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Abstract

We present and describe the NEsted SeTs for Object hieRarchies (NESTOR) Frame-
work that allows us to model, manage, access and exchange hierarchically structured
resources. We envision this framework in the context of Digital Libraries and using
it as a mean to address the complex and multiform concept of interoperability when
dealing with hierarchical structures. The NESTOR Framework is based on three
main components: The Model, the Algebra and a Prototype. We detail all these
components and present a concrete use case based on archives that are collections
of historical documents or records providing information about a place, institution,
or group of people, because the archives are fundamental and challenging entities in
the digital libraries panorama. Within the archives we show how an archive can be
represented through set data models and how these models can be instantiated. We
compared two instantiations of the NESTOR Model and show how interoperability
issues can be addressed by exploiting the NESTOR Framework.

1 Introduction and Motivations

An important challenge in the research work on Digital Libraries is to transform
them in a new type of information infrastructures that can be user-centered, able to
support content management tasks together with tasks devoted to communication
and cooperation. That is information infrastructures that become common vehicle
by which every user can access, discuss, evaluate, and enhance information of all
forms. Although they are still places where information resources can be stored and
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made available to end users, the current design and development efforts are moving
in the direction of transforming them into infrastructures able to support the user
in different information centric activities. In the context of digital libraries we need
to take into account several distributed and heterogeneous information sources with
different community backgrounds such as libraries, archives and museums and dif-
ferent information objects ranging from full content of digital information objects to
the metadata describing them. These objects can be exchanged between distributed
systems or they can be aggregated and accessed by users with distinct information
needs and living in different countries. Digital Libraries are heterogeneous systems
with peculiarities and functionalities that range from data representation to data ex-
change passing through data management. Furthermore, Digital Libraries are mean-
ingful parts of a global information network which includes scientific repositories,
curated databases and commercial providers. All these aspects need to be taken into
account and balanced to support final users with effective and interoperable infor-
mation systems.

A common goal in the design and development of Digital Libraries is to build
systems which rely as much as possible on existing building blocks, thus maxi-
mizing the exploitation of Web and Internet standards. This trend is evident if we
consider the standard technologies and protocols adopted over the years by Digi-
tal Libraries; two of the main technologies of choice in Digital Libraries are: the
eXtensible Markup Language (XML)1 and the Open Archives Initiative Protocol
for Metadata Harvesting (OAI-PMH)2. These technologies are very strongly inter-
linked with the Internet and the Web: XML is the technology of choice representing
and encoding metadata in Digital Libraries. It was originally designed to meet the
challenges of large-scale electronic publishing, XML is also playing an increasingly
fundamental role in the exchange of a wide variety of data on the Web. OAI-PMH
is the standard de-facto for metadata exchange in distributed environments and its
basic functioning is based on the Internet infrastructure (e.g. OAI-PMH requests are
based on HyperText Transfer Protocol (HTTP) requests) [30].

These technologies are designed and shaped to be used within the Digital Li-
braries but at the same time their scope is fairly broad and they can be used within
a large corpus of resources and systems. For these reasons they are either the means
for addressing interoperability and the possible sources of interoperability issues.
Indeed, on the one hand, we can build on these technologies and exploit them to
constitute an integrated framework which handles the heterogeneity of Digital Li-
brary resources and functionalities. On the other hand, they can constitute a barrier
towards the very interoperability they are aiming to foster. When it comes to model-
ing, managing, accessing and exchanging the resources of interest, often the design
of the models and systems is driven by the technology-of-choice characteristics,
thus they are bound to the technologies. A fundamental step is to define an organic
and general framework free from specific technologies; in this way the technologies
of choice can be conveyed into a well-defined path where their characteristics can

1 http://www.w3.org/XML/
2 http://www.openarchives.org/pmh/

http://www.w3.org/XML/
http://www.openarchives.org/pmh/
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be exploited to the maximum to address interoperability and to meet users require-
ments.

The difficulty in accomplishing this goal is due to the very nature of interop-
erability as a complex and multiform concept, which can be defined - as by the
“ISO/IEC 2382-01, Information Technology Vocabulary, Fundamental Terms” - as
follows: “The capability to communicate, execute programs, or transfer data among
various functional units in a manner that requires the user to have little or no knowl-
edge of the unique characteristics of those units”. When the concept of interoper-
ability is considered in the context of digital libraries it takes on different dimensions
as it has been evidenced by the European Commission Working Group on Digital
Library Interoperability [13] which has identified six dimensions that can be distin-
guished and taken into account:

Interoperating entities. These can be assumed to be the traditional cultural her-
itage institutions, such as libraries, museums, archives, and other institutions in
charge of preservation of artifacts or that offer digital services.

Information objects. The entities that actually need to be processed in interop-
erability scenarios. Choices range from the full content of digital information
objects to the metadata describing them.

Functional perspective. This may simply be the exchange and/or propagation
of digital content. Other functional goals are aggregating digital objects into a
common content layer.

Multilingualism. Linguistic interoperability can be thought of in two different
ways: as multilingual user interfaces to digital library systems or as dynamic
multilingual techniques for exploring the digital library systems object space.

User perspective. Interoperability concepts of a digital library system manager
differ substantially from those of a content consuming end user.

Interoperability technology. Enabling different kinds of interoperability consti-
tutes a major dimension and several technologies designed in the context of Dig-
ital Libraries such as OAI-PMH and the Dublin Core3.

The dimensions of interoperability are often analyzed and addressed focusing on
a specific one; e.g. we can consider interoperability between the Digital Libraries
entities with their information objects, we can consider the functional perspective of
Digital Libraries by focusing on the exchange of objects or we can take into account
only the cross-language access of information objects. Our aim is to consider all six
dimensions of interoperability and define a common framework that can address all
of them; to do so, we consider one of the most diffuse and important resources –
i.e. hierarchically structured resources; in particular we employ a meaningful and
challenging reality: archives. Archives are one of the main organizations of interest
for Digital Libraries; they are a meaningful example of the need to support docu-
ment management and access, as well as interoperability among the systems that
manage different co-operating and related archives. The fundamental characteristic
of archives resides in their internal hierarchical organization that constitutes both a

3 http://www.dublincore.org/

http://www.dublincore.org/
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challenge for their representation, managing and, exchange and a relevant feature
for addressing interoperability.

In this work we present a conceptual and logical framework called “NEsted SeTs
for Object hieRarchies (NESTOR) Framework” and show how it can be adopted to
model, manage, access and exchange hierarchically structured resources. The pre-
sentation of this framework also shows how it can be used to address interoperability
in Digital Libraries. As a guide use case we make use of archives both because of
their peculiar characteristics and because of the challenges we have to accomplish
to model, manage, access, and exchange their resources. The results that are here
presented are rooted on those presented in [11].

The presentation is organized as follows: Section 2 presents the objectives and
the key contributions of this work and introduces the composition of the NESTOR
Framework which is defined by the NESTOR Model, the NESTOR Algebra and
the NESTOR Prototype. Section 3 describes the context background of the work; it
introduces the main concepts about archives and related technologies as well as a
panoramic on the Digital Library technologies we are going to employ in this work.
Section 4 describes the NESTOR Model based on two set data models and Section
5 depicts the main features of the NESTOR Algebra. In Section 6 we show how the
NESTOR Prototype can be modeled and used to achieve the presented requirements.
Lastly, we draw some conclusions in Section 7.

2 Objectives and Contributions

Main target of this work is to provide a framework allowing us to model, manage,
access and exchange hierarchically structured resources. A key aspect is to envi-
sion this framework in the context of Digital Libraries and to use it as a mean to
address the complex and multiform concept of interoperability when dealing with
hierarchical structures. A significant goal is to understand which is the best option
for modeling hierarchies in order to meet the higher number of user and system re-
quirements. The modeling and representation of data (or more in general resources)
is a fundamental step towards building automatic and effective systems and provid-
ing services and functionalities to the users. In this context we take into account
one of the most important data structures in computer science – the tree data struc-
ture [19]; this is widely adopted in many scientific fields to model and represent
hierarchies. The tree data structure is often regarded as the only way to model hier-
archies; our aim is to investigate alternative data models that can do the work and
then compare their effectiveness in specific application contexts.

We propose the NESTOR Framework as a conceptual and logical mean for mod-
eling and representing hierarchically structured data and specifically to overcome
some of the difficulties that we encounter when we have to address interoperability
in Digital Libraries. There is the lack of a general framework satisfying these re-
quirements which often need to be addressed on a case-by-case basis. The NESTOR
Framework is constituted by three parts – pointed out in Figure 1: The NESTOR
Model, the NESTOR Algebra and the NESTOR Prototype.
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Fig. 1 The graphical outline of the composition of the NESTOR Framework: Model, Algebra and
Prototype.

The NESTOR Model is the heart of the Framework; it is based on two set data
models called Nested Set Model (NS-M) and Inverse Nested Set Model (INS-M)
which are based on an organization of nested sets. The foundational idea underlying
these set data models is that an opportune set organization can maintain all the fea-
tures of a tree data structure with the addition of some new relevant functionalities.
We define these functionalities in terms of flexibility of the model, rapid selection
and isolation of easily specified subsets of data and extraction of only those data
necessary for satisfying specific needs. We can use these set data models to repre-
sent hierarchical structures disclosing a variety of properties which can be related to
the properties of the tree data structure and which are also peculiar of these models.
The representation of hierarchies by one of these models lays the ground for an en-
vironment leading to new ways of modeling and consequently accessing, managing
and querying hierarchical data.

Each data model has to specify a set of operations to manipulate and query the
data represented by a specific model; for instance, in the relational model this oper-
ation set is defined by the relational algebra [6]. A formal bulk algebra is essential
to a data model first of all because it provides a formal basis for the operations on
the data sets and second of all because it is used as a basis to implement and opti-
mize the queries written in some query language against these data sets. We develop
an algebra, called the NESTOR Algebra, for the manipulation and query of data
represented throughout the set data models defined in the NESTOR Model.

The NESTOR Prototype gives an actual instantiation of the model and of the al-
gebra allowing the application of the formal concepts defined in the NESTOR Model
and Algebra. The prototype is presented by the use case of the archives describing
how a hierarchy can be modeled by means of the NESTOR Model and specifically
how the archival records can be represented through it. The NESTOR Prototype
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takes into account the dimensions of interoperability in Digital Libraries [13] show-
ing how the adoption of the NESTOR Model and the exploitation of the Algebra
addresses several interoperability issues. In particular, we face the problem of ac-
cess and exchange of hierarchically organized resources in distributed environment
and discuss the relationships between the NESTOR Prototype and Digital Library
technologies such as the OAI-PMH protocol. Furthermore, we illustrate how we
can address multilingualism in the archival context by exploiting widely-adopted
techniques and technologies.

3 The Background Context and Technologies

The background of this work relies on the archives environment, thus it is funda-
mental to describe the nature of archival practice and the peculiarities of archival
resources. In the beginning we present the nature of archives and then we talk
about digital archives. In this context we present the standard XML metadata format
adopted by the archives, i.e. is the Encoded Archival Description (EAD).

Two important Digital Library technologies are the OAI-PMH protocol and the
Dublin Core. We will exploit these technologies in the context of the NESTOR
Prototype, thus it is worthwhile to describe their characteristics and functionalities.

3.1 Archives and Archival Descriptions

An archive is not simply constituted by a series of objects that have been accu-
mulated and filed with the passing of time. Instead, it represents the trace of the
activities of a physical or juridical person in the course of their business which is
preserved because of their continued value. Archives have to keep the context in
which their records4 have been created and the network of relationships between
them in order to preserve their informative content and provide understandable and
useful information over time.

Archival description is defined in [23] as “the process analyzing, organizing, and
recording details about the formal elements of a record or collection of records, to
facilitate the work’s identification, management, and understanding”; archival de-
scriptions have to reflect the peculiarities of the archive, retain all the informative
power of a record, and keep trace of the provenance and original order in which
resources have been collected and filed by archival institutions [12]. This is em-
phasized by the central concept of fonds5, which should be viewed primarily as an
“intellectual construct”, the conceptual “whole” that reflects an organic process in
which a records creator produces or accumulates series of records [8]. In this con-
text, provenance becomes a fundamental principle of archives; the principle of the

4 In [21] a record is defined as: “Any document made or received and set aside in the course of a
practical activity”.
5 The term fonds is not a commonly used English word but it is derived from the French and it is
used both for the singular and plural form of the noun.
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“respect des fonds” which dictates that resources of different origins be kept separate
to preserve their context; the “respect des fonds” is often regarded as the principle
of provenance [12, 10].

[10] highlights that maintaining provenance leads archivists to evaluate records
on the basis of the importance of the creator’s mandate and functions, and fosters
the use of a hierarchical method. The hierarchical structure of the archive expresses
the relationships and dependency links between the records of the archive by us-
ing what is called the archival bond defined as “the interrelationships between a
record and other records resulting from the same activity” [23]. Archival bonds,
and thus relations, are constitutive parts of an archival record: if a record is taken
out from its context and has lost its relations, its informative power would also be
considerably affected. Therefore, archival descriptions need to be able to express
and maintain such structure and relationships in order to preserve the context of a
record. To this end, the International Council on Archives (ICA)6 has developed a
general standard for archival description called International Standard for Archival
Description (General) (ISAD(G)) [15]. According to ISAD(G), archival description
proceeds from general to specific as a consequence of the provenance principle and
has to show, for every unit of description, its relationships and links with other units
and to the general fonds. Therefore, archival descriptions produced according to the
ISAD(G) standard take the form of a tree which represents the relationships between
more general and more specific archive units going from the root to the leaves of the
tree.

3.2 EAD: Encoded Archival Description

EAD is an archival description metadata standard that reflects and emphasizes the
hierarchical nature of ISAD(G) [24]. EAD fully enables the expression of multiple
description levels central to most archival descriptions and reflects hierarchy levels
present in the resources being described. EAD cannot be considered a one-to-one
ISAD(G) implementation, although it does respect ISAD(G) principles and is useful
for representing archival hierarchical structure. EAD is composed of three high-level
components: <eadheader>, <frontmatter>, and <archdesc>.

The <eadheader> contains metadata about the archive descriptions and in-
cludes information about them such as title, author, and date of creation. The
<frontmatter> supplies publishing information and is an optional element,
while the <archdesc> contains the archival description itself and constitutes the
core of EAD. The <archdesc> may include many high-level sub-elements, most
of which are repeatable. The most important element is the <did> or descriptive
identification which describes the collection as a whole. The <did> element is
composed of numerous sub-elements that are intended for brief, clearly designated
statements of information and they are available at every level of description. Fi-
nally, the <archdesc> contains an element that facilitates a detailed analysis of
the components of a fonds, the <dsc> or description subordinate components. The

6 http://www.ica.org/

http://www.ica.org/
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<dsc> contains a repeatable recursive element, called <c> or component. A com-
ponent may be an easily recognizable archival entity such as series, subseries or
items. Components not only are nested under the <archdesc> element, they usu-
ally are nested inside one another. Components usually are indicated with <cN> tag,
where N ∈ {01,02, . . . ,12}.

<eadheader> 
    [...]
<eadheader>
<archdesc level=”fonds”>
    [...]

<did> [...] </did> 
       <dsc>

    [...]
    <c01> 

[...]
    </c01>

           <c01>
        [...]
        <c02>

   [...]
</c02>

             <c02>
   [...]

             </c02>
             <c02>

   [...]
             </c02>
           </c01>
         </dsc>
</archdesc>

FONDS

SUB-
FONDS

SUB-
FONDS

SERIE

SERIE

SERIE

Documents

Archival Tree EAD Structure

Fig. 2 How an archive represented as a tree is mapped into an EAD XML file.

EAD reflects the archival structure and holds relations between entities in an
archive. In addition, EAD encourages archivists to use collective and multilevel
description, and because of its flexible structure and broad applicability, it has been
embraced by many repositories [17].

On the other hand, EAD allows for several degrees of freedom in tagging prac-
tice, which may turn out to be problematic in the automatic processing of EAD files,
since it is difficult to know in advance how an institution will use the hierarchical
elements. The EAD permissive data model may undermine the very interoperability
it is intended to foster. Indeed, it has been underlined that only EAD files meeting
stringent best practice guidelines are shareable and searchable [26]. Moreover, there
is also a second relevant problem related to the level of material being described.
Unfortunately, the EAD schema rarely requires a standardized description of the
level of the materials being described, since the <level> attribute is required only
in the <archdesc> tag, while it is optional in <cN> components and in very few
EAD files this possibility is used, as pointed out by [25]. As a consequence, the level
of description of the lower components in the hierarchy needs to be inferred by nav-
igating the upper components, maybe up to the <archdesc>, where the presence
of the <level> attribute is mandatory. Therefore, access to individual items might
be difficult without taking into consideration the whole hierarchy.



Series in Studies in Computational Intelligence 9

We highlight this fact in Figure 2 where we present the structure of an EAD
file. In this example we can see the top-level components <eadheader> and
<archdesc> and the hierarchical part represented by the <dsc> component; the
<level> attribute is specified only in the <archdesc> component. Therefore,
the archival levels described by the components of the <dsc> can be inferred only
by navigating the whole hierarchy.

3.3 OAI-PMH and Dublin Core

OAI-PMH is based on the distinction between two main components that are Data
Provider and Service Provider. Data Providers are repositories that export records
in response to requests from a software service called harvester. On the other hand,
Service Providers are those services that harvest records form Data Providers and
provide services built on top of aggregated harvest metadata.

The protocol defines two kinds of harvesting procedures: incremental and se-
lective harvesting. Incremental harvesting permits users to query a Data Provider
and ask it to return just the new, changed or deleted records from a certain date or
between two dates. Selective harvesting is based on the concept of OAI set, which
enables logical data partitioning by defining groups of records. Selective harvesting
is the procedure that permits the harvesting only of metadata owned by a speci-
fied OAI set. [30] states that in OAI-PMH a set is defined by three components:
setSpec which is mandatory and a unique identifier for the set within the reposi-
tory, setName which is a mandatory short human-readable string naming the set,
and setDesc which may hold community-specific XML-encoded data about the
set.

OAI set organization may be flat or hierarchical, where hierarchy is expressed in
setSpec field by the use of a colon [:] separated list indicating the path from the
root of the set hierarchy to the respective node. For example if we define an OAI
set for whose setSpec is “A”, its sub-set “B” would have “A:B” as setSpec.
In this case “B” is a proper sub-set of “A”: B ⊂ A. When a repository defines a set
organization it must include set membership information in the headers of items
returned to the harvester requests. Harvesting from a set which has sub-sets will
cause the repository to return metadata in the specified set and recursively to return
metadata from all the sub-sets. In our example, if we harvest set A, we also obtain
the items in sub-set B [29].

The Dublin Core (DC) metadata format is tiny, easy-to-move, shareable and re-
markably suitable for a distributed environment. Thanks to these characteristics it is
required as the lowest common denominator in OAI-PMH. Thus, DC metadata are
very useful in information sharing but are not broadly used by archivists. Indeed,
the use of DC seems to flatten out archive structure and lose context and hierarchy
information. For this reason, even though DC is used in several contexts ranging
from Web to digital libraries, it is less used in the archival domain. Nevertheless,
we can apply it to the archival domain and meet the three requirements discussed
above, if we use it in combination with OAI-PMH: in this way, the OAI set provides
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us with context and hierarchy requirements compliance, while the DC metadata for-
mat gives us the expected variable granularity support.

4 The NESTOR Model

The NESTOR Framework is the composition of three main parts: the Model, the Al-
gebra and the Prototype. The NESTOR Model is the core of the framework because
it defines the set data models on which every component of the framework relies.
In Figure 3 we can see a graphical representation of the principal components com-
posing the NESTOR Model. In the upper part we have the set data models – i.e. the
Nested Set Model (NS-M) and the Inverse Nested Set Model (INS-M). The second
component represents the properties of the set data models such as: the mapping
function to go from the NS-M to the INS-M and vice versa, the meaning of the
union or intersection of two sets or the definition of distance measures. The latter
component represents the relationships between the set data models and the tree
data structure; this component contains the functions for mapping a tree into one of
the two models and it compares the properties of the tree with the properties of the
set data models.

Fig. 3 The main components of the NESTOR Model.

The formal definition of the NESTOR Model within all its components relies on
set theory, and particularly, on the basic concept of family of subsets. It is not in the
scope of this work to give a complete mathematical definition of all the components
of the NESTOR Model. For this reason, in order to properly understand how the
set data models are defined it is worthwhile to get an intuitive idea of their main
characteristics. After this intuitive presentation we explain some basic concepts of
set theory which allow us to understand the formal definition of the models and
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to introduce the minimum set of notation and terminology indispensable to under-
stand the properties of the models, the relationships with the tree data structure and,
afterwards, the NESTOR Algebra.

Now, we informally present the two data models with examples of mapping be-
tween them and a sample tree, with a clear understanding that these models are
independent from the tree data structure. The first model we present is the Nested
Set Model (NS-M). The intuitive graphic representation of a tree as an organiza-
tion of nested sets was used in [19] to show different ways of representing tree data
structure and in [5] to explain an alternative way for solving recursive queries over
trees in SQL language. An organization of sets in the NS-M is a collection of sets
in which any pair of sets is either disjoint or one contains the other. In Figure 4 (b)
we can see how a sample tree is mapped into an organization of nested sets based
on the NS-M.

 a

 d b

 e  f c  g

A DC B

E

F

G
A

B

C

D

E

F

G

(a) Tree (b) Nested Set Model (c) Inverse Nested Set Model

Fig. 4 (a) A tree. (b) Euler-Venn Diagram of a NS-M. (c) Doc-Ball representation of a INS-M.

From Figure 4 (b) we can see that each node of the tree is mapped into a set,
where child nodes become proper subsets of the set created from the parent node.
Every set is subset of at least of one set; the set corresponding to the tree root is the
only set without any supersets and every set in the hierarchy is subset of the root set.
The external nodes are sets with no subsets. The tree structure is maintained thanks
to the nested organization and the relationships between the sets are expressed by
the set inclusion order. Even the disjunction between two sets brings information;
indeed, the disjunction of two sets means that these belong to two different branches
of the same tree.

The second data model is the Inverse Nested Set Model (INS-M). We can say
that a tree is mapped into the INS-M by transforming each node into a set, where
each parent node becomes a subset of the sets created from its children. The set
created from the tree’s root is the only set with no subsets and the root set is a proper
subset of all the sets in the hierarchy. The leaves are the sets with no supersets and
they are sets containing all the sets created from the nodes composing the tree path
from a leaf to the root. An important aspect of INS-M is that the intersection of
every couple of sets obtained from two nodes is always a set representing a node in
the tree. The intersection of all the sets in the INS-M is the set mapped from the root
of the tree.
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Unlike the NS-M, representing the INS-M with the Euler-Venn diagrams is not
very expressive and can be confusing for the reader [1]. We can represent the INS-
M in a straightforward way by means of the “DocBall representation” [9]. The
DocBall representation is used in [9] to depict the structural components of the doc-
uments and can be considered as the representation of a tree structure. We exploit
the DocBall ability to show the structure of an object and to represent the “inclu-
sion order of one or more elements in another one” [31]. The DocBall is composed
of a set of circular sectors arranged in concentric rings as shown in Figure 4 (c).
In a DocBall each ring represents a level of the hierarchy with the center (level 0)
representing the root. In a ring, the circular sectors represent the nodes in the corre-
sponding level. We use the DocBall to represent the INS-M, thus for us each circular
sector corresponds to a set.

In Figure 4 (c) we can see the INS-M mapping of a sample tree by means of the
DocBall representation. The root “a” of the tree is mapped into set “A” represented
by the inner ring at level 0 of the DocBall; at level 1 we find the children of the
root and so on. With this representation a subset is presented in a ring within the
set including it. Indeed, we can see that set A is included in all the other sets. If the
intersection of two or more sets is empty then these sets have no common circular
sector in the inner rings of the DocBall; in the INS-M this is not possible because the
set representing the root (A) is common to all the sets in the INS-M. For instance, we
can see that the circular sectors C and E have in common only A, indeed C∩E = A;
instead, G and E have in common sectors D and A, thus G∩E = {D,A}.

Both the NS-M and the INS-M have been presented as “organizations of nested
sets”; two sets are nested if one contains the other and thus, if one is the subset of
the other one. The nesting between two sets determines an order inclusion between
them. Let us consider a set, call it A, that contains all the elements organized in
the hierarchy we want to represent throughout the NS-M or the INS-M. Now, let us
consider two sets, call them A1 and A2, which are subsets of A such that: A1 ⊂ A and
A2 ⊂ A. The collection C composed by the two sets A1,A2 is called the collection
of subsets of A; a family of subsets of A is just the collection C indexed by an
“index set”. The following definition formally states the very concepts we have just
described.

Definition 1 Let A be a set, I a non-empty set and C a collection of subsets of A.
Then a bijective function A : I −→C is a family of subsets of A. We call I the index
set and we say that the collection C is indexed by I.

We use the extended notation {Ai}i∈I to indicate the family A ; the notation
Ai ∈ {Ai}i∈I means that ∃ i ∈ I | A (i) = Ai. In the rest of the work we will use
the shorthand notation A when there is no risk of ambiguity and when it is not nec-
essary to indicate the index set. We call subfamily of {Ai}i∈I the restriction of A
to J ⊆ I and we denote this with {B j} j∈J ⊆ {Ai}i∈I .

From this definition we can see that an organization of nested sets in set theory
is defined as a family of subsets or just “family” if in the context in which it is used
there is no risk of ambiguity. Thus, in the context of the NS-M we have Nested Set
Families (NS-F) and in INS-M we have Inverse Nested Set Families (INS-F). The
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differences between these two models are expressed in the constraints we impose
respectively on a NS-F and a INS-F. Let us consider the formal definition of NS-F.

Definition 2 Let A be a set and let {Ai}i∈I be a family. Then {Ai}i∈I is a Nested Set
Family if:

A ∈ {Ai}i∈I , (1)
/0 /∈ {Ai}i∈I , (2)
∀Ah,Ak ∈ {Ai}i∈I ,h 6= k | Ah∩Ak 6= /0⇒ Ah ⊂ Ak ∨Ak ⊂ Ah. (3)

Thus, we define a Nested Set Family (NS-F) as a family where three conditions
must hold. The first condition (1) states that set A which contains all the sets in the
family must belong to the NS-F. The second condition states that the empty-set does
not belong to the NS-F and the last condition (3) states that the intersection of every
couple of distinct sets in the NS-F is not the empty-set only if one set is a proper
subset of the other one [14, 3].

In the same way we define the Inverse Nested Set Model (INS-M):

Definition 3 Let A be a set and let {Ai}i∈I be a family. Then {Ai}i∈I is an Inverse
Nested Set Family if:

/0 /∈ {Ai}i∈I , (4)

∀{B j} j∈J ⊆ {Ai}i∈I ⇒
⋂
j∈J

B j ∈ {Ai}i∈I . (5)

∀{B j} j∈J ⊆ {Ai}i∈I

⇒ ∃Bk ∈ {B j} j∈J | ∀Bh ∈ {B j} j∈J ,Bh ⊆ Bk

⇒ ∀Bh,Bg ∈ {B j} j∈J ,Bh ⊆ Bg∨Bg ⊆ Bh.

(6)

Thus, we define an Inverse Nested Set Family (INS-F) as a family where three
conditions must hold. The first condition (4) states that the empty-set does not be-
long to the INS-F. The second condition (5) states that the intersection of every
subfamily of the INS-F belongs to the INS-F itself. Condition 6 states that for every
possible subfamily of a INS-F there cannot exist a set in the subfamily which is a
superset of all the other sets in the subfamily, unless all the sets in the subfamily
form a chain7.

In a family of subsets the sets establish a hierarchical relationship one with the
other as well as in the tree data structure the nodes are in a parent-child or ancestor-
descendant relationship. Also in a family we can have different kind of relationships
between the sets; let us consider a family {Ai}i∈I where A1,A2 ∈ {Ai}i∈I are two
sets, A2 is a direct subset of the set A1 if and only if it does not exists a third set
A3 ∈ {Ai}i∈I such that A2 ⊂ A3 ⊂ A1. In the same way we say that A1 is a direct
superset of A2 if and only if it does not exists a third set A3 ∈ {Ai}i∈I such that

7 A family of subsets {Ai}i∈I forms a chain (or it is linearly ordered) if each set in {Ai}i∈I is nested
inside the next: the family {Ai}i∈I is defined a chain if ∀A j,Ak ∈ {Ai}i∈I ,A j ⊆ Ak ∨Ak ⊆ A j .
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A2 ⊂ A3 ⊂ A1. The following definition presents the concept of collection of proper
subsets and supersets; afterwards we present the definition of collection of proper
direct subsets and supersets.

Definition 4 Let {Ai}i∈I be a family and A j ∈ {Ai}i∈I be a set. We define S +
A (A j) =

{Ak : Ak ∈ {Ai}i∈I ∧Ak ⊂ A j} to be the collection of proper subsets of A j in the
family A . In the same way we define the collection of proper supersets of A j in the
family A as S −

A (A j) = {Ak : Ak ∈ {Ai}i∈I ∧A j ⊂ Ak}.
It is worthwhile for the rest of the work to introduce the definition of collection

of direct super/sub-sets as a restriction of the above defined collection of proper
super/sub-sets.

Definition 5 Let {Ai}i∈I be a family and A j ∈ {Ai}i∈I be a set. We define D+
A (A j) =

{Ak : Ak ∈ {Ai}i∈I ∧Ak ⊂ A j ∧@At ∈ {Ai}i∈I | Ak ⊂ At ⊂ A j} to be the collection
of direct subsets of A j in the family A . In the same way we define the collection
of direct supersets of A j in the family A as D−A (A j) = {Ak : Ak ∈ {Ai}i∈I ∧A j ⊂
Ak ∧@At ∈ {Ai}i∈I | A j ⊂ At ⊂ Ak}.

Now that we have at our disposal the fundamental concepts of set theory neces-
sary for understanding the work and that we have formally defined the NS-M and
the INS-M, we can examine the relationships between them and their properties.
From the collection of properties of these models we choose to introduce only those
used in this work to show how the NESTOR Framework addresses the interoperabil-
ity issues we have presented. As we have done for the definition of the models, we
present some of their properties and their relationships with the tree data structure
in an informal way by means of some examples. In [11, 2] the reader can find the
formal definitions and theorems proving the claims that we present in the following.
In order to explain the characteristics of the set data models we have already shown
how a tree can be mapped into a NS-F or an INS-F; in the same way it is important
to show how a NS-F can be mapped into a INS-F and vice versa, thus establishing a
bijective relation between the set data models.

Example 1 Let {Ai}i∈I be a NS-F and let {Ai}i∈I = {A1,A2,A3,A4,A5} where A1 =
{a,b,c,d,e, f ,g}, A2 = {b,g}, A3 = {c,d,e}, A4 = {d} and A5 = {e}. Then we can
map the NS-F {Ai}i∈I) into a correspondent INS-F {B j} j∈J = {B1,B2,B3,B4,B5},
mapping each set of {Ai}i∈I) into a set of {B j} j∈J):

B1 =
⋃

At∈{A1∪S −A (A1)}(At \⋃
S +

A (At)) =
A1 \⋃{A2,A3,A4,A5}= {a,b,c,d,e, f ,g}\{b,c,d,e,g}= {a, f}.

B2 =
⋃

At∈{A2∪S −A (A2)}(At \⋃
S +

A (At)) =
A2 \{ /0}∪A1 \⋃{A2,A3,A4,A5}= {b,g}∪{a, f}= {a, f ,b,g}.

B3 =
⋃

At∈{A3∪S −A (A3)}(At \⋃
S +

A (At)) =
A3 \{A4,A5}∪A1 \⋃{A2,A3,A4,A5}= {c}∪{a, f}= {c,a, f}.

B4 =
⋃

At∈{A4∪S −A (A4)}(At \⋃
S +

A (At)) =
A4 \{ /0}∪A3 \{A4,A5}∪A1 \⋃{A2,A3,A4,A5}= {d}∪{c}∪{a, f}= {d,c,a, f}.
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B5 =
⋃

At∈{A5∪S −A (A5)}(At \⋃
S +

A (At)) =
A5 \{ /0}∪A3 \{A4,A5}∪A1 \⋃{A2,A3,A4,A5}= {e}∪{c}∪{a, f}= {e,c,a, f}.

In Figure 5 we can see a graphical representation of the NS-F mapped into a
INS-F. The mapping between {Ai}i∈I) and {B j} j∈J can be defined by means of a
function; we define ζ : {Ai}i∈I →{B j} j∈J to be a function such that ∀Ak ∈ {Ai}i∈I ,
∃Bk ∈ {B j} j∈J | Bk =

⋃
At∈{Ak∪S −A (Ak)}(At \⋃

S +
A (At)).

In the same way we can define the function ξ : {B j} j∈J → {Ai}i∈I such that
∀Bk ∈ {B j} j∈J ,∃Ak ∈ {Ai}i∈I | Ak =

⋃
(Bk ∪S −

B (Bk))\⋃
S +

B (Bk). The function ξ

maps {B j} j∈J into {Ai}i∈I thus a NS-F into a INS-F.

a

b
c

d e

f

g

A1

A2
A3

A4 A5

{Ai}i∈I {Bj}j∈J

B1

B2 B3

B4

B5

a f cg

d

e

b

ζ

ξ

Fig. 5 A NS-F {Ai}i∈I and its correspondent INS-F {B j} j∈J .

This example showed us that if we model a hierarchy by means of a model we can
map it into the other model and go from one to the other whenever it is necessary.
We will see that this possibility is very useful in a concrete application because it
allows us to be free to change the representation of a hierarchy and thus not to be
bound to a single representation. The possibility of going from one model to the
other is particularly useful when we have to exploit a property of a specific set data
model; as an example we present the problem of how to find the lowest common
ancestor in a tree T (V,E) where V is the set of vertexes and E is the set of edges
of the tree. We already know that T (V,E) can be mapped in a NS-F or in a INS-F;
let us see how the concept of lowest common ancestor is handled in the set data
models. We can say that the lowest common ancestor, call it vt ∈V , of nodes v j ∈V
and vk ∈V in a tree T (V,E) is the ancestor of v j and vk that is located farthest from
the root. Many algorithms have been proposed in the literature [4] to efficiently
determine the lowest common ancestor of a tree. The same operation can be done
both in the NS-M and the INS-M. If we map the tree T (V,E) in a NS-F {Ai}i∈I each
node vi,vk,vt ∈ V is mapped in a correspondent set Ai,Ak,At ∈ {Ai}i∈I ; the same
operation can be done by mapping the same tree into an INS-F {B j} j∈J where each
node vi,vk,vt ∈V is mapped in a correspondent set Bi,Bk,Bt ∈ {B j} j∈J .

In {Ai}i∈I set At represents the lowest common ancestor between the sets Ai and
Ak. In order to determine At we have to consider a collection Ci = Ai ∪S +

A (Ai)
containing Ai and all its supersets in the family and a collection Ck = Ak ∪S +

A (Ak)
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containing Ak and all its supersets in the family; then, we have to intersect these two
collections Cx = Ci∩Ck. The collection Cx contains all the sets which are common
supersets of A j and Ak and the set At is the set with smaller cardinality in Cx. So,
to determine the correspondent of the lowest common ancestor vt ∈ V in the NS-F
{Ai}i∈I we have to do several operations: determine all the supersets of Ai and Ak,
intersect the collections containing these sets, calculate the cardinality of all the sets
in the intersection and take the set with the smaller one.

On the other hand, in {B j} j∈J set Bt represents the lowest common ancestor
between sets Bi and Bk. In order to determine Bt we have to intersect Bi and Bk
and the resulting set is the correspondent of the lower common ancestor. So, in
INS-M the problem of finding the lowest common ancestor is reduced to a single
intersection between two sets; we can see that the choice of the set data model to
adopt to represent a hierarchy is going to influence the efficiency with which we
can do some operations. The best choice between one model or the other depends
on the application environment we are considering; at the same time, the possibility
to go from a model to the other on the fly allows us to choose the best option on a
case-by-case basis.

5 The NESTOR Algebra

We designed an algebra, called the NESTOR Algebra, for the manipulation of data
represented throughout the set data models defined in the NESTOR Model. In order
to clarify the functioning and the fundamental principles on which the NESTOR
Algebra is based we will relate them to the widely known relational algebra ba-
sics. Most of the relational operations such as selection, projection, product and set
operations are important operations we want to perform on the data represented as
families of sets. The NESTOR Algebra can be uniformly adopted by the NS-F and
the INS-F. In Figure 6 we can see a graphical representation of the basic components
composing the NESTOR Algebra.

The first component contains the data model on which the algebra is based, the
predicates of the algebra and the fundamental concept of pattern family on which
the whole algebra relies. The second component contains the definition of the oper-
ators of the algebra which are both manipulation and query ones: renaming, value
update, insertion, deletion, selection, projection, union, intersection, set difference,
product, join, grouping and aggregation. The third component contains the relation-
ships of the NESTOR Algebra with the relational algebra and the Tree Algebra for
XML [16, 22]. In this work we do not describe each one of the algebra operators and
characteristics, nor do we show its completeness for the relational algebra and the
Tree Algebra for XML [16]; we present the main features of the algebra in order to
understand its functioning and its possible uses to address the interoperability issues
we have presented.

A central feature of the relational algebra is the declarative expression of queries
over the collection of tuples; an important issue we addressed in the context of the
NESTOR Algebra is the determination of the counterpart of the relational tuple. The
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Fig. 6 The main components of the NESTOR Algebra.

most important thing we have to take into consideration is that the manipulation of
data in the NESTOR Framework often uses structural constructs, and element inclu-
sion (i.e. the determination of set/superset relationships between two sets). We need
to maintain this information when we manipulate the sets organized into families in
the set data models. Thus, in the NESTOR Algebra a whole family of subsets is the
fundamental unit, similar to a relational tuple. We do not present an algebra where
the families are transformed in a collection of tuples to be processed and then re-
transformed in families following a relational construction/deconstruction paradigm
as is done in XML shredding [27]. Instead, we follow the approach adopted in Tree
Algebra for XML [16] for developed for the manipulation of XML data modeled as
forests of labeled, ordered trees; thus, we choose to manage collections of families
of sets directly.

A relation in the relational model is a collection of tuples and the counterpart in
the nested sets models is a collection of families. Each relational algebra operator
takes one or more relations as input and produces a relation as output. Correspond-
ingly, each operator of the NESTOR Algebra takes a collection of one or more
families as input and produces a collection of one or more families as output. This
means that the NESTOR Algebra considers a whole family as the basic unit and not,
for instance, a single set belonging to a family or the elements belonging to the sets
in a family.

Predicates are central to much of querying. While the choice of the specific set of
allowable predicates is orthogonal to the NESTOR Algebra, any given implemen-
tation will have to make a choice in this matter. In the NESTOR Algebra we point
out structural and content predicates; the structural predicates allow us to express
conditions on the structure of the families of subsets, instead the content predicates
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allow us to define conditions on the elements belonging to the sets. For instance, we
use a structural predicate if we want to express a condition saying that a set A j ∈AI

8

must be a subset of another set Ak ∈AI . On the other hand, we use a content predi-
cate when we need to express conditions on specific elements belonging to the sets
of interest.

The following example presents the NS-F we will use as a basis in the descrip-
tion of the algebra; it is a toy representation of an archive where the label of every
element is a simple string that also give an indication of the archival information
brought by that element.

Example 2 Let {B j} j∈J be a NS-F where {B j} j∈J = {B1,B2,B3,B4,B5,B6}.
B1 = { summary, biography, chronology, programA, letterG, letterF,

programC, programD,letterA,letterB,letterC, testamentA,letterD,
testamentB,testamentC}, B2 = {programA,letterG, letterF}.

B3 = {programC,programD}, B4 = {letterD,testamentB, testamentC},
B5 = {letterA,letterB} and B6 = {letterC,testamentA}.

summary
biography chronology

programA

  letterG

programC    programD

letterA
letterB

letterC

testamentA

letterD

testamentB

testamentC

B1

B2
B3

B4

B5 B6

   letterF

Fig. 7 Venn-diagram of the NS-F described in Example 2.

A basic syntactic requirement of any algebra is the ability to specify the at-
tributes of interest. In relational algebra this is accomplished straightforwardly by
considering domain-ordered relations or using names instead of position numbers
for “identifying the domains” [7]; doing so for a collection of families is tricky for
several reasons. First-of-all merely specifying elements is ambiguous: the elements
of which set and belonging to which family? Furthermore, we also need to define
structural constraints; we have to specify the characteristics of elements belonging
to some sets as well as the relationships between the sets in a family. In a family
we cannot use information such as the position of the elements in a set or the linear

8 In the following, a family of subsets {Ai}i∈I will be indicated usiing the shorthand notation AI .
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order between the subsets of some sets. If we consider a homogeneous collection of
families, we could define a family with an identical structure to those in the collec-
tion, label its sets, and use these labels to specify elements. But in a collection of
families, data families are heterogeneous and often we do not care about the com-
plete structure of a family but we wish only to reference some portion of the family
we care about. The NESTOR Algebra needs a mechanism to:

• Identify and manipulate an element on the basis of its value.
• Identify a set on the basis of the elements it contains.
• Define the relationships of a set with the other sets in a family.

In order to address these issues we define the concept of pattern triple which
provides a specification of the sets and elements of interest. The pattern family is
fixed for a given operation, and hence provides the needed standardization over a
heterogeneous collection of families. All algebraic operations manipulate sets and
elements identified by means of a pattern family.

A pattern triple, that we can indicate as P = 〈AI ,Fs,Fe〉, constraints each sets in
two ways: The formula Fs imposes structural predicates on sets requiring each set to
have structural relatives (subset, superset, direct superset, etc.) satisfying other con-
tent predicates defined in the formula Fe imposed on any set. In order to understand
how the pattern triple works, we propose an example presenting a pattern triple; the
pattern triple we present is drawn from the NS-F presented in the Example 2.

Example 3 Let P = 〈AI ,Fs,Fe〉 be a pattern triple where AI = {A1,A2} is a NS-F.
P is a pattern triple defining a NS-F composed by two sets A1,A2 where A1 is

required to be the direct superset of A2 and A1 must not have any superset – i.e.
S −(A1) = { /0}; these conditions are expressed by means of structural predicates.
On the other hand, by means of content predicates we require A2 to contain an
element whose label is starting with letter. We can see a graphical representation
of the pattern family described by the pattern triple in this example in Figure 8.

letter

A1

A2

Fig. 8 A graphical representation of the pattern triple P of Example 3.

Now, we can introduce another important concept of the NESTOR Algebra: the
order embedding of a pattern triple P into a collection of families C . It is useful to
point out that C can be composed by one or more families of sets. In the following
we indicate with Bk ∈ C a generic set in the collection meaning that ∃{Bi}i∈I ∈
C | Bk ∈ {Bi}i∈I .
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Let C be a collection of families of sets, and P = 〈AI ,Fs,Fe〉 be a pattern triple.
An order-embedding of P into C produces as output a collection of families of sets
that have the same structure of AI which means that every outputted family satisfies
the structural and content predicates defined in the pattern triple.

The families of sets outputted by the order-embedding of a pattern family into a
collection of families are called witness families. There may be no, one or more than
one embedding of a pattern triple into a collection of families and each embedding
induces a witness family of the embedding.

A witness family is composed of each set in the input collection C that matches
a set in the pattern triple and if there exists a set Bt ∈ C such that it is both a subset
of a set that matches a pattern set and superset of another set matching a pattern set,
then Bt belongs to the witness family even if it does not match any pattern set.

The meaning of “witness family” is that the sets in an instance that satisfies the
pattern triple are retained and the original family structure is restricted to the retained
sets to yield a witness family. If a given pattern triple can be embedded in an input
family instance in multiple ways, then multiple witness families are obtained, one
for each order-embedding as we show in the next example.

Example 4 In this example we show some order-embeddings of the pattern triple
presented in the Example 3 into the NS-F presented in the Example 2. This pattern
triple can be embedded in three ways into the input family and then it returns three
different witness families. We can see a graphical representation of the witness NS-
families in Figure 9.

letterG letterF letterD

B1 B1 B1

B2 B2 B4

Fig. 9 A graphical representation of the witness families resulting from the pattern triple and the
collection of families in Example 4.

Most-of-all the operators in the NESTOR Algebra are based on the concepts of
pattern triple and witness family. As an example we present the selection operator
that exploits the concept of pattern triple and witness family; furthermore, we in-
troduce the concept of adornment list which is a list containing pattern sets: let AI
be a pattern family then the adornment list is SL = {A j} for some A j ∈ AI . The
selection operator takes a family of subsets (or a collection of families) as input,
a pattern triple and an adornment list as parameters and it outputs a witness family
for each embedding of the pattern triple in the input family; the witness families
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programC

A1

A2

Fig. 10 A graphical representation of the pattern triple P of Example 5.

produced as output are then augmented with all the subsets of each set in the adorn-
ment list even if these subsets do not match any set in the pattern triple. This means
that for each set Ak in the adornment list we have to insert all the sets in S +

AI
(Ak) in

each witness family embedded by the pattern triple. If the adornment list is empty,
the selection operator straightforwardly returns the witness families. The selection
operator works in the same way for the NS-M and the INS-M.

Figure 9 presents the output of the selection operator when the adornment list is
empty. Let us see another example of the selection operator.

Example 5 Let us consider the NS-F BJ presented in Example 2 and shown in
Figure 7. Let us consider the pattern triple P = 〈AI ,Fs,Fe〉 where AI = {A1,A2}
is a NS-F. The structural predicates in Fs say that A1 ⊆ A2 and that A1 must not
have any superset. The content predicates in Fe say that A2 must contain an element
which label is “programC”. This pattern is represented in Figure 10.

If we match the presented pattern triple with the input family BJ we obtain a
single witness family as output because there is only one configuration in the input
family for which we have a set with no superset which contains a set at which be-
longs an element with label “programC”. This witness family is presented in Figure
11.

programC

B1

B3

Fig. 11 A graphical representation of the witness family resulting from the pattern triple and the
collection of families in Example 5.
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If we consider a selection operator which takes the family BJ as input and the
just described pattern triple and an empty adornment list as parameters, the output
will be exactly the witness family in Figure 11. Let us consider the same selection
operator but a non-empty following adornment list – e.g. SL = {A2}. This means
that all the subsets of the set matching A2 in the input collection will be added to the
output of the selection. So, in this example we have to augment the witness family
in Figure 11 with all the subsets of set B3; we can see the output of the selection in
Figure 12.

programC

letterA
letterB

letterC

testamentA

B1

B3

B5 B6

Fig. 12 A graphical representation of the output of the selection operator presented in Example 5.

The other operators in the NESTOR Algebra are defined on the same theoretical
basis of the selection.

6 The NESTOR Prototype: Addressing Interoperability for
Digital Archives

The NESTOR Prototype is the actual instantiation of the NESTOR Model; in Fig-
ure 13 we can see the main components of the NESTOR Prototype. The first com-
ponent details how the entities and the information objects we are considering are
represented through the NESTOR Model; the second describes the possible instanti-
ations of the model in an actual environment and the third examines the relationships
between the instantiations and the technologies of choice.

The NESTOR Prototype presents two possible applications of the NESTOR
Model; the first application shows how an archive modeled through the NESTOR
Model can be instantiated by means of the EAD metadata format; we show how
the archival hierarchy and the context of archival descriptions can be retained by
means of an XML file. The second application shows how we can access and share
archival descriptions with variable granularity by means of the OAI-PMH while
retaining the fundamental characteristics of the archives. First-of-all we will show
how an archive can be modeled through a NS-F and a INS-F; then, we analyze the
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Fig. 13 The main components of the NESTOR Prototype.

requirements of interoperability in the archival context and afterwards we present
the two applications of the NESTOR Model and describe how they can or cannot
address the interoperability aspects for Digital Libraries.

6.1 How to Represent an Archive through the NESTOR Model

At this stage it is quite straightforward to model a digital archive throughout the set
data models defined in the NESTOR Model. Let us consider an archive constituted
by several divisions – e.g. fonds, sub-fonds, series – each division contains a bunch
of records – e.g. letters, registers, testaments; a representation of such an archive is
given in Figure 7 where we represented an archive through a NS-F. In order to model
this archive we have to represent the hierarchical relationships between its divisions
and the records belonging to them. By adopting the NESTOR Model we represent
each division as a set maintaining the hierarchical relationships by means of the
inclusion order defined between the nested sets. Let us consider another example: if
a fonds contains three sub-fonds, then in the NS-M we will have a set representing
the fonds containing three subsets representing the subfonds. Vice versa in the INS-
M we will have a set representing the fonds which is the common subset of the three
sets representing the sub-fonds. Each record belonging to a division is represented
as an element belonging to the set corresponding to that division. In this context we
consider each element is a metadata – defined in whatever format – describing the
archival resource; please note that the model does not necessarily require that the
elements be metadata, they can also be full content digital objects represented as
well as elements belonging to sets; we have seen in the NESTOR Algebra that the
value of an element can be of whatever domain we want. At this level of definition
there are no constraints on the nature of the elements belonging to the sets.
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In Figure 2 we have seen a sample archive represented by a tree mapped into an
EAD XML file; in Figure 14 below, we can see the same archive represented with
the Nested Set Model and the Inverse Nested Set Model. Please note that with these
models the records belonging to each archival division are properly represented as
elements. In the tree there is not a defined way of representing the records; indeed,
as an expedient, we represented them as a bunch of documents linked to a division
by a dotted arrow. In Figure 14 we focus on the sets order inclusion and we do not
indicate the label or the value of the elements just as in Figure 2 we did not specify
the elements contained by the archival divisions encoded in EAD.

Fonds

Sub-Fonds
Sub-Fonds

Serie Serie Serie
Fonds

Sub-FondsSub-Fonds

Serie

Serie

Serie

Nested Set Model Inverse Nested Set Model

Fig. 14 A sample archive represented by means of the Nested Set Model and the Inverse Nested
Set Model.

6.2 Analysis of the Requirements

In the definition of a data model it is important to define the requirements that the
instantiations of the data model have to fulfill; for the purposes of this work we
point out the requirements that if fulfilled allow interoperability issues for the digital
archives to be addressed.

R1. The archival descriptions have to be accessible from multiple entry points and at the
same time they have to disclose their relationships allowing the user to consult contextual
information. Furthermore, the users must have a means at their disposal for manipulating
both the archival structure and the archival descriptions and for defining and performing
queries on-the-fly.

This requirement is important because it says that we have to be able to con-
sult an archive starting from the required description without having to navigate the
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whole archival hierarchy from a unique entry point to find the information of inter-
est. At the same time from each description we have to be able to reconstruct its
relationships with the other elements of the archive – i.e. preserving and exploiting
the archival bonds. When we manipulate and query an archive we have to be able
to express constraints on the structure and on the content of an archive; to do so
we need to have a well-defined mechanism that allows us to express our needs in a
standard way. This requirement if fulfilled addresses the “user perspective” aspect
of interoperability.

R2. The archival descriptions have to be shareable in a distributed environment with a vari-
able granularity and have to provide a mechanism for reconstructing the hierarchy when
necessary.

This requirement states that we have to be able to exchange archival descriptions
with different degrees of coarseness and belonging to whatever level of the archival
hierarchy without having to exchange the whole archive. Furthermore, a mechanism
needs to be available for reconstructing the archival relationships of an exchanged
description whenever it is necessary. In the current state of development of DL an
important technological requirement for such a data model is compliance with OAI-
PMH. Through the fulfillment of this requirement we can address the “functional
perspective” and the “interoperability technology” aspects of interoperability.

R3. Advanced language techniques allowing cross-language access to the resources have to
be straightforwardly applicable to the archival descriptions.

Cross-language access to information leads to problems of both semantic and
syntactic interoperability [20]. Two “metadata-related challanges” need to be ad-
dressed that usually are faced by involving the specification of the language of the
metadata fields” [20]: false friends and term ambiguity. Another important issue is
“name resolution” which regards the necessity to disambiguate between words that
are proper names that do not require a translation or nouns that have to be translated
for multilingual purposes. For instance, the term ”Bush” can be seen as the surname
of a former president of the United States or as a noun indicating a shrub. On the
other hand, we may need to translate some proper names; for instance, the proper
name“Kepler” has to be translated as “Keplero” in Italian.

To address these issues we can point out three main solutions. In the Translation
technique a query formulated into the user language is automatically translated in
the other languages supported and then submitted to the system. This solution is not
free from the false friends, name resolution and term ambiguity issues. The Enrich-
ment of Metadata is understood as making the intended meaning of information
resources explicit and machine-processable, thus allowing machines and humans to
better identify and access the resources. The language would be thus provided in
the metadata itself. Lastly, the Association to a Class is the association of terms
to a fairly broad class in a library classification system such as the Dewey Decimal
Classification. This is a common solution for the term ambiguity problem and it is
similar to synsets used in WordNet9. More advanced language techniques such as

9 http://wordnet.princeton.edu/

http://wordnet.princeton.edu/
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semantic annotation and tagging may also be taken into account and related to this
solution.

The specification of the language of metadata field permits us to fully exploit
metadata for cross-language purposes. If metadata do not come with or cannot be
enriched with the language of the field, it is useful to rely on the association to a class
technique. This useful technique relies on the use of the subject field of metadata;
it is not always possible to determine the subject of a metadata or of a term. This
is particularly true for archival metadata where determining the subject can be very
difficult. This requirement is directly related to addressing the “multilingualism”
aspect of interoperability.

6.3 Retaining Archival Hierarchy and Context Throughout an
XML Tree

The EAD metadata format is the standard means for representing and encoding an
archive. In Figure 2 we have seen how a tree is mapped into an EAD file; in Figure
15 we can see how the same sample archive modeled by means of the Nested Set
Model (see Figure 14) can be mapped in the same EAD file. The order inclusion
between the sets defining the hierarchical relationships between the archival divi-
sions is retained in the EAD by means of nested tags in the XML file. The elements
representing the archival descriptions are encoded by a sub portion of XML nested
inside each tag representing the corresponding archival division.

<eadheader> 
    [...]
<eadheader>
<archdesc level=”fonds”>
    [...]

<did> [...] </did> 
       <dsc label="Fonds">

    [...]

    <c01 label="Sub-fonds"> 
[...]

    </c01>
           <c01 label="Sub-fonds">

        [...]

         <c02 label="Serie">
         [...]
     </c02>

                  <c02 label="Serie">
         [...]

                  </c02>
                   <c02 label="Serie">

         [...]
                    </c02>

           </c01>
         </dsc>
</archdesc>

Fonds

Sub-Fonds
Sub-Fonds

Serie Serie Serie

Nested Set Model Encoded Archival Description

Fig. 15 A sample archive represented throughout the NSM and mapped into an EAD file.
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The main feature of this instantiation of the model is that both the structural and
the content elements are represented by means of XML elements (i.e. tags). The
EAD metadata allows us to encode the description part defined by means of the data
models and thus it is a proper means for representing an archive. Let us see how it
behaves with the three requirements we pointed out in the previous section.

The first requirement (R1, Section 6.2) states that we have to be able to access the
archival description – i.e. descriptive metadata – at different degrees of coarseness.
EAD is encoded as a unique XML file which mixes structural and content infor-
mation while the entry point to access the information is the root of the XML file.
From the root we have to navigate the hierarchy to access the information of inter-
est. In order to overcome this issue we can define some superstructures to the EAD;
for instance, we can settle some predefined entry points by the use of XPointers10

pointing to specific elements of the XML or by using predefined paths driving the
user through the hierarchical structure. These solutions are palliatives because they
can only adequately match a well-defined reality with limited and specific needs;
moreover, they have to be revised and adapted when the user needs or the require-
ments change. Furthermore, for each instantiation of the EAD, we have to know in
advance how the XML elements are used; this is not a problem in general because
we can make use of the EAD schema, but to do so each instantiation of EAD has
to meet stringent best practice guidelines [26] otherwise the use of tags may be in-
consistent, leading to wrong interpretations of the information as has happened in
practice [18]. This peculiar aspect is problematic also from the manipulation and
query point-of-view; we can adopt the Tree Algebra for XML [16] as a natural way
to manipulate and query the EAD file and consider both structure and content of the
encoded archive. The users can express their need throughout algebra operators, but
they have to know in advance how the EAD elements are used otherwise the algebra
operators are ineffective.

The second requirement (R2, Section 6.2) states that we have to be able to ex-
change archival descriptions in a distributed environment. The same issues affecting
EAD for the access requirement can be found here for metadata exchange; indeed,
the encoding of all the archival descriptions as a unique XML file forces us to ex-
change the archive as a whole. We cannot share a specific piece of information – e.g.
the descriptions of the documents belonging to a specific series – without extract-
ing it from the XML file and losing in this way the structural information retained
thanks to the nested tags in the XML itself.

The third requirement (R3, Section 6.2) regards the possibility of using language
techniques with the archival metadata. The first language technique (e.g. “transla-
tion”) is not affected by the choice of EAD and it can be directly applied. Fur-
thermore, when we consider the translation of an EAD file we have the advantage
of a big file with a large amount of contextual information which can be used to
disambiguate the terms. On the other hand, the “enrichment of metadata” technique
requires the metadata to be machine-readable in order to be automatically processed
and enriched. The very flexibility of EAD leading to a not always consistent use of

10 http://www.w3.org/TR/xptr-framework/

http://www.w3.org/TR/xptr-framework/
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structure and content elements precludes the possibility of adopting this technique
with many EAD files. Lastly, we know that a single EAD metadata is used to de-
scribe an entire archive, thus in a single metadata we can find very different subjects.
With this organization it is very difficult to disambiguate terms or to identify the sub-
ject of metadata; with the EAD metadata the “association to a class” technique is
essentially unworkable.

We can see that in this case we are not able to meet the interoperability require-
ments for a digital archive. We can think of different solutions that address one spe-
cific aspect at a time. These solutions must be designed on a case-by-case basis and
they do not constitute a general environment that can be applied to hierarchically
structured resources for addressing interoperability in Digital Libraries.

6.4 Encoding, Accessing and Sharing an Archive Through Sets

This application of the NESTOR Framework follows a different approach and it is
based on the joint use of some basic features of OAI-PMH and the Dublin Core
metadata.

Fonds

Sub-Fonds
Sub-Fonds

Serie Serie Serie

<setspec>0001</setspec>
<setname>Fonds</setname>

<setspec>0001:0001</setspec>
<setname>Sub-FondsA</setname>

<setspec>0001:0002</setspec>
<setname>Sub-FondsB</setname>

<setspec>0001:0002:0001</setspec>
<setname>SerieA</setname>

<setspec>0001:0002:0002</setspec>
<setname>SerieB</setname>

<setspec>0001:0002:0003</setspec>
<setname>SerieC</setname>

<record><header><identifier>idDocA</
identifier><datestamp>2010-09-18</
datestamp><setSpec>0001</
setSpec></header><metadata>[...]
</metadata></record>

Nested Set Model OAISet + Dublin Core Metadata

Fig. 16 A sample archive represented throughout the NSM and mapped into OAI-sets and DC
metadata.

Now we informally discuss how the set data models are mapped into a struc-
ture of OAI-sets and Dublin Core metadata; a formal definition of the ideas behind
this approach can be found in [1, 11]. First-of-all we present the mapping of an
archive represented by means of a NS-F into an organization of OAI-sets and DC
metadata; the mapping of the INS-F is symmetrical to this procedure but it leads to a
slightly different outcome [1]. Let us consider the sample archive represented by the
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Euler-Venn diagram in Figure 14. As we can see in Figure 16, each set composing
this nested set structure is mapped into an OAI-set with a proper setSpec; the set
called “fonds” is mapped into an OAI-Set with < setspec > 0001 < /setspec >.
This set has two subsets that are mapped into two OAI-sets: < setspec > 0001 : 0002
< /setspec > and < setspec > 0001 : 0003 < /setspec > and so on for the
other sets. We can see that the hierarchical relationships and thus the inclusion order
between the sets is maintained by the identifiers of the OAI-sets which are defined
as materialized paths from the root to the identified set. Each single archival de-
scription is mapped into a DC metadata belonging to an OAI-set; the membership
information is added to the header of these metadata that are seen as OAI-records.
In this way each archival description can be encoded by a single metadata with-
out any constraints on its format; indeed, an OAI-set can contain different kinds of
metadata formats. With this model we do not impose any conditions on the archival
descriptions, thus allowing the possibility of changing the metadata, updating the
information or adding a new metadata format without affecting the structure of the
archive and without changing the data model. The choice of the DC metadata for-
mat is lead by its widespread use in libraries and the possibility of defining Dublin
Core application profiles which allow us to make it domain-specific; indeed, DC
application profiles allow the definition of DC metadata formats well-suited for the
reality we intend to represent.

This instantiation of the set data models has two main differences from the EAD
one: it clearly divides the structural elements (i.e. the sets) from the content ele-
ments (i.e. the archival descriptions) and it does not bind the archival descriptions
to a unique, fixed and predefined metadata format. These differences have a major
impact on the fulfillment of the three presented requirements.

The R1 requirement is fulfilled because each OAI-set is individually accessible
as well as each single metadata. From a set we can easily reconstruct the relation-
ships with the other sets by exploiting the setspec; from a metadata we can recon-
struct the relationships with the other metadata thanks to the membership informa-
tion contained in their header. At the same time we can straightforwardly adopt the
NESTOR Algebra to manipulate and query the archival descriptions. Indeed, each
set is uniquely identified by a setspec value and the name of the set is a manda-
tory requirement; the metadata are encoded by means of the Dublin Core and thus
the use of the tags is simple and consistent. By means of the pattern triple we can
express requirements on the structure of the archive (i.e. the nested sets by means of
the pattern family and the boolean formula Fs) and on the archival descriptions (i.e.
the metadata by means of the boolean formula Fe). The NESTOR Algebra gives
users a standard way to manipulate and query hierarchical structure that can be
applied to different interoperating entities; users do not have to change the manipu-
lation and query language and thus they can perform a query both in the library and
the archival context in the same way. The NESTOR Algebra defines a natural way
to modify the structure and the content of an archive represented with the NESTOR
Model; at the same time we can query an archive naturally in the context of the
NESTOR Framework.
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Let us consider the R2 requirement; throughout the OAI-sets and DC metadata
approach we can easily use OAI-PMH to exchange a single set or a single metadata,
thus allowing a variable granularity exchange. Furthermore, from the identifier of an
OAI-set we can reconstruct the hierarchy through the ancestors to the root. By means
of OAI-PMH it is possible to exchange a specific part of the archive while at the
same time maintaining the relationships with the other parts of it. The NS-M fosters
the reconstruction of the lower levels of a hierarchy; thus, with the couple NS-M
and OAI-PMH applied to the archive, if a harvester asks for an OAI-set representing
for instance a sub-fonds it recursively obtains all the OAI-subsets and items in the
subtree rooted in the selected sub-fonds.

It is worthwhile highlighting that this approach can also be applied with the INS-
M, then if a harvester asks for an OAI-set representing for instance an archival series,
it recursively obtains all the OAI-subsets and records in the path from the archival
series to the principal fonds that is the root of the archival hierarchy. The choice
between a NS-M or INS-M should be made on the basis of the application context.
In the archival context the application of the INS-M would be more significant than
the NS-M. Indeed, often the information required by a user is stored in the exter-
nal nodes of the archival tree [28]. If we represent the archival tree by means of
the INS-M, when a harvester requires an external node of the tree it will receive
all the archival information contained in the nodes up to the root of the archive.
This means that a Service Provider can offer a potential user the required informa-
tion stored in the external node and also all the information stored in its ancestor
nodes. This information is very useful for inferring the context of an archival meta-
data which is contained in the required external node; indeed, the ancestor nodes
represent and contain the information related to the series, sub-fonds and fonds in
which the archival metadata are classified. The INS-M fosters the reconstruction of
the upper levels of a hierarchy which in the archival case often contain contextual
information which permit the relationships of the archival documents to be inferred
with the other documents in the archive and with the production and preservation
environment. We can see how the possibility of changing from one set data model
to the other by means of the defined mapping functions is very useful in the archival
context; we can address the user requirements in the most effective way without
being bound to the properties of the model of choice.

With regard to the R3 requirement, we can see that this approach is particularly
well-suited for use in conjunction with the presented language techniques. Indeed,
the representation of an archive as an organization of sets and DC metadata makes
it easier to determine the subject of each single metadata and thus to apply the
“association to a class” solution; in the same way the metadata enrichment can be
adopted because the DC metadata are well-suited to automatic processing. In this
way the solutions proposed to enable cross-language access to digital contents can
be applied also with the archival metadata, thus opening up these valuable resources
to a significant service offered by the Digital Library (DL) technology.
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7 Conclusions

The NESTOR Framework has been introduced as a conceptual and logical envi-
ronment that can be exploited to address interoperability issues in Digital Libraries.
The NESTOR Framework focuses on hierarchical structured resources by propos-
ing two set data models alternative to the tree data structure which, as we have seen
in some application contexts are well-suited to addressing interoperability issues.
Furthermore, we presented the NESTOR Algebra that allows us to manipulate and
query the hierarchies represented through the NESTOR Model in a natural way. We
presented a concrete use case based on archives, which are a fundamental and chal-
lenging entity in the Digital Libraries panorama. Within the archives we showed
how an archive can be represented through set data models and how these models
can be instantiated. We compared two instantiations of the NESTOR model dealing
with issues of interoperability for Digital Libraries. We showed that the use of sets to
express archives open them up to new important functions that meet interoperability
issues.
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