiac disease), multiclass (lung cancer), or multilabel (colon cancer).
F1-score is a metric used to measure the accuracy of a classifier, combin-
ing recall and precision. Precision evaluates how well a classifier is robust
to avoid predicting negative samples as positive ones, while recall evaluates
how well it correctly classifies all the positive samples. Data may show unbal-
anced class distribution in all the use cases, since they are randomly selected
from workflows, aiming to simulate a real-case scenario. For this reason, a
weighted macro F1-score is adopted Weighted F1-score tackles class imbal-
ance, evaluating the F1-scores for the single classes and then averaging them
according to the class support (number of true samples for the class). The
weighted F1 Score is reported as the average and standard deviation of the
ten experiment repetitions evaluated on the test partition.

3.6. Statistical significance test
The performance difference among different setups is evaluated through

the Wilcoxon Rank-Sum test (Woolson, 2007). The test aims to establish if
the results of two different experiments are statistically significantly different
(p-value ¡ 0.05).

3.7. K-fold cross-validation
All the setups presented in the paper are trained using k-fold cross-

validation to evaluate the model’s robustness to the data used for training.
The training partition is divided into k folders (k=10 in this paper). During
every training repetition, k-1 folders are used to train the model, while the
other group is used to validate it. Data are split into partitions considering
the patients so that WSIs collected from a patient cannot be in two different
partitions

3.8. Hardware and Software
The experiments are developed exploiting Python libraries. The deep

learning algorithms are implemented and trained using PyTorch 2.2.0 and run
on a Tesla V100 GPU. WSIs are accessed using openslide 3.4.1 (Goode et al.,
2013). WSI pre-processing involves Multi Scale Tools library (Marini et al.,
2021b) and data augmentation is applied using albumentations 1.3.1 (Buslaev
et al., 2020). The performance of the model is quantitatively evaluated using
the metrics implemented by sci-kit-learn 0.22.
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3.9. Hyperparameters

The optimal configuration setup of both CNN and ViT hyperparameters
is identified using the grid search algorithm. Considering the validation par-
tition, the optimal set reaches the lowest loss function of the classification of
WSIs. The parameters tested with the grid search algorithm are: the batch
size (4 selected; 1,2,4,8 tested); the CNN optimizer (Adam selected); the ViT
optimizer (Adam selected; Adam, LARS and AdamW tested); the number
of epochs when the CNN model is trained (15; over this number of epochs,
the loss function evaluated on the validation partition no longer decreases);
the number of epochs when the HIPT model is trained (15; over this number
of epochs, the loss function evaluated on the validation partition no longer
decreases); the learning rate (10−4; 10−2, 10−3, 10−4, 10−5 were tested); the
decay rate (10−4; 10−2, 10−3, 10−4, 10−5 were tested); the number of nodes
in the intermediate layer after the ResNet and the ViT backbone (128; 64,
128, 256, 512 were tested).

4. Results

4.1. Automatic labels

Table 4: Overview of SKET’s performance on extracting meaningful concepts from pathol-
ogy reports, evaluated in terms of F1-score. The performance is evaluated comparing the
concepts extracted by SKET as labels and the ground truth labels. The algorithm is eval-
uated considering the training partitions of three use cases (celiac disease, lung cancer,
colon cancer), since SKET requires no training. The results are assessed based on data
from Catania and RUMC and their combination for every tissue use case.

Use case Catania RUMC Cumulative
Celiac Disease 0.860 0.964 0.944
Lung Cancer 0.969 0.975 0.976
Colon Cancer 0.976 0.961 0.971

Meaningful concepts can be extracted from pathology reports without the
need for human intervention and can be adopted as weak labels, dramatically
reducing the time needed to collect labels.

The performance of SKET (a tool to extract weak labels from reports)
is evaluated on the training partition of the three use cases since SKET is
a ruled-based algorithm that does not require any training. The extracted
concepts are compared with the manual labels provided by medical experts.

15



Table 4 summarizes the results. SKET reaches a weighted F1-score over
0.944 on every use case, considering the cumulative testing partition. On the
single pathology workflows, the lowest performance is reached considering
the Catania testing partition of celiac disease data (0.860). Otherwise, the
algorithm reaches high-level performance, always over 0.960 in terms of F1-
score.

Table 5: Overview of the time needed by SKET and a human expert to annotate reports.
The comparison involves three possible durations for a human expert and two for SKET.
The values chosen for a human expert are 1s, 10s, and 30s, respectively, extremely (but
unfeasible) fast annotators, ceiling of the annotation range, and floor of the annotation
range. The values chosen for SKET are 0.006s and 0.03s, respectively, with the ceiling
of the annotation range and the floor of the annotation range. The comparison is made
considering 10’000 annotated reports and includes the percentage of time saved.

Time per iteration Automatic (mins) Manual (mins) Percentage saved
A: 0.006s / M: 1s 1 166,6666667 99,40 %
A: 0.03 / M: 1s 5 166,6666667 97,00 %

A: 0.006s / M: 10s 1 1666,666667 99,94 %
A: 0.03 / M: 10s 5 1666,666667 99,70 %

A: 0.006s / M: 30s 1 5000 99,98 %
A: 0.03 / M: 30s 5 5000 99,90 %

Effectively, SKET can be adopted to mine unlabeled datasets and anno-
tate large amounts of data, which can be used to train deep learning models.
Table 5 summarizes the results. When tested on a Tesla V100 GPU, SKET
requires between 0.006 (ceiling annotation time) and 0.03 (floor annotation
time) seconds to extract concepts from a report, depending on its length.
A human expert needs between 10s (ceiling annotation time) and 30s (floor
annotation time) to extract concepts from a report, depending on its length
and content. Considering the worst-case scenario for SKET and the best-
case scenario for a human expert (0.03s vs 10s), the algorithm is still around
333 times (0.03 / 10) faster than a human. For instance, in the best-case
scenario, the weak labeling of 10,000 WSIs would require 300,000 seconds
(around 83 hours, without breaks) for human experts; in the worst-case sce-
nario, it would require 300 seconds (five minutes) to SKET. Therefore, the
application of SKET leads to save 99.7% of time required in comparison with
human experts. Even considering an unreasonable effectiveness of a human
experts, such as 1s per iteration, would lead to save 97% of the time. A detail
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relevant to stress is that the comparison considers the best possible condition
for a human expert (no breaks, no wasted time, ceiling performance) and the
worst condition for SKET (floor performance).

4.2. Celiac disease

The classification performance of multiple computer vision architectures
trained with binary automatically annotated data to classify celiac disease
WSIs is as effective as the performance reached by models using manually
annotated data.

Tables 6 and 7 summarize the results. The highest performance using
manual labels is reached using a ViT architecture (F1-score = 0.914 ± 0.014
on the test partition), even if on the Catania partition transMIL shows the
highest performance. The results are still similar for the three architectures.

Table 6 shows the classification performance obtained using binary man-
ual labels and noisy labels. This experiment aims to investigate general
rules for the adoption of automatic labels on the binary classification of
WSIs. Considering all the architectures, the performance is similar to the
one obtained using manual labels, especially until 10% of training samples
are wrongly annotated. The difference in terms of performance is not sta-
tistically significant. When the percentage of wrongly-annotated training
is 20% (or more) the performance degrades and the difference, compared
with manual labels, is statistically significant, suggesting this percentage of
wrongly-annotated labels can be considered as a threshold for the adopting
of automatic weak labels in a binary classification scenario.

Table 7 compares automatic labels generated with SKET and manual la-
bels. The comparison among automatic and manual labels shows a F1-score
equal to 0.944, suggesting that the algorithm should lead to performance
similar to the one obtained with noisy labels when the percentage of misla-
beled data is between 2% and 5%. The results confirm the hypothesis since
the performance is slightly worse than the one obtained using manual la-
bels, but the gap is not statistically significant (according to the Wilcoxon
Rank-Sum test, comparing every setup to the one where manual labels are
used), showing the effectiveness of automatic labels in a binary classification
scenario.

4.3. Lung cancer

The classification performance of multiple computer vision architectures
trained with multiclass automatically annotated data to classify lung cancer
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Table 6: Results on the classification of celiac disease, in terms of F1-score. The perfor-
mance is evaluated considering three computer vision architectures: CLAM, transMIL,
ViT. The architectures are trained with manual weak binary labels and with noisy, weak
labels, randomly perturbated according to different percentages of noise. The percentage
of noisy labels is reported in the ’Noisy Labels’ column, while the accuracy of the labels is
reported in terms of F1-score, ’F1 labels’ column. The goal is to evaluate the effect that
noisy weak labels have on the binary classification of WSIs. For every setup, the F1-score
average and standard deviation of the classification performance are reported, considering
the models trained with the 10-fold cross-validation. The setups where the difference is
statistically significant in terms of performance (compared with the models trained with
manual labels) are marked with an asterisk (*).
Noisy Labels F1 Labels Model Catania RUMC Cumulative

Manual -
CLAM SB 0.958 ± 0.009 0.846 ± 0.023 0.900 ± 0.012
transMIL 0.968 ± 0.009 0.850 ± 0.019 0.906 ± 0.010

ViT 0.953 ± 0.011 0.877 ± 0.021 0.914 ± 0.014

1% 0.977
CLAM SB 0.954 ± 0.016 0.849 ± 0.024 0.900 ± 0.018
transMIL 0.968 ± 0.009 0.864 ± 0.010 0.914 ± 0.007

ViT 0.954 ± 0.014 0.896 ± 0.019 0.925 ± 0.010

2% 0.968
CLAM SB 0.951 ± 0.012 0.873 ± 0.021 0.911 ± 0.014
transMIL 0.965 ± 0.011 0.853 ± 0.021 0.907 ± 0.010

ViT 0.944 ± 0.017 0.877 ± 0.021 0.910 ± 0.013

5% 0.933
CLAM SB 0.951 ± 0.019 0.862 ± 0.019 0.905 ± 0.017
transMIL 0.958 ± 0.012* 0.857 ± 0.018 0.905 ± 0.011

ViT 0.938 ± 0.026 0.880 ± 0.026 0.910 ± 0.020

10% 0.909
CLAM SB 0.952 ± 0.013 0.862 ± 0.023 0.905 ± 0.017
transMIL 0.953 ± 0.026* 0.838 ± 0.033 0.893 ± 0.027

ViT 0.957 ± 0.014 0.860 ± 0.023 0.906 ± 0.014

20% 0.804
CLAM SB 0.922 ± 0.026* 0.819 ± 0.029 0.869 ± 0.023*
transMIL 0.933 ± 0.024* 0.822 ± 0.013* 0.875 ± 0.016*

ViT 0.925 ± 0.017* 0.834 ± 0.025* 0.879 ± 0.017*

50% 0.566
CLAM SB 0.537 ± 0.228* 0.450 ± 0.081* 0.490 ± 0.145*
transMIL 0.765* ± 0.097* 0.502* ± 0.02* 0.633 ± 0.041*

ViT 0.440 ± 0.302* 0.459 ± 0.029* 0.480 ± 0.141*

WSIs is as effective as the performance reached by models using manually
annotated data.

Tables 8 and 9 summarize the results. The highest performance using
manual labels is reached using a ViT architecture (F1-score = 0.763 ± 0.012)
on both test partitions, dramatically outperforming the other two architec-
tures (CLAM reaches 0.674 ± 0.016, while transMIL reaches 0.696 ± 0.016).

Table 8 shows the classification performance obtained using multiclass
manual labels and noisy labels. This experiment aims to investigate general
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Table 7: Results on the classification of celiac disease, in terms of F1-score. The perfor-
mance is evaluated considering three computer vision architectures: CLAM, transMIL,
ViT. The architectures are trained with automatic and manual weak binary labels gen-
erated by extracting meaningful concepts from the corresponding pathology report using
the SKET algorithm. The performance of SKET is reported in the ’Noisy labels’ column.
The goal is to evaluate the effectiveness of automatic labels on the binary classification of
WSIs. For every setup, the F1-score average and standard deviation of the classification
performance are reported, considering the models trained with the 10-fold cross-validation.
The setups where the difference is statistically significant in terms of performance (com-
pared with the models trained with manual labels) are marked with an asterisk (*).
Noisy Labels F1 Labels Model Catania RUMC Cumulative

Automatic 0.944
CLAM SB 0.948 ± 0.015 0.857 ± 0.017 0.901 ± 0.013
transMIL 0.960 ± 0.012 0.845 ± 0.017 0.900 ± 0.014

ViT 0.938 ± 0.023 0.889 ± 0.024 0.915 ± 0.015

Manual -
CLAM SB 0.958 ± 0.009 0.846 ± 0.023 0.900 ± 0.012
transMIL 0.968 ± 0.009 0.85 ± 0.019 0.906 ± 0.010

ViT 0.953 ± 0.011 0.877 ± 0.021 0.914 ± 0.014

rules for the adoption of automatic labels on the multiclass classification of
WSIs. Considering all the architectures, the performance is similar to the
one obtained using manual labels, especially until 20% of training samples
are wrongly-annotated, the difference in terms of performance is not statisti-
cally significant. When the percentage of wrongly-annotated training is 50%
the performance degrades and the difference, compared with manual labels,
is statistically significant, suggesting this percentage of wrongly annotated
labels can be considered as a threshold for the adoption of automatic weak
labels in a multiclass classification scenario.

Table 9 includes the comparison of automatic labels and manual labels.
This comparison represents a real-case scenario of automatic data labeling,
where automatic labels are generated by extracting concepts from reports.
The comparison among labels shows a F1-score equal to 0.976, suggesting
that the algorithm should lead to performance similar to the one obtained in
the previous experiment using 2% and 5%. The results confirm the hypothesis
since the performance is slightly worse than the one obtained using manual
labels, but the gap is not statistically significant (according to the Wilcoxon
Rank-Sum test, comparing every setup to the one where manual labels are
used).
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Table 8: Results on the classification of lung cancer, in terms of F1-score. The performance
is evaluated considering three computer vision architectures: CLAM, transMIL, ViT. The
architectures are trained with manual weak multiclass labels and with noisy weak labels,
randomly perturbated according to different percentages of noise. The percentage of noisy
labels is reported in the ’Noisy Labels’ column, while the accuracy of the labels is reported
in terms of F1-score, ’F1 labels’ column. The goal is to evaluate the effect that noisy
weak labels have on the multiclass classification of WSIs. For every setup, the F1-score
average and standard deviation of the classification performance are reported, considering
the models trained with the 10-fold cross-validation. The setups where the difference is
statistically significant in terms of performance (compared with the models trained with
manual labels) are marked with an asterisk (*).
Noisy Labels F1 Labels Model Catania RUMC Cumulative

Manual -
CLAM MB 0.617 ± 0.027 0.717 ± 0.023 0.674 ± 0.016
transMIL 0.635 ± 0.024 0.745 ± 0.024 0.696 ± 0.016

ViT 0.705 ± 0.033 0.812 ± 0.02 0.763 ± 0.012

1% 0.991
CLAM MB 0.624 ± 0.022 0.725 ± 0.021 0.681 ± 0.014
transMIL 0.634 ± 0.042 0.756 ± 0.012 0.700 ± 0.020

ViT 0.697 ± 0.035 0.817 ± 0.018 0.762 ± 0.021

2% 0.98
CLAM MB 0.621 ± 0.034 0.721 ± 0.016 0.677 ± 0.018
transMIL 0.642 ± 0.033 0.739 ± 0.011 0.695 ± 0.017

ViT 0.698 ± 0.032 0.807 ± 0.026 0.757 ± 0.026

5% 0.957
CLAM MB 0.609 ± 0.035 0.715 ± 0.022 0.670 ± 0.021
transMIL 0.622 ± 0.050 0.743 ± 0.015 0.687 ± 0.026

ViT 0.699 ± 0.027 0.809 ± 0.029 0.758 ± 0.020

10% 0.907
CLAM MB 0.601 ± 0.037 0.690 ± 0.034 0.653 ± 0.027
transMIL 0.615 ± 0.029 0.739 ± 0.025 0.683 ± 0.023

ViT 0.699 ± 0.026 0.808 ± 0.018 0.757 ± 0.015

20% 0.822
CLAM MB 0.579 ± 0.060 0.725 ± 0.038 0.658 ± 0.042
transMIL 0.614 ± 0.039 0.743 ± 0.017 0.684 ± 0.018

ViT 0.702 ± 0.018 0.808 ± 0.015 0.759 ± 0.012

50% 0.561
CLAM MB 0.409 ± 0.087* 0.528 ± 0.069* 0.477 ± 0.065*
transMIL 0.483 ± 0.055* 0.566 ± 0.027* 0.537 ± 0.031*

ViT 0.576 ± 0.049* 0.701 ± 0.040* 0.643 ± 0.038*

4.4. Colon cancer

The classification performance of multiple computer vision architectures
trained with multilabel automatically annotated data to classify colon cancer
WSIs is as effective as the performance reached by models using manually
annotated data.

Tables 10 and 11 summarize the results. The highest performance us-
ing manual labels is reached using a ViT architecture (F1-score = 0.831 ±
0.009) on both test partitions, dramatically outperforming the other two ar-
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Table 9: Results on the classification of lung cancer, in terms of F1-score. The performance
is evaluated considering three computer vision architectures: CLAM, transMIL, ViT. The
architectures are trained with automatic and manual weak multiclass labels, generated by
extracting meaningful concepts from the corresponding pathology report using the SKET
algorithm. The performance of SKET is reported in the ’Noisy Labels’ column. The goal
is to evaluate the effectiveness of automatic labels on the multiclass classification of WSIs.
For every setup, the F1-score average and standard deviation of the classification perfor-
mance are reported, considering the models trained with the 10-fold cross-validation. The
setups where the difference is statistically significant in terms of performance (compared
with the models trained with manual labels) are marked with an asterisk (*).
Noisy Labels F1 Labels Model Catania RUMC Cumulative

Automatic 0.976
CLAM MB 0.623 ± 0.031 0.705 ± 0.028 0.67 ± 0.020
transMIL 0.620 ± 0.027 0.740 ± 0.027 0.686 ± 0.018

ViT 0.682 ± 0.041 0.820 ± 0.014 0.756 ± 0.022

Manual -
CLAM SB 0.617 ± 0.027 0.717 ± 0.023 0.674 ± 0.016
transMIL 0.635 ± 0.024 0.745 ± 0.024 0.696 ± 0.016

ViT 0.705 ± 0.033 0.812 ± 0.020 0.763 ± 0.012

chitectures (CLAM reaches 0.773 ± 0.015, while transMIL reaches 0.791 ±
0.008).

Table 10 shows the classification performance obtained using multilabel
manual labels and noisy labels. This experiment aims to investigate general
rules for the adoption of automatic labels on the multilabel classification of
WSIs. Considering all the architectures, the performance is similar to the
one obtained using manual labels, especially until 20% of training samples
are wrongly-annotated, the difference in terms of performance is not statisti-
cally significant. When the percentage of wrongly-annotated training is 50%
the performance degrades and the difference, compared with manual labels,
is statistically significant, suggesting this percentage of wrongly-annotated
labels can be considered as a threshold for the adoption of automatic weak
labels in a multilabel classification scenario.

Table 11 includes the comparison of automatic labels and manual labels.
This comparison represents a real-case scenario of automatic data labeling,
where automatic labels are generated by extracting concepts from reports.
The comparison among labels shows a F1-score equal to 0.971, suggesting
that the algorithm should lead to performance similar to the one obtained
in the previous experiment using 2% and 5%. The results confirm the hy-
photesis, since the performance are slightly worse than the one obtained
using manual labels, but the gap is not statistically significant (according to
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Table 10: Results on the classification of colon cancer, in terms of F1-score. The per-
formance is evaluated considering three computer vision architectures: CLAM, transMIL,
ViT. The architectures are trained with manual weak multilabel labels and with noisy
weak labels, randomly perturbated according to different percentages of noise. The per-
centage of noisy labels is reported in the ’Noisy Labels’ column, while the accuracy of
the labels is reported in terms of F1-score, ’F1 labels’ column. The goal is to evaluate
the effect that noisy weak labels have on the multilabel classification of WSIs. For every
setup, the F1-score average and standard deviation of the classification performance are
reported, considering the models trained with the 10-fold cross-validation. The setups
where the difference is statistically significant in terms of performance (compared with the
models trained with manual labels) are marked with an asterisk (*).
Noisy Labels F1 Labels Model Catania RUMC Cumulative

Manual -
CLAM MB 0.761 ± 0.015 0.780 ± 0.017 0.773 ± 0.015
transMIL 0.771 ± 0.015 0.807 ± 0.007 0.791 ± 0.008

ViT 0.824 ± 0.016 0.837 ± 0.007 0.831 ± 0.009

1% 0.988
CLAM MB 0.761 ± 0.018 0.776 ± 0.016 0.771 ± 0.015
transMIL 0.772 ± 0.014 0.810 ± 0.009 0.793 ± 0.010

ViT 0.827 ± 0.018 0.835 ± 0.005 0.831 ± 0.009

2% 0.978
CLAM MB 0.745 ± 0.018 0.764 ± 0.019 0.757 ± 0.017
transMIL 0.777 ± 0.019 0.807 ± 0.010 0.793 ± 0.012

ViT 0.821 ± 0.019 0.837 ± 0.005 0.831 ± 0.009

5% 0.943
CLAM MB 0.765 ± 0.018 0.771 ± 0.021 0.769 ± 0.018
transMIL 0.766 ± 0.013 0.808 ± 0.009 0.790 ± 0.008

ViT 0.819 ± 0.015 0.835 ± 0.008 0.828 ± 0.009

10% 0.898
CLAM MB 0.767 ± 0.023 0.777 ± 0.019 0.774 ± 0.018
transMIL 0.768 ± 0.017 0.805 ± 0.009 0.789 ± 0.010

ViT 0.827 ± 0.015 0.836 ± 0.005 0.833 ± 0.008

20% 0.814
CLAM MB 0.748 ± 0.026 0.757 ± 0.020 0.754 ± 0.019
transMIL 0.772 ± 0.012 0.809 ± 0.010 0.793 ± 0.008

ViT 0.822 ± 0.020 0.833 ± 0.003 0.829 ± 0.009

50% 0.587
CLAM MB 0.697 ± 0.042* 0.646 ± 0.086* 0.670 ± 0.056*
transMIL 0.723 ± 0.027* 0.720 ± 0.024* 0.721 ± 0.015*

ViT 0.811 ± 0.016* 0.804 ± 0.021* 0.807 ± 0.016*

Wilcoxon Rank-Sum test, comparing every setup to the one where manual
labels are used).

5. Discussion

This paper evaluates the application of weak automatic labels to train
computer algorithms on classification.

The application of automatic weak labels would dramatically reduce the
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Table 11: Results on the classification of colon cancer, in terms of F1-score. The per-
formance is evaluated considering three computer vision architectures: CLAM, transMIL,
ViT. The architectures are trained with automatic and manual weak multilabel labels, gen-
erated by extracting meaningful concepts from the corresponding pathology report using
the SKET algorithm. The performance of SKET is reported in the ’Noisy Labels’ column.
The goal is to evaluate the effectiveness of automatic labels on the multilabel classification
of WSIs. For every setup, the classification performance’s F1-score average and standard
deviation are reported, considering the models trained with the 10-fold cross-validation.
The setups where the difference is statistically significant in terms of performance (com-
pared with the models trained with manual labels) are marked with an asterisk (*).
Noisy Labels F1 Labels Model Catania RUMC Cumulative

Automatic 0.971
CLAM MB 0.761 ± 0.014 0.771 ± 0.019 0.767 ± 0.016
transMIL 0.759 ± 0.013 0.801 ± 0.004 0.783 ± 0.005

ViT 0.813 ± 0.014 0.836 ± 0.008 0.826 ± 0.008

Manual -
CLAM MB 0.761 ± 0.015 0.780 ± 0.017 0.773 ± 0.015
transMIL 0.771 ± 0.015 0.807 ± 0.007 0.791 ± 0.008

ViT 0.824 ± 0.016 0.837 ± 0.007 0.831 ± 0.009

time needed to collect samples to train algorithms for the analysis of biomed-
ical data. However, it is not clear under which conditions automatic labels
can be adopted to train algorithms.

The results achieved in the paper show that automatic labels are as ef-
fective as manual ones, for the classification of WSIs. The first experiments
(where manual labels are compared to different percentages of noisy labels)
allow to identify some patterns in the algorithm performance. The noise in-
troduced by mislabeled samples (inherently present within automatic labels)
impacts the networks’ accuracy and robustness. The performance of other
samples may compensate for the effect of mislabeled samples on the training
using the manual labels until a fixed percentage of mislabeled data: 10%
regarding celiac disease (binary labels) and 20% regarding lung and colon
cancer (respectively multiclass and multilabel labels). This performance de-
crease can be explained by considering the different natures of labels. Mis-
labeled samples have a high impact on binary classification since the label
flipping leads to opposite results. Annotation errors are also disruptive in
multiclass labels, even if, in this case, the effect can be smoothed if the errors
involve similar classes (already prone to uncertainty). Another explanation
for this gap can be identified in the training dataset size. Another relevant
parameter to consider when automatic labels are applied is the size of the
training dataset since the effect of mislabeled samples on the training may
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be compensated by the other samples. In this paper, the celiac disease train-
ing dataset includes around 1’000 samples, while instead, the lung cancer
dataset includes around 2’500 samples, and the colon cancer one includes
around 6’500. In the celiac disease use case, when the percentage of mis-
labeled samples is 20% or more, the performance of the architectures is no
longer comparable with the one reached using manual labels when the per-
centage of mislabeled samples is 20%. This result suggests that automatic
labels can be adopted when the algorithm used to generate them is accurate.
The effect of noisy labels can also be identified in the performance standard
deviation: the higher the percentage of noisy labels, the less robust the three
architectures are.

The architectures trained using automatic labels reach performance com-
parable (i.e. the performance difference is not statistically significant) with
the one reached using manual labels. The results obtained using SKET to
generate automatic weak labels show that automatic weak labels can be used
to train different architectures on the classification of WSIs. The conditions
identified using randomly perturbated noisy data are also tested on a real
case scenario, where the automatic labels are generated using SKET, an NLP
algorithm to extract meaningful concepts from pathology reports. This set
of experiments is necessary to show the application of automatic labels in a
real-case scenario, where the likelihood of mislabeling a sample varies. For
example, if weak labels are automatically extracted from a report, depend-
ing on the report content, a sample has a higher chance of being mislabeled.
This characteristic does not apply to the randomly perturbated noisy sam-
ples, where every sample can be randomly mislabeled.

The fact that automatic labels are as effective as manual labels opens
many perspectives for the computational pathology domain and for the biomed-
ical domain in general. Automatic labels limit the need for medical experts
to annotate data, which can save up to 99.7% of time otherwise needed to
analyze reports in order to infer labels. Therefore, a dataset that includes
around 10,000 can be weakly-annotated in around five minutes. Considering
that a large amount of biomedical data is produced every year and only a
small percentage is annotated, this would allow the exploitation of a vast
amount of data that can be used to build more accurate and robust models
while still guaranteeing robust performance, helping medical experts diagnose
diseases more effectively. The implementation details, such as architecture,
task and pre-processing techniques adopted in this research, can be tailored
to fit the specific characteristics of another problem.
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6. Conclusions

The application of automatic labels may help exploit vast amounts of un-
labeled biomedical samples to train more robust models, reducing by 99.7%
the time needed to collect weakly annotated samples. However, it is still
unclear when this label is effective. This paper evaluates the performance
of different percentages of noisy labels (1,2,5,10,20,50%) and compares the
results with the performance obtained by the same architectures but us-
ing manual weak labels provided by medical experts. After some rules
are identified (e.g., training datasets with 10% of mislabeled samples lead
to performance comparable to that obtained using manual labels), SKET,
an algorithm for extracting meaningful concepts from reports, is used to
generate automatic weak labels. The performance reached by the models
trained with SKET labels is comparable (not a statistically significant dif-
ference) to the one obtained with manual labels, showing the effectiveness
of automatic labels. The result can allow for the annotation of samples
contained in hospitals without the need for human effort, paving the way
for increasingly accurate algorithms. The code, including implementing the
computer vision algorithms to classify WSIs, is publicly available on GitHub
(https://github.com/ilmaro8/wsi analysis).
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