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Abstract. In this paper we study the problem of representing, manag-
ing and exchanging hierarchically structured data in the context of a Dig-
ital Library (DL). We present the NEsted SeTs for Object hieRarchies
(NESTOR) framework defining two set data models that we call: the
“Nested Set Model (NS-M)” and the “Inverse Nested Set Model (INS-
M)” based on the organization of nested sets which enable the represen-
tation of hierarchical data structures. We present the mapping between
the tree data structure to NS-M and to INS-M. Furthermore, we shall
show how these set data models can be used in conjunction with Open
Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) adding
new functionalities to the protocol without any change to its basic func-
tioning. At the end we shall present how the couple OAI-PMH and the
set data models can be used to represent and exchange archival metadata
in a distributed environment.

1 Introduction

In Digital Library Systems (DLSs) objects are often organized in hierarchies to
help in representing, managing or browsing them. For instance, books in a li-
brary can be classified by author and then by subject and then by publishing
house. Documents in an archive are organized in a hierarchy divided into fonds,
sub-fonds, series, sub-series and so on. In the same way the internal structure of
an object can be hierarchical; for example the structure of a book organized in
chapters, sections and subsections or a web page composed by nested elements
such as body, titles, subtitles, paragraphs and subparagraphs. One very impor-
tant tool extensively adopted to represent digital objects such as metadata, text
documents and multimedia contents — the eXtensible Markup Language (XML)
— has an intrinsically hierarchical structure.

Representing, managing, preserving and sharing efficiently and effectively the
hierarchical structures is a key point for the development and the consolidation
of DLS technology and services. In this paper we propose the NEsted SeTs for
Object hieRarchies (NESTOR) framework defining two set data models that we
call: the “Nested Set Model (NS-M)” and the “Inverse Nested Set Model (INS-
M)” [7]. These models are defined in the context of the ZFC (Zermelo-Fraenkel
with the axiom of Choice) axiomatic set theory [5], exploiting the advantages of
the use of sets in place of a tree structure. The foundational idea behind these set



data models is that an opportune set organization can maintain all the features
of a tree data structure with the addition of some new relevant functionalities.
We define these functionalities in terms of flexibility of the model, rapid selection
and isolation of easily specified subsets of data and extraction of only those data
necessary to satisfy specific needs.

Furthermore, these set data models can work in conjunction with the Open
Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) [12] that is
the standard de-facto for metadata sharing between DLSs in distributed envi-
ronments. The extension of OAI-PMH with these set data models allows the
protocol to manage and exchange complex hierarchical data structure in a flexi-
ble way. The extension of OAI-PMH shall permit the exchange of data belonging
to a hierarchy with a variable granularity without losing the relationships with
the other data in the hierarchy. Furthermore, the OAI-set which is a constituent
part of the protocol will be used also to organize the data and not only to enable
the selective harvesting. A concrete use case is the archival data that are or-
ganized in a hierarchy which preserve the meaningful relationships between the
data [6]. When an archival object is shared it has to preserve all the relationships
with the preservation context and with the other objects in the archive; since the
use of tree data structure in this context turns out to be problematic in terms
of accessibility and flexibility, we shall show that the use of the proposed data
models in conjunction with OAI-PMH overcomes many of these issues [6].

The paper is organized as follows: Section 2 briefly defines the tree data struc-
ture. Section 3 defines the NESTOR framework based on the two proposed set
data models and presents the mapping functions between the tree data structure
and the set data models. Section 4 describes how OAI-PMH can extend its func-
tionalities by exploiting the NS-M or the INS-M; moreover this section presents
a use case in which the set data models and OAI-PMH can be used together to
exchange full expressive archival metadata. Section 5 draws some conclusions.

2 The Tree Data Structure

The most common and diffuse way to represent a hierarchy is the tree data struc-
ture, which is one of the most important non-linear data structures in computer
science [9]. We define a tree as T (V,E) where V is the set of nodes and E the
set of edges connecting the nodes. V is composed by n nodes V = {v1, . . . , vn}
and E is composed by n − 1 edges. If vi, vj ∈ V and if eij ∈ E then eij is
the edge connecting vi to vj , thus vi is the parent of vj . We indicate with
d−V (vi) the inbound degree of node vi ∈ V representing the number of its
inbound edges; d+

V (vi) is the outbound degree of vi ∈ V representing the
number of its outbound edges. vr ∈ V is defined to be the root of T (V,E) if
and only if d−V (vr) = 0; ∀vi ∈ V \ {vr}, d−V (vi) = 1. The set of all external
nodes is Vext = {vi : d+

V (vi) = 0} and the set of all the internal nodes is
Vint = {vi : d+

V (vi) > 0}.
We define with Γ+

V (vi) the set of all the descendants of vi in V (including
vi ifself); vice versa Γ−V (vi) is the set of all the ancestors of vi in V (including



vi ifself). We shall use the set Γ in the following of this work, so it is worth
underlining a couple of recurrent cases. Let vr ∈ V be the root of a tree T (V,E)
then Γ−V (vr) = {vr} and Γ+

V (vr) = V . Furthermore, let vi an external node of
T (V,E), then Γ+

V (vi) = {vi}.

3 The NESTOR Framework

The NESTOR framework is based on two set data models called Nested Set
Model (NS-M) and Inverse Nested Set Model (INS-M) based on an organization
of nested sets. The foundational idea behind these set data models is that an
opportune set organization can maintain all the features of a tree data structure
with the addition of some new relevant functionalities. We define these function-
alities in terms of flexibility of the model, rapid selection and isolation of easily
specified subsets of data and extraction of only those data necessary to satisfy
specific needs.

The most intuitive way to understand how these models work is to relate
them to the well-know tree data structure. Thus, we informally present the two
data models by means of examples of mapping between them and a sample tree.
The first model we present is the Nested Set Model (NS-M). The intuitive
graphic representation of a tree as an organization of nested sets was used in [9]
to show different ways to represent tree data structure and in [3] to explain
an alternative way to solve recursive queries over trees in SQL language. An
organization of sets in the NS-M is a collection of sets in which any pair of sets
is either disjoint or one contains the other. In Figure 1 (b) we can see how a
sample tree is mapped into an organization of nested sets based on the NS-M.
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Fig. 1. (a) A tree. (b) Euler-Venn Diagram of a NS-M. (c) Doc-Ball representation of
a INS-M.

From Figure 1 (b) we can see that each node of the tree is mapped into a
set, where child nodes become proper subsets of the set created from the parent
node. Every set is subset of at least of one set; the set corresponding to the tree
root is the only set without any supersets and every set in the hierarchy is subset
of the root set. The external nodes are sets with no subsets. The tree structure
is maintained thanks to the nested organization and the relationships between



the sets are expressed by the set inclusion order. Even the disjunction between
two sets brings information; indeed, the disjunction of two sets means that these
belong to two different branches of the same tree.

The second data model is the Inverse Nested Set Model (INS-M). We
can say that a tree is mapped into the INS-M transforming each node into a set,
where each parent node becomes a subset of the sets created from its children.
The set created from the tree’s root is the only set with no subsets and the root
set is a proper subset of all the sets in the hierarchy. The leaves are the sets with
no supersets and they are sets containing all the sets created from the nodes
composing tree path from a leaf to the root. An important aspect of INS-M is
that the intersection of every couple of sets obtained from two nodes is always a
set representing a node in the tree. The intersection of all the sets in the INS-M
is the set mapped from the root of the tree.

Differently from the NS-M, the representation of the INS-M by means of
the Euler-Venn diagrams is not very expressive and can be confusing for the
reader [1]. We can represent in a straightforward way the INS-M by means of
the “DocBall representation” [4]. The DocBall representation is used in [4] to
depict the structural components of the documents and can be considered as
the representation of a tree structure. We exploit the DocBall ability to show
the structure of an object and to represent the “inclusion order of one or more
elements in another one” [14]. The DocBall is composed of a set of circular
sectors arranged in concentric rings as shown in Figure 1 (c). In a DocBall each
ring represents a level of the hierarchy with the center (level 0) representing
the root. In a ring, the circular sectors represent the nodes in the corresponding
level. We use the DocBall to represent the INS-M, thus for us each circular sector
corresponds to a set.

In Figure 1 (c) we can see the INS-M mapping of a sample tree by means of
the DocBall representation. The root “a” of the tree is mapped into the set “A”
represented by the inner ring at level 0 of the DocBall; at level 1 we find the
children of the root and so on. With this representation a subset is presented
in a ring inner than the set including it. Indeed, we can see that the set A is
included by all the other sets. If the intersection of two or more sets is empty
then these sets have no common circular sector in the inner rings of the DocBall;
in the INS-M this is not possible because the set representing the root (A) is
common to all the sets in the INS-M. For instance, we can see that the circular
sectors C and E have in common only A, indeed C ∩ E = A; instead, G and E
have in common the sectors D and A, thus G ∩ E = {D,A}.

It is worthwhile for the rest of the work to define some basic concepts of set
theory: the family of subsets and the subfamily of subsets, with reference to [5]
for their treatment. However, we assume the reader is confident with the basic
concepts of ZFC axiomatic set theory, which we cannot extensively treat here
for space reasons.

Definition 1 Let F be a set, I a non-empty set and C a collection of subsets of
F . Then a bijective function F : I −→ C is a family of subsets of F . We call I
the index set and we say that the collection C is indexed by I.



We use the following notation {Fi}i∈I to indicate the family F ; the notation
Fi ∈ {Fi}i∈I means that ∃ i ∈ I | F(i) = Fi. We call subfamily of {Fi}i∈I the
restriction of F to J ⊆ I and we denote this with {SFj}j∈J ⊆ {Fi}i∈I .

Definition 2 Let {Fi}i∈I be a family. We define {Fi}i∈I to be a linearly or-
dered family (or chain) if ∀Fj , Fk ∈ {Fi}i∈I , Fj ⊆ Fk ∨ Fk ⊆ Fj.

Furthermore, we can say that a family {Fi}i∈I is a linearly ordered family if
every two sets in {Fi}i∈I are comparable: ∀Fj , Fk ∈ {Fi}i∈I , Fj ⊂ Fk ∨Fk ⊂ Fj .

Definition 3 Let {Fi}i∈I be a family . We define {Fi}i∈I to be a topped fam-
ily if ∃Fk ∈ {Fi}i∈I | ∀Fj ∈ {Fi}i∈I , Fj ⊆ Fk. If @Fk ∈ {Fi}i∈I | ∀Fj ∈
{Fi}i∈I , Fj ⊆ Fk then {Fi}i∈I is defined to be a topless family.

Definition 4 Let F be a set and let {Fi}i∈I be a family. Then {Fi}i∈I is a
Nested Set family if:

F ∈ {Fi}i∈I , (3.1)
∅ /∈ {Fi}i∈I , (3.2)

∀Fh, Fk ∈ {Fi}i∈I , h 6= k | Fh ∩ Fk 6= ∅
⇒ Fh ⊂ Fk ∨ Fk ⊂ Fh.

(3.3)

Thus, we define a Nested Set family (NS-F) as a family where three conditions
must hold. The first condition (3.1) states that set A which contains all the sets
in the family must belong to the NS-F. The second condition states that the
empty-set does not belong to the NS-F and the last condition (3.3) states that
the intersection of every couple of distinct sets in the NS-F is not the empty-set
only if one set is a proper subset of the other one.

Theorem 1 Let T (V,E) be a tree and let Φ be a family where I = V and
∀vi ∈ V , Vvi

= Γ+
V (vi). Then {Vvi

}vi∈V is a Nested Set family.

Proof. Let vr ∈ V be the root of the tree then Vvr
= Γ+

V (vr) = V and thus
V ∈ {Vvi}vi (condition 3.1). By definition of descendant set of a node, ∀vi ∈ V ,
|Vvi | = |Γ+

V (vi)| ≥ 1 and so ∅ /∈ {Vvi}vi∈V (condition 3.2).
Now, we prove condition 3.3. Let vh, vk ∈ V , h 6= k such that Vvh

∩ Vvk
=

Γ+
V (vh) ∩ Γ+

V (vk) 6= ∅, ab absurdo suppose that Γ+
V (vh) * Γ+

V (vk) ∧ Γ+
V (vk) *

Γ+
V (vk). This means that the descendants of vh share at least a node with the

descendants of vk but they do not belong to the same subtree. This means that
∃ vz ∈ V | d−V (vz) = 2 but then T (V,E) is not a tree.

In the same way we can define the Inverse Nested Set Model (INS-M):

Definition 5 Let F be a set, let {Fi}i∈I be a family and let {SFj}j∈J ⊆ {Fi}i∈I

be a sub-family. Then {Fi}i∈I is an Inverse Nested Set family if:

∅ /∈ {Fi}i∈I , (3.4)⋂
j∈J

SFj ∈ {Fi}i∈I . (3.5)



∃SFk ∈ {SFj}j∈J | ∀SFh ∈ {SFj}j∈J , SFh ⊆ SFk

⇒ ∀SFh, SFg ∈ {SFj}j∈J , SFh ⊆ SFg ∨ SFg ⊆ SFh.
(3.6)

Thus, we define an Inverse Nested Set family (INS-F) as a family where three
conditions must hold. Condition 3.4 states that the empty-set does not belong
to the INS-F. Condition 3.5 states that the intersection of every subfamily of
the INS-F belongs to the INS-F itself. Condition 3.6 states that every subfamily
of a INS-F can be a topped family only if it is linearly ordered; alternatively, we
can say that every subfamily of an INS-F must be a topless family or it must be
a chain.

Theorem 2 Let T (V,E) be a tree and let Ψ be a family where I = V and
∀vi ∈ V , Vvi

= Γ−V (vi). Then {Vvi
}vi∈V is an Inverse Nested Set family.

Proof. By definition of the set of the ancestors of a node, ∀vi ∈ V , |Vvi | =
|Γ−V (vi)| ≥ 1 and so ∅ /∈ {Vvi}vi∈V (condition 3.4).

Let {Bvj
}vj∈J be a subfamily of {Vvi

}vi∈V . We prove condition 3.5 by in-
duction on the cardinality of J . |J | = 1 is the base case and it means that
every subfamily {Bvj

}vj∈J ⊆ {Vvi
}vi∈V is composed only by one set Bv1 whose

intersection is the set itself and belongs to the family {Vvi}vi∈V by definition.
For |J | = n−1 we assume that ∃ vn−1 ∈ V |

⋂
vj∈J Bvj = Bvn−1 ∈ {Vvi}vi∈V ;

equivalently we can say that ∃ vn−1 ∈ V |
⋂

vj∈J Γ
−
V (vj) = Γ−V (vn−1), thus,

Γ−V (vn−1) is a set of nodes that is composed of common ancestors of the n − 1
considered nodes.

For |J | = n, we have to show that ∃ vt ∈ V | ∀ vn ∈ J, Bvn−1 ∩Bvn
= Bvt

∈
{Vvi
}vi∈V . This is equivalent to show that ∃ vt ∈ V | ∀ vn ∈ J, Γ−V (vn−1) ∩

Γ−V (vn) = Γ−V (vt).
Ab absurdo suppose that ∃ vn ∈ J | ∀ vt ∈ V, Γ−V (vn−1)∩Γ−V (vn) 6= Γ−V (vt).

This would mean that vn has no ancestors in J and, consequently, in V ; at
the same time, this would mean that vn is an ancestor of no node in J and,
consequently, in V . But this means that V is the set of nodes of a forest and not
of a tree.

Now, we have to prove condition 3.6. Let {Bvj
}vj∈J be a subfamily of {Vvi

}vi∈V .
Ab absurdo suppose that ∃Bvk

∈ {Bvj}vj∈J | ∀Bvh
∈ {Bvj}vj∈J , Bvh

⊆ Bvk
⇒

∃Bvh
, Bvg ∈ {Bvj}vj∈J | Bvh

* Bvg∧Bvg * BVh
. This means that {Bvj}vj∈J is a

topped but not linearly ordered family. This means that we can findBvg
, Bvh

, Bvk
∈

{Bvj
}vj∈J | ((Bvh

∩ Bvk
6= ∅) ∧ (Bvh

∪ Bvk
⊂ Bvg

) ∧ (Bvh
* Bvk

) ∧ (Bvk
*

Bvh
)) ⇒ ∃vh, vk, vg ∈ V | ((Γ−V (vh) ∩ Γ−V (vk) 6= ∅) ∧ (Γ−V (vh) ∪ Γ−V (vk) ⊆

Γ−V (vg))∧ (Γ−V (vh) * Γ−V (vk))∧ (Γ−V (vk) ⊆ Γ−V (vh))). This means that there are
two paths from the root of T to vg, one throught vh and a distinct one throught
vk, thus d−V (vg) = 2 and so T is not a tree. �

4 How to Exploit the NESTOR Framework in
Conjunction with OAI-PMH

The defined set data models can be exploited to improve the data exchange
between DL systems in a distributed environment. Our aim is to show how



NESTOR enables OAI-PMH to cope with complex hierarchical structured ob-
jects without any losses in its basic features that are: flexibility, adaptability and
non-invasivity. In order to explain how NESTOR can be used in conjunction with
OAI-PMH it is worthwhile to describe the functioning of this protocol with a
magnifying lens over the features particularly well-suited towards the integration
of the NESTOR framework.

4.1 The Open Archive Initiative Protocol for Metadata Harvesting

OAI-PMH is based on the distinction between Data Provider and Service Provider
which, respectively, offer metadata and harvest metadata to provide services [13].
Data Providers are the components that make metadata available to the Service
Providers that harvest metadata. Each Data Provider manages its own meta-
data and it is independent and autonomous by the outside information systems.
Service Provider role is to harvests metadata by the different Data Providers
and to performs advanced services on these harvested metadata.

The protocol defines two kinds of harvesting procedures: incremental and se-
lective harvesting. Incremental harvesting permits users to query a Data Provider
and ask it to return just the new, changed or deleted records from a certain date
or between two dates. Selective harvesting is based on the concept of OAI-
set, which enables logical data partitioning by defining groups of records. Selec-
tive harvesting is the procedure that permits the harvesting only of metadata
owned by a specified OAI-set. In OAI-PMH a set is defined by three compo-
nents: setSpec which is mandatory and a unique identifier for the set within the
repository, setName which is a mandatory short human-readable string naming
the set, and setDesc which may hold community-specific XML-encoded data
about the set.

OAI-set organization may be hierarchical, where hierarchy is expressed in
the setSpec field by the use of a colon [:] separated list indicating the path from
the root of the set hierarchy to the respective node. For example if we define an
OAI-set whose setSpec is “A”, its subset “B” would have “A:B” as setSpec.
In this case “B” is a proper subset of “A”: B ⊂ A. When a repository defines
a set organization it must include set membership information in the headers
of the records returned to the harvester requests. Harvesting from a set which
has sub-sets will cause the repository to return the records in the specified set
and recursively to return the records from all the sub-sets. In our example, if we
harvest set A, we also obtain the records in sub-set B [12].

4.2 Set-Theoretical Use of OAI-PMH

In OAI-PMH it is possible to define an OAI-set organization based on the NS-M
or INS-M. This means that we can treat the OAI-sets as a Nested Set Family
(NS-F) or as an Inverse Nested Set Family (INS-F). The inclusion order between
the OAI-sets is given by its identifier which is a <setspec> value. This <setspec>
value is also added in the header of every record belonging to an OAI-set. In
the following we describe how it is possible to create a Nested Set family of



OAI-Set and afterward how the same thing can be done with an Inverse Nested
Set family.

Let O be a Nested Set family and let I be the set of the <setspec> values
where i ∈ I = {s0 : s1 : . . . : sj} means that ∃ Oj ∈ {Oi}i∈I | Oj ⊂ . . . ⊂
O1 ⊂ O0. Every Oi ∈ {Oi}i∈I is an OAI-set uniquely identified by a <setspec>
value in I. The <setspec> values for the Ok ∈ {Oi}i∈I are settled in such a way
to maintain the inclusion order between the sets. If an Ok has no superset its
setspec value is composed only by a single value (<setspec>sk</setspec>).
Instead if a set Oh has supersets, e.g. Oa and Ob where Ob ⊂ Oa, its setspec
value must be the combination of the name of its supersets and itself separated
by the colon [:] (e.g. <setspec>sa : sb : sh</setspec>). Furthermore, let R =
{r0, . . . , rn} be a set of records, then each ri ∈ Oj must contain the setspec of
Oj in its header.

Throughout {Oi}i∈I it is possible to represent a hierarchical data structure,
such as a tree, in OAI-PMH providing a granularity access to the items in the
hierarchy and at the same time enabling the exchange of a single part of the
hierarchy with the possibility of reconstructing the whole hierarchy whenever it
is necessary.

In the same way we can apply the INS-M to OAI-PMH; let U be an Inverse
Nested Set family and let J be the set of the <setspec> values where j ∈
J = {s0 : s1 : . . . : sk} means that ∃ Uk ∈ {Uj}j∈J = Uk ⊂ . . . ⊂ U1 ⊂
U0. In {Uj}j∈J differently that in {Oi}i∈I the following case may happen: Let
Ui, Uk, Uw ∈ {Uj}j∈J then it is possible that Uw ⊂ Ui and Uw ⊂ Uk but either
Ui * Uk and Uk * Ui. If we consider {Uj}j∈J composed only of Ui, Uk and
Uw, the identifier of Ui is <setspec>si</setspec> and the identifier of Uk is
<setspec>sk</setspec>. Instead, the identifier of Uw must be <setspec>sj :
sw</setspec> and <setspec>sj : sw</setspec> at the same time; this means
that in {Uj}j∈J there are two distinct OAI-sets, one identified by <setspec>sj :
sw</setspec> and the other identified by <setspec>sk : sw</setspec>. This is
due to the fact that the intersection between OAI-sets in OAI-PMH is not defined
set-theoretically; indeed, the only way to get an intersection of two OAI-sets is
enumerating the records. This means that we can know if an OAI-record belongs
to two or more sets just by seeing whether there are two or more <setspec>
entries in the header of the record. In this case the records belonging to Uw will
contain two <setspec> entries in their header: <setspec>sj : sw</setspec> and
<setspec>sk : sw</setspec>; note that only the <setspec> value is duplicated
and not the records themselves.

With this view of OAI-PMH we can set a hierarchical structure of items as
a well-defined nested set organization that maintains the relationships between
the items just as a tree data structure does and moreover we can exploit the
flexibility of the sets exchanging a specific subset while maintaining the integrity
of the data. Indeed, in the header of the items there is the set membership
information which, if necessary, enables the reconstruction of the hierarchy or
part of it. Throughout the NS-M and INS-M it is possible to handle hierarchical
structures in OAI-PMH simply by exploiting the inner functionalities of the



protocol; indeed, no change of OAI-PMH is required to cope with the presented
set data models.

The choice between NS-M and INS-M is based on the application context:
NS-M fosters the reconstruction of the lower levels of a hierarchy starting from
a node, vice versa INS-M fosters the reconstruction of the upper levels.

4.3 The Set Data Models and OAI-PMH Applied to the Archives

This subsection describes how we can exchange archival metadata in a dis-
tributed environment and it is a continuation of the work presented in [6]. A
brief introduction regarding the archive peculiarities is worthwhile for a bet-
ter understanding of the proposed solutions. An archive is a complex cultural
organization which is not simply constituted by a series of objects that have
been accumulated and filed with the passing of time. Archives have to keep the
context in which their documents have been created and the network of rela-
tionships among them in order to preserve their informative content and provide
understandable and useful information over time. The context and the relation-
ships between the documents are preserved thanks to the strongly hierarchical
organization of the documents inside the archive. Indeed, an archive is divided
by fonds and then by sub-fonds and then by series and then by sub-series and
so on; at every level we can find documents belonging to a particular division
of the archive or documents describing the nature of the considered level of the
archive (e.g. a fond, a sub-fonds, etc.). The union of all these documents, the
relationships and the context information permits the full informational power
of the archival documents to be maintained.

In the digital environment an archive and its components are described by
the use of metadata; these need to be able to express and maintain such structure
and relationships. The standard format of metadata for representing the complex
hierarchical structure of the archive is Encoded Archival Description (EAD) [10],
which reflects the archival structure and holds relations between documents in
the archive. On the other hand to maintain all this information an EAD file
turns out to be a very large XML file with a deep hierarchical internal structure.
Thus, accessing, searching and sharing individual items in the EAD might be
difficult without taking into consideration the whole hierarchy. On the other
hand, users are often interested in the information described at the item level,
which is typically buried very deeply in the hierarchy and might be difficult to
reach [11].

In Fig. 2 we can see two approaches to represent the archival organization
and documents. The first approach is the EAD-like one in which the whole
archive is mapped inside a unique XML file which is potentially very large and
deeply hierarchical. All information about fonds, sub-fonds or series as well as the
documents belonging to a specific archival division are mapped into several XML
elements in the same XML file. With this approach we cannot exchange precise
metadata through OAI-PMH, rather we have to exchange the whole archive. At
the same time it is not possible to access a specific piece of information without
accessing the whole hierarchy.
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(Here is reported the XML code of only one 

sample metadata)

<setspec>0001</setspec>
<setname>SerieA</setname>

<setspec>0002</setspec>
<setname>SerieB</setname>

<setspec>0001:0001</setspec>
<setname>Sub-fondsA</setname>

<record><header><identifier>idDocA</
identifier><datestamp>2009-04-18</
datestamp><setSpec>0004:0001</
setSpec><setSpec>0001:0001:0001</
setSpec><setSpec>0002:0001:0001</
setSpec><setSpec>0003:0001:0001</
header><metadata>[...]
</metadata></record>
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<setspec>0003</setspec>
<setname>SerieC</setname>

<setspec>0003:0001</setspec>
<setname>Sub-fondsA</setname>

<setspec>0004</setspec>
<setname>Sub-fondsB</setname>

<setspec>0004:0001</setspec>
<setname>Fonds</setname>

<setspec>0003:0001:0001</setspec>
<setname>Fonds</setname>

[...]

[...]
In the DocBall representation each circular 

sector represents a set. The circular sectors 
in an outer ring are superset of the common 

circular sectors belonging to inner rigs.

For instance Sub-Fonds A is a common 
subset of Serie A, Serie B and Serie C. 

Fonds is a common subset of all the other 
sets represented in the DocBall.

Fig. 2. The hierarchical structure of an archive mapped into a metadata with a tree
data structure, the alternative mapping in the INS-M and in OAI-PMH.

The second approach based on the INS-M permits us to overcome the pre-
sented issues. Indeed, the archival hierarchy is mapped into a family Ψ that for
theorem 2 is a INS-F. In Ψ the documents are represented as items belonging
to the opportune set. In this way the context information and the relationships
between the documents are preserved thanks to the nested set organization and
at the same time they are not bound to a rigid structure. Then, Ψ is represented
in OAI-PMH throughout the family {Uj}j∈J of OAI-sets obtained setting of
the <setspec> values as described in the previous subsection. For instance, we
obtained four sets from the root with four different identifiers: “0004:0001”,
“0001:0001:0001”, “0002:0001:0001” and “0003:0001:0001”. In the same way are
defined the sets mapped from the children of the root. The sets mapped from
the external nodes are identified by “0001”, “0002” and “0003”. Thus, from the
identifier of an OAI-set we can reconstruct the hierarchy through the ancestors
to the root. By means of OAI-PMH it is possible to exchange a specific part of
the archive while at the same time maintaining the relationships with the other
parts of it. The INS-M fosters the reconstruction of the upper levels of a hierar-



chy that in the archival case often contain contextual information which permit
the relationships of the archival documents to be inferred with the other doc-
uments in the archive and with the production and preservation environment.
If a harvester asks for an OAI-set representing for instance an archival series it
recursively obtains all the OAI-subsets and records in the path from the archival
series to the principal fond that is the root of the archival tree.

This approach can also be applied with the NS-M mapping the archival
hierarchy into a NS-F {Oi}i∈I following the procedure illustrated in the previous
section. In this case there is a big difference in the harvesting procedure; indeed,
the NS-M fosters the reconstruction of the lower levels of a hierarchy; thus, with
the couple NS-M and OAI-PMH applied to the archive, if a harvester asks for an
OAI-set representing for instance a sub-fond it recursively obtains all the OAI-
subsets and items in the subtree rooted in the selected sub-fonds. In the archival
context the application of the INS-M is useful when we have to reconstruct the
context of an archival document; indeed, often the information required by a
user is stored in the external nodes of the archival tree [11]. If we represent the
archival tree by means of the INS-F, when a harvester requires an external node
of the tree it will receive all the archival information contained in the nodes up to
the root of the tree. This means that a Service Provider can offer a potential user
the required information stored in the external node and also all the information
stored in its ancestors nodes. This information is very useful for inferring the
context of an archival metadata which is contained in the required external node;
indeed, the ancestor nodes represent and contain the information related to the
series, sub-fonds and fonds in which the archival metadata are classified. The
application of NS-M is useful when we want to obtain all the sub-fonds, series,
etc. in which a fonds is divided. There is not a one-fits-all solution but the choice
of the model should be done on the basis of the operations that are performed
more frequently on the archive.

5 Conclusions

We have discussed the relevance of the hierarchical structures in computer sci-
ence with a specific examination of the DLSs. We have presented the tree data
structure and highlighted the more relevant aspects to our treatment of hier-
archical structures. We have also presented the NESTOR framework defining
two set-theoretical data models called Nested Set Model and Inverse Nested Set
Model as alternatives of the tree data structure. Furthermore, we have shown
how a tree can be mapped in one model or the other. These models maintain
the peculiarities of the tree with the flexibility and accessibility of sets. We have
shown that without any changes on OAI-PMH, the protocol can exploit the
NS-M or the INS-M in order to exchange hierarchical structures in a flexible
way. Lastly we have presented a significant application of the presented set data
models in conjunction with OAI-PMH represented by the archives. Indeed, we
have shown how the hierarchical archive organization can be represented and



exchanged in OAI-PMH and thus between different DLSs in a distributed envi-
ronment.
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