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Reproducibility
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- No research paper can ever be considered to be the final 
word, and the replication and corroboration of research 
results is key to the scientific process  
                      [Nature, http://www.nature.com/nature/focus/reproducibility/] 

!

- The basic principle is that, given an experiment, an 
independent researcher should be able to replicate it, 
under the same conditions, and achieve the same results

[http://explorable.com/reproducibility]
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- Repeatability: researchers repeat the experiments to test 
and verify the results
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Repeatability Reproducibility

5

- Repeatability: researchers repeat the experiments to test 
and verify the results

- Reproducibility:  

- completely independent from the original study  

- generate “identical” findings  

- leads to Generalization whose aim is to apply the experimental 
findings to new situations in order to determine their validity in a 
different context with different variables
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RBP:  
Rank-Biased Precision

6



slideRank-Biased Precision Reloaded: Reproducibility and GeneralizationN. Ferro and G. Silvello

RBP
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- The original paper: A. Moffat and J. Zobel, Rank-Biased 
Precision for Measurement of Retrieval Effectiveness, 
Transactions On Information Systems, 27(1): 1-27, 2008. 

- Impact: 

- > 80 citations in the ACM DL 

- > 190 citations in Google Scholar 

- > 100 citations in Scopus
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Why a TOIS paper? / Why RBP?
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- Our goal is to start to understand what reproducibility means 
for IR evaluation. 

- Therefore, we need to be able to reduce the confounding 
factors (e.g. poor experimental design) to focus on issues 
raised only by reproducibility 

http://ak.picdn.net/shutterstock/
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RBP
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- User model: a user always starts from 
the first document in a ranking and 
then s/he progresses with probability 
p (persistence parameter)
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What do we need to reproduce?
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- Experiments are based on the TREC-05, 1996, Ad-Hoc 
collection 

- 61 runs, 50 topics, binary relevance, ~530K docs 

- released by the National Institute of Standard and Technology 
(NIST): http://trec.nist.gov/

http://trec.nist.gov/
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What do we need to reproduce?
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- Three main experiments have been conducted to explore 
how RBP behaves: 

-  Kendall’s tau correlation with shallow pools (depth 100 and 10)  

- Upper and lower bounds for RBP varying the p parameter (0.5, 
0.8 and 0.95) 

- Discriminative power: t test and Wilcoxon test
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1st set of experiments to be reproduced

13

1. Kendall’s correlation coefficients from the systems ordering 
generated by pair of metrics and by considering two pool 
depths (10 and 100)
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1st set of experiments to be reproduced

13

1. Kendall’s correlation coefficients from the systems ordering 
generated by pair of metrics and by considering two pool 
depths (10 and 100)

Pool at depth 10 was calculated by exploiting original 
assessments but applying them to a reduced set of 

documents (the union of the first 10 documents of each run). 
!

This downsampling technique is deterministic
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Before everything: How to import the data?
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- TREC-05 is a public experimental collection composed by 
61 runs shared using the following well-known format:

<topic id> <q0> <document id> <rank> <score> <run id>

- The standard library trec_eval employed by TREC 
imports runs as follows (trec_eval ordering):  

- items are sorted in descending order by score and 
descending lexicographical order of document-id when 
scores are tied 
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How to import the data?
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- It is possible to specify different import orders  

- original ordering: the runs are imported as they were 
submitted to the campaign without performing any additional 
ordering  

- trec_eval does not implement RBP and in the paper the 
importing order of the run is not specified



slideRank-Biased Precision Reloaded: Reproducibility and GeneralizationN. Ferro and G. Silvello

The import ordering effect

16

Kendall’s Tau correlations in the 
RBP original paper 

Rank-Biased Precision for Measurement of Retrieval Effectiveness • 2:23

Table III.
Kendall’s τ correlation coefficients calculated from the system order-
ings generated by pairs of metrics using the 61 TREC-5 runs. A value of
1.0 indicates perfect agreement between the two metrics, in terms of the
system ordering that they produce. The largest (nonself) value in each row
is highlighted in boldface, with the top part of the table showing that RR is
most like P@10; that P@10 is most like P@R; and that P@R is most like AP.
The bottom group of rows shows the same correlation coefficients for RBP.
When p = 0.5, RBP behaves most like RR. When RBP uses p = 0.8, the best
agreement is with P@10. When RBP uses p = 0.95, there is good agreement
with all of P@10, P@R, and AP.

Kendall’s τ , pool depth 100
Metric Pool

depth RR P@10 P@R AP
RR 10 0.997 0.841 0.749 0.733
P@10 10 0.839 1.000 0.861 0.846
P@R 100 0.748 0.861 1.000 0.905

RBP, p = 0.5 10 0.925 0.858 0.768 0.758
RBP, p = 0.8 10 0.887 0.930 0.822 0.812
RBP, p = 0.95 10 0.778 0.880 0.874 0.897
RBP, p = 0.95 100 0.791 0.913 0.896 0.863

NDCG 100 0.763 0.831 0.878 0.916

are thus carrying out broadly the same task. Worth noting, however, is that
RBP with p = 0.5 gives similar behavior to reciprocal rank; and that RBP with
p = 0.95 compares well to all of P@10, P@R, and average precision (which is
known to correlate well with P@R [Buckley and Voorhees 2005; Aslam et al.
2005]). Also worth comment is that RBP provides AP-similar system rankings
even when the relevance assessment pool depth is just 10. That is, in terms of
experimental cost, it may be preferable to use RBP with an assessment depth
of 10 than it is to use AP with a depth of 100. Similar results (not shown here)
were obtained when the same experiment was applied to the 127 system runs
submitted to TREC-8 in 1999, and when Spearman correlation coefficients were
computed rather than Kendall’s τ .

To put Table III into perspective, we also computed the Kendall’s τ correlation
scores for the relationships plotted in Figures 2 and 4. In the case of the Figure 2
comparison between AP with a pool depth of 10 and AP with a pool depth
of 100, the correlation score was 0.898. Figure 4 plots three sets of similar
relationships; the Kendall’s τ scores for p = 0.5, p = 0.8, and p = 0.95 were,
respectively, 1.000, 0.986, and 0.891.

In the second investigation, we tested the consistency of a range of metrics,
measured in terms of their ability to provide support for questions of the form
“are these two systems significantly different?” In this experiment, the 61
TREC-5 systems were pairwise compared over the 50 queries, using query
similarity scores computed using several different effectiveness metrics. For
each combination of system pair and evaluation metric, two statistical tests,
at two significance levels, were applied, and the number of pairwise system
comparisons that generated “yes, they are significantly different” outcomes
was counted.

ACM Transactions on Information Systems, Vol. 27, No. 1, Article 2, Publication date: December 2008.
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Reproduced results  
Numbers in bold are those which are at least 1% different from the correlations in the original RBP paper 
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Table 1. Kendall’s Tau correlations calculated from the system orderings generated by
metric pairs with TREC-05 by using the trec eval ordering and the original ordering.
Numbers in bold are those which are at least 1% different from the correlations in [12].

treceval ordering
depth 100

Metric depth RR P@10 P@R AP

RR 10 0.997 0.842 0.748 0.732
P@10 10 0.840 1.000 0.861 0.845
P@R 100 0.746 0.861 1.000 0.908
RBP.5 10 0.926 0.858 0.764 0.755
RBP.8 10 0.888 0.930 0.819 0.809
RBP.95 10 0.778 0.882 0.877 0.896
RBP.95 100 0.793 0.916 0.895 0.859
nDCG 100 0.765 0.831 0.877 0.915

original ordering
depth 100

Metric depth RR P@10 P@R AP

RR 10 0.997 0.841 0.747 0.730
P@10 10 0.840 1.000 0.860 0.844
P@R 100 0.769 0.861 1.000 0.907
RBP.5 10 0.924 0.858 0.776 0.755
RBP.8 10 0.889 0.929 0.828 0.809
RBP.95 10 0.779 0.880 0.905 0.894
RBP.95 100 0.792 0.913 0.850 0.859
nDCG 100 0.763 0.829 0.886 0.913

trec eval ordering, thus in the following we conduct all the other experiments
by assuming this ordering for importing the runs.

Another small issue with the reproduction of this experiment is that in the
original paper there are no details about the parameters – i.e. weighting schema
and log base – used for calculating nDCG; we tested several weighting schema
and log bases and we obtained the same number as those in the reference paper
by assigning weight 0 to not-relevant documents, 1 to relevant ones and by using
log base 2.8

Figure 2 and 4 of the original paper regard similar aspects to those presented
above in the comment to Table 1 and they concern the correlation between Mean
Average Precision (MAP) values calculated on the TREC-05 Ad-Hoc collection
considering pool depth 100 and pool depth 10 which we show in Figure 1a and
the correlation between mean RBP values with p set at 0.5, 0.8 and 0.95 as
reported in Figure 1b.

As we can see these two figures are qualitatively equal to those in the original
paper and thus these experiments can be considered as reproducible. The main
difference regards the choice of the axes which in the reference paper are in the
range [0, 0.4] for MAP and [0, 0.6] for mean RBP, whereas we report the graph
with axes in the range [0, 1], which is the actual full-scale for both measures. In
this way, we can see some MAP values which are above 0.4, showing that MAP
calculated with shallow pools tends to overestimate the good runs more than
the bad ones. Also for mean RBP we can see some values above the 0.6 limit
reported in the original paper; these points show that RBP with p = 0.5 with
the depth 10 pool tends to overestimate good runs a little more than the bad
ones even though these points are also very close to the bisector.

8 Note that the log base might have guessed by the fact that, on page 21 of the paper,
when presenting DCG the authors report that [9] suggested the use of b = 2, and
employed that value in their examples and experiments.
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Table III.
Kendall’s τ correlation coefficients calculated from the system order-
ings generated by pairs of metrics using the 61 TREC-5 runs. A value of
1.0 indicates perfect agreement between the two metrics, in terms of the
system ordering that they produce. The largest (nonself) value in each row
is highlighted in boldface, with the top part of the table showing that RR is
most like P@10; that P@10 is most like P@R; and that P@R is most like AP.
The bottom group of rows shows the same correlation coefficients for RBP.
When p = 0.5, RBP behaves most like RR. When RBP uses p = 0.8, the best
agreement is with P@10. When RBP uses p = 0.95, there is good agreement
with all of P@10, P@R, and AP.

Kendall’s τ , pool depth 100
Metric Pool

depth RR P@10 P@R AP
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RBP, p = 0.5 10 0.925 0.858 0.768 0.758
RBP, p = 0.8 10 0.887 0.930 0.822 0.812
RBP, p = 0.95 10 0.778 0.880 0.874 0.897
RBP, p = 0.95 100 0.791 0.913 0.896 0.863

NDCG 100 0.763 0.831 0.878 0.916

are thus carrying out broadly the same task. Worth noting, however, is that
RBP with p = 0.5 gives similar behavior to reciprocal rank; and that RBP with
p = 0.95 compares well to all of P@10, P@R, and average precision (which is
known to correlate well with P@R [Buckley and Voorhees 2005; Aslam et al.
2005]). Also worth comment is that RBP provides AP-similar system rankings
even when the relevance assessment pool depth is just 10. That is, in terms of
experimental cost, it may be preferable to use RBP with an assessment depth
of 10 than it is to use AP with a depth of 100. Similar results (not shown here)
were obtained when the same experiment was applied to the 127 system runs
submitted to TREC-8 in 1999, and when Spearman correlation coefficients were
computed rather than Kendall’s τ .

To put Table III into perspective, we also computed the Kendall’s τ correlation
scores for the relationships plotted in Figures 2 and 4. In the case of the Figure 2
comparison between AP with a pool depth of 10 and AP with a pool depth
of 100, the correlation score was 0.898. Figure 4 plots three sets of similar
relationships; the Kendall’s τ scores for p = 0.5, p = 0.8, and p = 0.95 were,
respectively, 1.000, 0.986, and 0.891.

In the second investigation, we tested the consistency of a range of metrics,
measured in terms of their ability to provide support for questions of the form
“are these two systems significantly different?” In this experiment, the 61
TREC-5 systems were pairwise compared over the 50 queries, using query
similarity scores computed using several different effectiveness metrics. For
each combination of system pair and evaluation metric, two statistical tests,
at two significance levels, were applied, and the number of pairwise system
comparisons that generated “yes, they are significantly different” outcomes
was counted.

ACM Transactions on Information Systems, Vol. 27, No. 1, Article 2, Publication date: December 2008.
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Table 1. Kendall’s Tau correlations calculated from the system orderings generated by
metric pairs with TREC-05 by using the trec eval ordering and the original ordering.
Numbers in bold are those which are at least 1% different from the correlations in [12].
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Another small issue with the reproduction of this experiment is that in the
original paper there are no details about the parameters – i.e. weighting schema
and log base – used for calculating nDCG; we tested several weighting schema
and log bases and we obtained the same number as those in the reference paper
by assigning weight 0 to not-relevant documents, 1 to relevant ones and by using
log base 2.8

Figure 2 and 4 of the original paper regard similar aspects to those presented
above in the comment to Table 1 and they concern the correlation between Mean
Average Precision (MAP) values calculated on the TREC-05 Ad-Hoc collection
considering pool depth 100 and pool depth 10 which we show in Figure 1a and
the correlation between mean RBP values with p set at 0.5, 0.8 and 0.95 as
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difference regards the choice of the axes which in the reference paper are in the
range [0, 0.4] for MAP and [0, 0.6] for mean RBP, whereas we report the graph
with axes in the range [0, 1], which is the actual full-scale for both measures. In
this way, we can see some MAP values which are above 0.4, showing that MAP
calculated with shallow pools tends to overestimate the good runs more than
the bad ones. Also for mean RBP we can see some values above the 0.6 limit
reported in the original paper; these points show that RBP with p = 0.5 with
the depth 10 pool tends to overestimate good runs a little more than the bad
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when presenting DCG the authors report that [9] suggested the use of b = 2, and
employed that value in their examples and experiments.
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Table III.
Kendall’s τ correlation coefficients calculated from the system order-
ings generated by pairs of metrics using the 61 TREC-5 runs. A value of
1.0 indicates perfect agreement between the two metrics, in terms of the
system ordering that they produce. The largest (nonself) value in each row
is highlighted in boldface, with the top part of the table showing that RR is
most like P@10; that P@10 is most like P@R; and that P@R is most like AP.
The bottom group of rows shows the same correlation coefficients for RBP.
When p = 0.5, RBP behaves most like RR. When RBP uses p = 0.8, the best
agreement is with P@10. When RBP uses p = 0.95, there is good agreement
with all of P@10, P@R, and AP.

Kendall’s τ , pool depth 100
Metric Pool

depth RR P@10 P@R AP
RR 10 0.997 0.841 0.749 0.733
P@10 10 0.839 1.000 0.861 0.846
P@R 100 0.748 0.861 1.000 0.905

RBP, p = 0.5 10 0.925 0.858 0.768 0.758
RBP, p = 0.8 10 0.887 0.930 0.822 0.812
RBP, p = 0.95 10 0.778 0.880 0.874 0.897
RBP, p = 0.95 100 0.791 0.913 0.896 0.863

NDCG 100 0.763 0.831 0.878 0.916

are thus carrying out broadly the same task. Worth noting, however, is that
RBP with p = 0.5 gives similar behavior to reciprocal rank; and that RBP with
p = 0.95 compares well to all of P@10, P@R, and average precision (which is
known to correlate well with P@R [Buckley and Voorhees 2005; Aslam et al.
2005]). Also worth comment is that RBP provides AP-similar system rankings
even when the relevance assessment pool depth is just 10. That is, in terms of
experimental cost, it may be preferable to use RBP with an assessment depth
of 10 than it is to use AP with a depth of 100. Similar results (not shown here)
were obtained when the same experiment was applied to the 127 system runs
submitted to TREC-8 in 1999, and when Spearman correlation coefficients were
computed rather than Kendall’s τ .

To put Table III into perspective, we also computed the Kendall’s τ correlation
scores for the relationships plotted in Figures 2 and 4. In the case of the Figure 2
comparison between AP with a pool depth of 10 and AP with a pool depth
of 100, the correlation score was 0.898. Figure 4 plots three sets of similar
relationships; the Kendall’s τ scores for p = 0.5, p = 0.8, and p = 0.95 were,
respectively, 1.000, 0.986, and 0.891.

In the second investigation, we tested the consistency of a range of metrics,
measured in terms of their ability to provide support for questions of the form
“are these two systems significantly different?” In this experiment, the 61
TREC-5 systems were pairwise compared over the 50 queries, using query
similarity scores computed using several different effectiveness metrics. For
each combination of system pair and evaluation metric, two statistical tests,
at two significance levels, were applied, and the number of pairwise system
comparisons that generated “yes, they are significantly different” outcomes
was counted.

ACM Transactions on Information Systems, Vol. 27, No. 1, Article 2, Publication date: December 2008.
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are thus carrying out broadly the same task. Worth noting, however, is that
RBP with p = 0.5 gives similar behavior to reciprocal rank; and that RBP with
p = 0.95 compares well to all of P@10, P@R, and average precision (which is
known to correlate well with P@R [Buckley and Voorhees 2005; Aslam et al.
2005]). Also worth comment is that RBP provides AP-similar system rankings
even when the relevance assessment pool depth is just 10. That is, in terms of
experimental cost, it may be preferable to use RBP with an assessment depth
of 10 than it is to use AP with a depth of 100. Similar results (not shown here)
were obtained when the same experiment was applied to the 127 system runs
submitted to TREC-8 in 1999, and when Spearman correlation coefficients were
computed rather than Kendall’s τ .

To put Table III into perspective, we also computed the Kendall’s τ correlation
scores for the relationships plotted in Figures 2 and 4. In the case of the Figure 2
comparison between AP with a pool depth of 10 and AP with a pool depth
of 100, the correlation score was 0.898. Figure 4 plots three sets of similar
relationships; the Kendall’s τ scores for p = 0.5, p = 0.8, and p = 0.95 were,
respectively, 1.000, 0.986, and 0.891.

In the second investigation, we tested the consistency of a range of metrics,
measured in terms of their ability to provide support for questions of the form
“are these two systems significantly different?” In this experiment, the 61
TREC-5 systems were pairwise compared over the 50 queries, using query
similarity scores computed using several different effectiveness metrics. For
each combination of system pair and evaluation metric, two statistical tests,
at two significance levels, were applied, and the number of pairwise system
comparisons that generated “yes, they are significantly different” outcomes
was counted.

ACM Transactions on Information Systems, Vol. 27, No. 1, Article 2, Publication date: December 2008.
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Table III.
Kendall’s τ correlation coefficients calculated from the system order-
ings generated by pairs of metrics using the 61 TREC-5 runs. A value of
1.0 indicates perfect agreement between the two metrics, in terms of the
system ordering that they produce. The largest (nonself) value in each row
is highlighted in boldface, with the top part of the table showing that RR is
most like P@10; that P@10 is most like P@R; and that P@R is most like AP.
The bottom group of rows shows the same correlation coefficients for RBP.
When p = 0.5, RBP behaves most like RR. When RBP uses p = 0.8, the best
agreement is with P@10. When RBP uses p = 0.95, there is good agreement
with all of P@10, P@R, and AP.

Kendall’s τ , pool depth 100
Metric Pool

depth RR P@10 P@R AP
RR 10 0.997 0.841 0.749 0.733
P@10 10 0.839 1.000 0.861 0.846
P@R 100 0.748 0.861 1.000 0.905

RBP, p = 0.5 10 0.925 0.858 0.768 0.758
RBP, p = 0.8 10 0.887 0.930 0.822 0.812
RBP, p = 0.95 10 0.778 0.880 0.874 0.897
RBP, p = 0.95 100 0.791 0.913 0.896 0.863

NDCG 100 0.763 0.831 0.878 0.916

are thus carrying out broadly the same task. Worth noting, however, is that
RBP with p = 0.5 gives similar behavior to reciprocal rank; and that RBP with
p = 0.95 compares well to all of P@10, P@R, and average precision (which is
known to correlate well with P@R [Buckley and Voorhees 2005; Aslam et al.
2005]). Also worth comment is that RBP provides AP-similar system rankings
even when the relevance assessment pool depth is just 10. That is, in terms of
experimental cost, it may be preferable to use RBP with an assessment depth
of 10 than it is to use AP with a depth of 100. Similar results (not shown here)
were obtained when the same experiment was applied to the 127 system runs
submitted to TREC-8 in 1999, and when Spearman correlation coefficients were
computed rather than Kendall’s τ .

To put Table III into perspective, we also computed the Kendall’s τ correlation
scores for the relationships plotted in Figures 2 and 4. In the case of the Figure 2
comparison between AP with a pool depth of 10 and AP with a pool depth
of 100, the correlation score was 0.898. Figure 4 plots three sets of similar
relationships; the Kendall’s τ scores for p = 0.5, p = 0.8, and p = 0.95 were,
respectively, 1.000, 0.986, and 0.891.

In the second investigation, we tested the consistency of a range of metrics,
measured in terms of their ability to provide support for questions of the form
“are these two systems significantly different?” In this experiment, the 61
TREC-5 systems were pairwise compared over the 50 queries, using query
similarity scores computed using several different effectiveness metrics. For
each combination of system pair and evaluation metric, two statistical tests,
at two significance levels, were applied, and the number of pairwise system
comparisons that generated “yes, they are significantly different” outcomes
was counted.

ACM Transactions on Information Systems, Vol. 27, No. 1, Article 2, Publication date: December 2008.
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Table III.
Kendall’s τ correlation coefficients calculated from the system order-
ings generated by pairs of metrics using the 61 TREC-5 runs. A value of
1.0 indicates perfect agreement between the two metrics, in terms of the
system ordering that they produce. The largest (nonself) value in each row
is highlighted in boldface, with the top part of the table showing that RR is
most like P@10; that P@10 is most like P@R; and that P@R is most like AP.
The bottom group of rows shows the same correlation coefficients for RBP.
When p = 0.5, RBP behaves most like RR. When RBP uses p = 0.8, the best
agreement is with P@10. When RBP uses p = 0.95, there is good agreement
with all of P@10, P@R, and AP.

Kendall’s τ , pool depth 100
Metric Pool

depth RR P@10 P@R AP
RR 10 0.997 0.841 0.749 0.733
P@10 10 0.839 1.000 0.861 0.846
P@R 100 0.748 0.861 1.000 0.905

RBP, p = 0.5 10 0.925 0.858 0.768 0.758
RBP, p = 0.8 10 0.887 0.930 0.822 0.812
RBP, p = 0.95 10 0.778 0.880 0.874 0.897
RBP, p = 0.95 100 0.791 0.913 0.896 0.863

NDCG 100 0.763 0.831 0.878 0.916

are thus carrying out broadly the same task. Worth noting, however, is that
RBP with p = 0.5 gives similar behavior to reciprocal rank; and that RBP with
p = 0.95 compares well to all of P@10, P@R, and average precision (which is
known to correlate well with P@R [Buckley and Voorhees 2005; Aslam et al.
2005]). Also worth comment is that RBP provides AP-similar system rankings
even when the relevance assessment pool depth is just 10. That is, in terms of
experimental cost, it may be preferable to use RBP with an assessment depth
of 10 than it is to use AP with a depth of 100. Similar results (not shown here)
were obtained when the same experiment was applied to the 127 system runs
submitted to TREC-8 in 1999, and when Spearman correlation coefficients were
computed rather than Kendall’s τ .

To put Table III into perspective, we also computed the Kendall’s τ correlation
scores for the relationships plotted in Figures 2 and 4. In the case of the Figure 2
comparison between AP with a pool depth of 10 and AP with a pool depth
of 100, the correlation score was 0.898. Figure 4 plots three sets of similar
relationships; the Kendall’s τ scores for p = 0.5, p = 0.8, and p = 0.95 were,
respectively, 1.000, 0.986, and 0.891.

In the second investigation, we tested the consistency of a range of metrics,
measured in terms of their ability to provide support for questions of the form
“are these two systems significantly different?” In this experiment, the 61
TREC-5 systems were pairwise compared over the 50 queries, using query
similarity scores computed using several different effectiveness metrics. For
each combination of system pair and evaluation metric, two statistical tests,
at two significance levels, were applied, and the number of pairwise system
comparisons that generated “yes, they are significantly different” outcomes
was counted.

ACM Transactions on Information Systems, Vol. 27, No. 1, Article 2, Publication date: December 2008.
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Fig. 2. Mean average precision of 61 TREC-5 systems, using relevance judgments compiled using
two different pool depths. The dotted line is the identity relationship, with points below the line
showing systems for which average precision decreased when additional documents were judged.
The nonlinearity of the decrease shows that the ordering of systems is also affected.

pool depths of 10 and 100. Note how AP for an assessment pool of depth 10
is almost always an overestimate for the “correct” AP when calculated using
an assessment pool of depth 100. Note also that the ordering of the systems
changes as the pool depth is increased. We can only conclude that, were the
pools to be extended to depth (say) 1000, further decreases in mean AP would
be observed, and that there would be additional perturbations in the system
ordering.

In addition to these relatively technical issues, average precision, like recall,
is on uncertain foundations. Average precision can be said to represent an esti-
mate of user satisfaction, but based on a complex abstraction that does not fit
well with our usual understanding of how users interact with a retrieval sys-
tem. Consider the necessary scenario: the user issues a query, obtains a ranked
list of answers, and begins examining them. Every time a relevant document is
encountered, the user pauses, asks “Over the documents I have seen so far, on
average how satisfied am I?” and writes a number on a piece of paper. Finally,
when the user has examined every document in the collection—because this is
the only way to be sure that all of the relevant ones have been seen—the user
computes the average of the values they have written.

Buckley and Voorhees [2005, page 59] also criticized AP, on the grounds
that it “is an overall system evaluation measure, not an application measure,”
and that “there is no single user application that directly motivates MAP.”
We agree with this criticism, and posit that, in the absence of any task to
which the measurements correspond, abstract measurements of a system are
less interesting than those that are predicated on a plausible model of user
behavior.

Average precision does have strengths. Perhaps the best evidence in its favor
is its stability and robustness: AP-based differences between systems on one set
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Fig. 4. Rank-biased precision of 61 TREC-5 systems, for three different values of p, using relevance
judgments compiled using two different pool depths. Rank-biased precision at p = 0.5 and p = 0.8
is stable when the pool depth is increased from 10 documents per system to 100 documents. At
p = 0.95 the RBP scores increase (and never decrease) when the pool depth is increased.

Compare the behavior of a persistent user to the one-in-a-thousand chance of
a p = 0.5 user entering even the second page of 10 results. Users in the p = 0.5
category are highly impatient, but obtain high average per-document utility
(that is, high RBP) whenever there is a relevant document in the first one or
two rank positions. In the limit, use of p = 0.0 implies a user who is “feeling
lucky” and is either satisfied or dissatisfied with the top-ranked document, and
never looks any further. This latter mode corresponds exactly to evaluating the
system using P@1.

Figure 4 shows the effect of calculating average RBP scores over the 61
systems that participated in TREC-5 in 1996, calculated using two different pool
depths for the relevance assessments. Three different values of the parameter
p were used, covering a range from relatively impatient users (p = 0.5) through
to relatively patient users (p = 0.95). When p = 0.5 and p = 0.8, the system
average scores calculated based on judgments extracted from a pool depth of
10 documents per run are almost identical to the scores generated when a pool
depth of 100 is used. When p = 0.95, a pool depth of 10 is insufficient to give
accurate RBP scores, and the correlation is weaker. Note, however, that adding
further relevance judgments into the computation increases the system score,
rather than decreasing it. That is, unlike the situation with AP that is depicted
in Figure 2, system scores using rank-biased precision can always be regarded
as lower bounds on the score that would be obtained were perfect relevance
information to be available.

It was noted above that the interpretation of precision scores needs to be
tempered by knowledge of R, the number of relevant documents. The same is
also true of RBP, since a persistent user (with say p = 0.95) is guaranteed to
obtain a low expected utility from a search with only a few relevant documents.

ACM Transactions on Information Systems, Vol. 27, No. 1, Article 2, Publication date: December 2008.
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Fig. 2. Mean average precision of 61 TREC-5 systems, using relevance judgments compiled using
two different pool depths. The dotted line is the identity relationship, with points below the line
showing systems for which average precision decreased when additional documents were judged.
The nonlinearity of the decrease shows that the ordering of systems is also affected.

pool depths of 10 and 100. Note how AP for an assessment pool of depth 10
is almost always an overestimate for the “correct” AP when calculated using
an assessment pool of depth 100. Note also that the ordering of the systems
changes as the pool depth is increased. We can only conclude that, were the
pools to be extended to depth (say) 1000, further decreases in mean AP would
be observed, and that there would be additional perturbations in the system
ordering.

In addition to these relatively technical issues, average precision, like recall,
is on uncertain foundations. Average precision can be said to represent an esti-
mate of user satisfaction, but based on a complex abstraction that does not fit
well with our usual understanding of how users interact with a retrieval sys-
tem. Consider the necessary scenario: the user issues a query, obtains a ranked
list of answers, and begins examining them. Every time a relevant document is
encountered, the user pauses, asks “Over the documents I have seen so far, on
average how satisfied am I?” and writes a number on a piece of paper. Finally,
when the user has examined every document in the collection—because this is
the only way to be sure that all of the relevant ones have been seen—the user
computes the average of the values they have written.

Buckley and Voorhees [2005, page 59] also criticized AP, on the grounds
that it “is an overall system evaluation measure, not an application measure,”
and that “there is no single user application that directly motivates MAP.”
We agree with this criticism, and posit that, in the absence of any task to
which the measurements correspond, abstract measurements of a system are
less interesting than those that are predicated on a plausible model of user
behavior.

Average precision does have strengths. Perhaps the best evidence in its favor
is its stability and robustness: AP-based differences between systems on one set
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Fig. 4. Rank-biased precision of 61 TREC-5 systems, for three different values of p, using relevance
judgments compiled using two different pool depths. Rank-biased precision at p = 0.5 and p = 0.8
is stable when the pool depth is increased from 10 documents per system to 100 documents. At
p = 0.95 the RBP scores increase (and never decrease) when the pool depth is increased.

Compare the behavior of a persistent user to the one-in-a-thousand chance of
a p = 0.5 user entering even the second page of 10 results. Users in the p = 0.5
category are highly impatient, but obtain high average per-document utility
(that is, high RBP) whenever there is a relevant document in the first one or
two rank positions. In the limit, use of p = 0.0 implies a user who is “feeling
lucky” and is either satisfied or dissatisfied with the top-ranked document, and
never looks any further. This latter mode corresponds exactly to evaluating the
system using P@1.

Figure 4 shows the effect of calculating average RBP scores over the 61
systems that participated in TREC-5 in 1996, calculated using two different pool
depths for the relevance assessments. Three different values of the parameter
p were used, covering a range from relatively impatient users (p = 0.5) through
to relatively patient users (p = 0.95). When p = 0.5 and p = 0.8, the system
average scores calculated based on judgments extracted from a pool depth of
10 documents per run are almost identical to the scores generated when a pool
depth of 100 is used. When p = 0.95, a pool depth of 10 is insufficient to give
accurate RBP scores, and the correlation is weaker. Note, however, that adding
further relevance judgments into the computation increases the system score,
rather than decreasing it. That is, unlike the situation with AP that is depicted
in Figure 2, system scores using rank-biased precision can always be regarded
as lower bounds on the score that would be obtained were perfect relevance
information to be available.

It was noted above that the interpretation of precision scores needs to be
tempered by knowledge of R, the number of relevant documents. The same is
also true of RBP, since a persistent user (with say p = 0.95) is guaranteed to
obtain a low expected utility from a search with only a few relevant documents.
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(a) Mean average precision.
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(b) Mean rank-biased precision.

Fig. 1. Correlation between MAP and mean RBP at pool depth 10 and 100
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Fig. 2. Upper and lower bounds of RBP as p is varied and increasing number of
documents are considered in the ranking for the “ETHme1” run

The second set of experiments in [12] we aim to reproduce regards upper
and lower bounds of RBP evaluated at depth 10 and depth 100. In the usual
TREC evaluation setting some documents of a run are assessed (either relevant
or not relevant in the binary case), but most of them are left unjudged and
normally considered as not-relevant when it comes to calculating effectiveness
measures. In [12] it is stated that with this assumption “quoted effectiveness rates
might be expected to be pessimistic” and thus represent a lower bound of the
measurement; thus, RBP values calculated with this assumption are considered
the lower bounds of the measure. They proposed a method to compute a residual
that captures the unknown component (determined by the unjudged documents)
of RBP. Basically, the residual is calculated on a item-by-item basis by summing
the weight that the documents would have had if they were relevant; the upper
bound is defined by the sum of RBP (i.e. the lower bound) and the residual.

The goal of this experiment is to show that lower and upper bounds stabilize
as the depth of the evaluation is increased, even if for higher values of p and

Reproduced Results



slideRank-Biased Precision Reloaded: Reproducibility and GeneralizationN. Ferro and G. Silvello

Pool Downsampling

18

Rank-Biased Precision for Measurement of Retrieval Effectiveness • 2:9

0.0 0.1 0.2 0.3 0.4

MAP (judgment pool depth 10)

0.0

0.1

0.2

0.3

0.4
M

A
P

 (
ju

dg
m

en
t p

oo
l d

ep
th

 1
00

)

Fig. 2. Mean average precision of 61 TREC-5 systems, using relevance judgments compiled using
two different pool depths. The dotted line is the identity relationship, with points below the line
showing systems for which average precision decreased when additional documents were judged.
The nonlinearity of the decrease shows that the ordering of systems is also affected.

pool depths of 10 and 100. Note how AP for an assessment pool of depth 10
is almost always an overestimate for the “correct” AP when calculated using
an assessment pool of depth 100. Note also that the ordering of the systems
changes as the pool depth is increased. We can only conclude that, were the
pools to be extended to depth (say) 1000, further decreases in mean AP would
be observed, and that there would be additional perturbations in the system
ordering.

In addition to these relatively technical issues, average precision, like recall,
is on uncertain foundations. Average precision can be said to represent an esti-
mate of user satisfaction, but based on a complex abstraction that does not fit
well with our usual understanding of how users interact with a retrieval sys-
tem. Consider the necessary scenario: the user issues a query, obtains a ranked
list of answers, and begins examining them. Every time a relevant document is
encountered, the user pauses, asks “Over the documents I have seen so far, on
average how satisfied am I?” and writes a number on a piece of paper. Finally,
when the user has examined every document in the collection—because this is
the only way to be sure that all of the relevant ones have been seen—the user
computes the average of the values they have written.

Buckley and Voorhees [2005, page 59] also criticized AP, on the grounds
that it “is an overall system evaluation measure, not an application measure,”
and that “there is no single user application that directly motivates MAP.”
We agree with this criticism, and posit that, in the absence of any task to
which the measurements correspond, abstract measurements of a system are
less interesting than those that are predicated on a plausible model of user
behavior.

Average precision does have strengths. Perhaps the best evidence in its favor
is its stability and robustness: AP-based differences between systems on one set
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Fig. 4. Rank-biased precision of 61 TREC-5 systems, for three different values of p, using relevance
judgments compiled using two different pool depths. Rank-biased precision at p = 0.5 and p = 0.8
is stable when the pool depth is increased from 10 documents per system to 100 documents. At
p = 0.95 the RBP scores increase (and never decrease) when the pool depth is increased.

Compare the behavior of a persistent user to the one-in-a-thousand chance of
a p = 0.5 user entering even the second page of 10 results. Users in the p = 0.5
category are highly impatient, but obtain high average per-document utility
(that is, high RBP) whenever there is a relevant document in the first one or
two rank positions. In the limit, use of p = 0.0 implies a user who is “feeling
lucky” and is either satisfied or dissatisfied with the top-ranked document, and
never looks any further. This latter mode corresponds exactly to evaluating the
system using P@1.

Figure 4 shows the effect of calculating average RBP scores over the 61
systems that participated in TREC-5 in 1996, calculated using two different pool
depths for the relevance assessments. Three different values of the parameter
p were used, covering a range from relatively impatient users (p = 0.5) through
to relatively patient users (p = 0.95). When p = 0.5 and p = 0.8, the system
average scores calculated based on judgments extracted from a pool depth of
10 documents per run are almost identical to the scores generated when a pool
depth of 100 is used. When p = 0.95, a pool depth of 10 is insufficient to give
accurate RBP scores, and the correlation is weaker. Note, however, that adding
further relevance judgments into the computation increases the system score,
rather than decreasing it. That is, unlike the situation with AP that is depicted
in Figure 2, system scores using rank-biased precision can always be regarded
as lower bounds on the score that would be obtained were perfect relevance
information to be available.

It was noted above that the interpretation of precision scores needs to be
tempered by knowledge of R, the number of relevant documents. The same is
also true of RBP, since a persistent user (with say p = 0.95) is guaranteed to
obtain a low expected utility from a search with only a few relevant documents.
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(a) Mean average precision.
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Fig. 2. Upper and lower bounds of RBP as p is varied and increasing number of
documents are considered in the ranking for the “ETHme1” run

The second set of experiments in [12] we aim to reproduce regards upper
and lower bounds of RBP evaluated at depth 10 and depth 100. In the usual
TREC evaluation setting some documents of a run are assessed (either relevant
or not relevant in the binary case), but most of them are left unjudged and
normally considered as not-relevant when it comes to calculating effectiveness
measures. In [12] it is stated that with this assumption “quoted effectiveness rates
might be expected to be pessimistic” and thus represent a lower bound of the
measurement; thus, RBP values calculated with this assumption are considered
the lower bounds of the measure. They proposed a method to compute a residual
that captures the unknown component (determined by the unjudged documents)
of RBP. Basically, the residual is calculated on a item-by-item basis by summing
the weight that the documents would have had if they were relevant; the upper
bound is defined by the sum of RBP (i.e. the lower bound) and the residual.

The goal of this experiment is to show that lower and upper bounds stabilize
as the depth of the evaluation is increased, even if for higher values of p and

Reproduced Results
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Fig. 2. Mean average precision of 61 TREC-5 systems, using relevance judgments compiled using
two different pool depths. The dotted line is the identity relationship, with points below the line
showing systems for which average precision decreased when additional documents were judged.
The nonlinearity of the decrease shows that the ordering of systems is also affected.

pool depths of 10 and 100. Note how AP for an assessment pool of depth 10
is almost always an overestimate for the “correct” AP when calculated using
an assessment pool of depth 100. Note also that the ordering of the systems
changes as the pool depth is increased. We can only conclude that, were the
pools to be extended to depth (say) 1000, further decreases in mean AP would
be observed, and that there would be additional perturbations in the system
ordering.

In addition to these relatively technical issues, average precision, like recall,
is on uncertain foundations. Average precision can be said to represent an esti-
mate of user satisfaction, but based on a complex abstraction that does not fit
well with our usual understanding of how users interact with a retrieval sys-
tem. Consider the necessary scenario: the user issues a query, obtains a ranked
list of answers, and begins examining them. Every time a relevant document is
encountered, the user pauses, asks “Over the documents I have seen so far, on
average how satisfied am I?” and writes a number on a piece of paper. Finally,
when the user has examined every document in the collection—because this is
the only way to be sure that all of the relevant ones have been seen—the user
computes the average of the values they have written.

Buckley and Voorhees [2005, page 59] also criticized AP, on the grounds
that it “is an overall system evaluation measure, not an application measure,”
and that “there is no single user application that directly motivates MAP.”
We agree with this criticism, and posit that, in the absence of any task to
which the measurements correspond, abstract measurements of a system are
less interesting than those that are predicated on a plausible model of user
behavior.

Average precision does have strengths. Perhaps the best evidence in its favor
is its stability and robustness: AP-based differences between systems on one set

ACM Transactions on Information Systems, Vol. 27, No. 1, Article 2, Publication date: December 2008.
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Fig. 4. Rank-biased precision of 61 TREC-5 systems, for three different values of p, using relevance
judgments compiled using two different pool depths. Rank-biased precision at p = 0.5 and p = 0.8
is stable when the pool depth is increased from 10 documents per system to 100 documents. At
p = 0.95 the RBP scores increase (and never decrease) when the pool depth is increased.

Compare the behavior of a persistent user to the one-in-a-thousand chance of
a p = 0.5 user entering even the second page of 10 results. Users in the p = 0.5
category are highly impatient, but obtain high average per-document utility
(that is, high RBP) whenever there is a relevant document in the first one or
two rank positions. In the limit, use of p = 0.0 implies a user who is “feeling
lucky” and is either satisfied or dissatisfied with the top-ranked document, and
never looks any further. This latter mode corresponds exactly to evaluating the
system using P@1.

Figure 4 shows the effect of calculating average RBP scores over the 61
systems that participated in TREC-5 in 1996, calculated using two different pool
depths for the relevance assessments. Three different values of the parameter
p were used, covering a range from relatively impatient users (p = 0.5) through
to relatively patient users (p = 0.95). When p = 0.5 and p = 0.8, the system
average scores calculated based on judgments extracted from a pool depth of
10 documents per run are almost identical to the scores generated when a pool
depth of 100 is used. When p = 0.95, a pool depth of 10 is insufficient to give
accurate RBP scores, and the correlation is weaker. Note, however, that adding
further relevance judgments into the computation increases the system score,
rather than decreasing it. That is, unlike the situation with AP that is depicted
in Figure 2, system scores using rank-biased precision can always be regarded
as lower bounds on the score that would be obtained were perfect relevance
information to be available.

It was noted above that the interpretation of precision scores needs to be
tempered by knowledge of R, the number of relevant documents. The same is
also true of RBP, since a persistent user (with say p = 0.95) is guaranteed to
obtain a low expected utility from a search with only a few relevant documents.
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Fig. 2. Upper and lower bounds of RBP as p is varied and increasing number of
documents are considered in the ranking for the “ETHme1” run

The second set of experiments in [12] we aim to reproduce regards upper
and lower bounds of RBP evaluated at depth 10 and depth 100. In the usual
TREC evaluation setting some documents of a run are assessed (either relevant
or not relevant in the binary case), but most of them are left unjudged and
normally considered as not-relevant when it comes to calculating effectiveness
measures. In [12] it is stated that with this assumption “quoted effectiveness rates
might be expected to be pessimistic” and thus represent a lower bound of the
measurement; thus, RBP values calculated with this assumption are considered
the lower bounds of the measure. They proposed a method to compute a residual
that captures the unknown component (determined by the unjudged documents)
of RBP. Basically, the residual is calculated on a item-by-item basis by summing
the weight that the documents would have had if they were relevant; the upper
bound is defined by the sum of RBP (i.e. the lower bound) and the residual.

The goal of this experiment is to show that lower and upper bounds stabilize
as the depth of the evaluation is increased, even if for higher values of p and
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Fig. 2. Mean average precision of 61 TREC-5 systems, using relevance judgments compiled using
two different pool depths. The dotted line is the identity relationship, with points below the line
showing systems for which average precision decreased when additional documents were judged.
The nonlinearity of the decrease shows that the ordering of systems is also affected.

pool depths of 10 and 100. Note how AP for an assessment pool of depth 10
is almost always an overestimate for the “correct” AP when calculated using
an assessment pool of depth 100. Note also that the ordering of the systems
changes as the pool depth is increased. We can only conclude that, were the
pools to be extended to depth (say) 1000, further decreases in mean AP would
be observed, and that there would be additional perturbations in the system
ordering.

In addition to these relatively technical issues, average precision, like recall,
is on uncertain foundations. Average precision can be said to represent an esti-
mate of user satisfaction, but based on a complex abstraction that does not fit
well with our usual understanding of how users interact with a retrieval sys-
tem. Consider the necessary scenario: the user issues a query, obtains a ranked
list of answers, and begins examining them. Every time a relevant document is
encountered, the user pauses, asks “Over the documents I have seen so far, on
average how satisfied am I?” and writes a number on a piece of paper. Finally,
when the user has examined every document in the collection—because this is
the only way to be sure that all of the relevant ones have been seen—the user
computes the average of the values they have written.

Buckley and Voorhees [2005, page 59] also criticized AP, on the grounds
that it “is an overall system evaluation measure, not an application measure,”
and that “there is no single user application that directly motivates MAP.”
We agree with this criticism, and posit that, in the absence of any task to
which the measurements correspond, abstract measurements of a system are
less interesting than those that are predicated on a plausible model of user
behavior.

Average precision does have strengths. Perhaps the best evidence in its favor
is its stability and robustness: AP-based differences between systems on one set
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Fig. 4. Rank-biased precision of 61 TREC-5 systems, for three different values of p, using relevance
judgments compiled using two different pool depths. Rank-biased precision at p = 0.5 and p = 0.8
is stable when the pool depth is increased from 10 documents per system to 100 documents. At
p = 0.95 the RBP scores increase (and never decrease) when the pool depth is increased.

Compare the behavior of a persistent user to the one-in-a-thousand chance of
a p = 0.5 user entering even the second page of 10 results. Users in the p = 0.5
category are highly impatient, but obtain high average per-document utility
(that is, high RBP) whenever there is a relevant document in the first one or
two rank positions. In the limit, use of p = 0.0 implies a user who is “feeling
lucky” and is either satisfied or dissatisfied with the top-ranked document, and
never looks any further. This latter mode corresponds exactly to evaluating the
system using P@1.

Figure 4 shows the effect of calculating average RBP scores over the 61
systems that participated in TREC-5 in 1996, calculated using two different pool
depths for the relevance assessments. Three different values of the parameter
p were used, covering a range from relatively impatient users (p = 0.5) through
to relatively patient users (p = 0.95). When p = 0.5 and p = 0.8, the system
average scores calculated based on judgments extracted from a pool depth of
10 documents per run are almost identical to the scores generated when a pool
depth of 100 is used. When p = 0.95, a pool depth of 10 is insufficient to give
accurate RBP scores, and the correlation is weaker. Note, however, that adding
further relevance judgments into the computation increases the system score,
rather than decreasing it. That is, unlike the situation with AP that is depicted
in Figure 2, system scores using rank-biased precision can always be regarded
as lower bounds on the score that would be obtained were perfect relevance
information to be available.

It was noted above that the interpretation of precision scores needs to be
tempered by knowledge of R, the number of relevant documents. The same is
also true of RBP, since a persistent user (with say p = 0.95) is guaranteed to
obtain a low expected utility from a search with only a few relevant documents.
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Fig. 1. Correlation between MAP and mean RBP at pool depth 10 and 100
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Fig. 2. Upper and lower bounds of RBP as p is varied and increasing number of
documents are considered in the ranking for the “ETHme1” run

The second set of experiments in [12] we aim to reproduce regards upper
and lower bounds of RBP evaluated at depth 10 and depth 100. In the usual
TREC evaluation setting some documents of a run are assessed (either relevant
or not relevant in the binary case), but most of them are left unjudged and
normally considered as not-relevant when it comes to calculating effectiveness
measures. In [12] it is stated that with this assumption “quoted effectiveness rates
might be expected to be pessimistic” and thus represent a lower bound of the
measurement; thus, RBP values calculated with this assumption are considered
the lower bounds of the measure. They proposed a method to compute a residual
that captures the unknown component (determined by the unjudged documents)
of RBP. Basically, the residual is calculated on a item-by-item basis by summing
the weight that the documents would have had if they were relevant; the upper
bound is defined by the sum of RBP (i.e. the lower bound) and the residual.

The goal of this experiment is to show that lower and upper bounds stabilize
as the depth of the evaluation is increased, even if for higher values of p and
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assumption) 

- RBP upper bounds are calculated by summing the lower bounds with the 
residuals (optimistic assumption) 

- Residuals are calculated on an item-by-item basis by summing the weight that the 
docs would have had if they were relevant
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Upper and Lower Bounds

20

- RBP lower bounds are defined by calculating RBP in a normal setting 
where unjudged docs are considered as not relevant (pessimistic 
assumption) 

- RBP upper bounds are calculated by summing the lower bounds with the 
residuals (optimistic assumption) 

- Residuals are calculated on an item-by-item basis by summing the weight that the 
docs would have had if they were relevant

The goal is to show that the bounds stabilize  
as the depth of evaluation is increased 
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- In the original RBP paper there is no indication about  
which run has been used to produce the bounds plots
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Fig. 5. Upper and lower bounds for RBP as p is varied and increasing numbers of documents are
considered in the ranking for one of the submitted TREC-5 runs, for (a) a pool depth of 10; and (b) a
pool depth of 100. Note how the upper and lower bounds stabilize as the depth d of the evaluation
is increased, but, for larger values of p, do not converge if the pool depth on which the relevance
judgments are based is too small.

increased accuracy in the estimated effectiveness values. Comparing the left-
hand and right-hand graphs in Figure 5 shows that increasing the depth of the
pool of relevance judgments allows convergence toward accurate scores, with
(in the right-hand graph) the upper bound closing on the lower bound even
when p = 0.95. The balance between p, the accuracy of the score, and the
cost of relevance evaluations, is something that can be designed into retrieval
experiments in a manner that is simply not possible with AP.

4.5 Choosing a Value for p

An obvious question is that of choosing a value for p. Ideally that choice would
be made during the design phase of any experiment, as an estimate of the
type of user characteristic being tested in the experiment, and as a parameter
that helps determine how much the experiment will cost if it is to yield data
of a specified accuracy. Alternatively, the choice of p can be made after the
experiment has been carried out, in which case the accuracy of the resulting
scores can be computed. A third option, for systems claimed to be “broad spec-
trum” and suitable for all types of users, would be to design the experiment
using a high value of p, and then report RBP results for several different value
of p.

Small values of p, less than around 0.5, place the bulk of their emphasis
on the first few positions in the ranking, and provide less balance across the
whole of a ranked list. However, this bias means that small values of p also
allow cheaper evaluation, because fewer documents need to be judged to obtain
a given level of accuracy in the scoring. As p gets larger, the emphasis on early
rank positions is reduced, and an increasing fraction of the total weighting is
available to later rank positions, modeling users who are more persistent, and
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Fig. 5. Upper and lower bounds for RBP as p is varied and increasing numbers of documents are
considered in the ranking for one of the submitted TREC-5 runs, for (a) a pool depth of 10; and (b) a
pool depth of 100. Note how the upper and lower bounds stabilize as the depth d of the evaluation
is increased, but, for larger values of p, do not converge if the pool depth on which the relevance
judgments are based is too small.

increased accuracy in the estimated effectiveness values. Comparing the left-
hand and right-hand graphs in Figure 5 shows that increasing the depth of the
pool of relevance judgments allows convergence toward accurate scores, with
(in the right-hand graph) the upper bound closing on the lower bound even
when p = 0.95. The balance between p, the accuracy of the score, and the
cost of relevance evaluations, is something that can be designed into retrieval
experiments in a manner that is simply not possible with AP.

4.5 Choosing a Value for p

An obvious question is that of choosing a value for p. Ideally that choice would
be made during the design phase of any experiment, as an estimate of the
type of user characteristic being tested in the experiment, and as a parameter
that helps determine how much the experiment will cost if it is to yield data
of a specified accuracy. Alternatively, the choice of p can be made after the
experiment has been carried out, in which case the accuracy of the resulting
scores can be computed. A third option, for systems claimed to be “broad spec-
trum” and suitable for all types of users, would be to design the experiment
using a high value of p, and then report RBP results for several different value
of p.

Small values of p, less than around 0.5, place the bulk of their emphasis
on the first few positions in the ranking, and provide less balance across the
whole of a ranked list. However, this bias means that small values of p also
allow cheaper evaluation, because fewer documents need to be judged to obtain
a given level of accuracy in the scoring. As p gets larger, the emphasis on early
rank positions is reduced, and an increasing fraction of the total weighting is
available to later rank positions, modeling users who are more persistent, and
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(a) Mean average precision.
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Fig. 2. Upper and lower bounds of RBP as p is varied and increasing number of
documents are considered in the ranking for the “ETHme1” run

The second set of experiments in [12] we aim to reproduce regards upper
and lower bounds of RBP evaluated at depth 10 and depth 100. In the usual
TREC evaluation setting some documents of a run are assessed (either relevant
or not relevant in the binary case), but most of them are left unjudged and
normally considered as not-relevant when it comes to calculating effectiveness
measures. In [12] it is stated that with this assumption “quoted effectiveness rates
might be expected to be pessimistic” and thus represent a lower bound of the
measurement; thus, RBP values calculated with this assumption are considered
the lower bounds of the measure. They proposed a method to compute a residual
that captures the unknown component (determined by the unjudged documents)
of RBP. Basically, the residual is calculated on a item-by-item basis by summing
the weight that the documents would have had if they were relevant; the upper
bound is defined by the sum of RBP (i.e. the lower bound) and the residual.

The goal of this experiment is to show that lower and upper bounds stabilize
as the depth of the evaluation is increased, even if for higher values of p and
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Fig. 5. Upper and lower bounds for RBP as p is varied and increasing numbers of documents are
considered in the ranking for one of the submitted TREC-5 runs, for (a) a pool depth of 10; and (b) a
pool depth of 100. Note how the upper and lower bounds stabilize as the depth d of the evaluation
is increased, but, for larger values of p, do not converge if the pool depth on which the relevance
judgments are based is too small.

increased accuracy in the estimated effectiveness values. Comparing the left-
hand and right-hand graphs in Figure 5 shows that increasing the depth of the
pool of relevance judgments allows convergence toward accurate scores, with
(in the right-hand graph) the upper bound closing on the lower bound even
when p = 0.95. The balance between p, the accuracy of the score, and the
cost of relevance evaluations, is something that can be designed into retrieval
experiments in a manner that is simply not possible with AP.

4.5 Choosing a Value for p

An obvious question is that of choosing a value for p. Ideally that choice would
be made during the design phase of any experiment, as an estimate of the
type of user characteristic being tested in the experiment, and as a parameter
that helps determine how much the experiment will cost if it is to yield data
of a specified accuracy. Alternatively, the choice of p can be made after the
experiment has been carried out, in which case the accuracy of the resulting
scores can be computed. A third option, for systems claimed to be “broad spec-
trum” and suitable for all types of users, would be to design the experiment
using a high value of p, and then report RBP results for several different value
of p.

Small values of p, less than around 0.5, place the bulk of their emphasis
on the first few positions in the ranking, and provide less balance across the
whole of a ranked list. However, this bias means that small values of p also
allow cheaper evaluation, because fewer documents need to be judged to obtain
a given level of accuracy in the scoring. As p gets larger, the emphasis on early
rank positions is reduced, and an increasing fraction of the total weighting is
available to later rank positions, modeling users who are more persistent, and
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Fig. 6. Rank-biased precision scores for two of the TREC-5 runs, averaged across 50 queries. Upper
and lower bounds for RBP at pool depth 10 are plotted as a function of p, together with the RBP
value computed for that value of p when the pool depth is 100. When p is large, the error tolerance
between the upper and the lower bounds is large for depth 10 evaluations. Increasing the pool
depth to 100 gives convergence even at high values of p. The line denoted System A is the same
system as illustrated in Figure 5.

likely to look at (in the Web search environment) the second or third page of Web
results. The weightings are still monotonic, and, even with p = 0.95, the docu-
ment in rank position 100 gets a weighting of just 0.6% of the document in rank
position 1. But increasing p toward 1 also implies that an increasing amount
of effort must be spent on relevance judgments, as otherwise the accumulated
imprecision is too large.

Figure 6 shows this balance for two TREC-5 runs, with RBP averaged over
the set of 50 applicable queries. As was also done for Figures 2, 4, and 5, the
relevance judgments at a pool depth of 100 performed for TREC-5 were used
to extract the set of relevance judgments that would have been formed if the
pool depth was only 10. Three lines are plotted in the graph for each of the
two systems: the upper and lower bounds on RBP with a pool depth of 10, and
the (indistinguishable at the scale of the graph) upper and lower bounds on
RBP when the pool depth is increased to 100. The pattern of the three curves
shows typical behavior: with an assessment pool depth of only 10, values of p
greater than around 0.7 lead to noticeable imprecision in the scores; but when
the assessment pool depth is increased to 100, values of p as large as 0.95 can
be handled with only small residual errors.

In summary, if reliable experiments with large p are required, the pool depth
used to form the relevance judgments must be high. On the other hand, reliable
scores can be generated using relatively shallow assessment pool depths when
p ≤ 0.8. Searching processes that are intended to be “high recall” should thus
be assessed with a relatively high value for p, whereas Web-user search tasks
can be assessed using a smaller value of p, and cheaper experiments.

ACM Transactions on Information Systems, Vol. 27, No. 1, Article 2, Publication date: December 2008.
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likely to look at (in the Web search environment) the second or third page of Web
results. The weightings are still monotonic, and, even with p = 0.95, the docu-
ment in rank position 100 gets a weighting of just 0.6% of the document in rank
position 1. But increasing p toward 1 also implies that an increasing amount
of effort must be spent on relevance judgments, as otherwise the accumulated
imprecision is too large.

Figure 6 shows this balance for two TREC-5 runs, with RBP averaged over
the set of 50 applicable queries. As was also done for Figures 2, 4, and 5, the
relevance judgments at a pool depth of 100 performed for TREC-5 were used
to extract the set of relevance judgments that would have been formed if the
pool depth was only 10. Three lines are plotted in the graph for each of the
two systems: the upper and lower bounds on RBP with a pool depth of 10, and
the (indistinguishable at the scale of the graph) upper and lower bounds on
RBP when the pool depth is increased to 100. The pattern of the three curves
shows typical behavior: with an assessment pool depth of only 10, values of p
greater than around 0.7 lead to noticeable imprecision in the scores; but when
the assessment pool depth is increased to 100, values of p as large as 0.95 can
be handled with only small residual errors.

In summary, if reliable experiments with large p are required, the pool depth
used to form the relevance judgments must be high. On the other hand, reliable
scores can be generated using relatively shallow assessment pool depths when
p ≤ 0.8. Searching processes that are intended to be “high recall” should thus
be assessed with a relatively high value for p, whereas Web-user search tasks
can be assessed using a smaller value of p, and cheaper experiments.
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3. Discriminative power: t test and Wilcoxon test for determining 
the rate at which different effectiveness metrics allow 
significant distinctions to be made between systems



slideRank-Biased Precision Reloaded: Reproducibility and GeneralizationN. Ferro and G. Silvello

t test and Wilcoxon test 

25

2:24 • A. Moffat and J. Zobel

Table IV.
The rate at which different effectiveness metrics allow significant
distinctions to be made between retrieval methods. A total of 61 system
runs were pairwise compared using the TREC-5 queries, making a
total of 61 × 60/2 = 1830 system comparisons. The four columns show
the number of those tests that were judged to be significant using the
indicated statistical comparison. Of the traditional metrics, AP is the
most consistent, in terms of allowing systems to be experimentally
separated; of the RBP variants, that with p = 0.95 is the most consistent.
The NDCG measure is a little better than both RBP and AP. In all cases
the test undertaken was a two-tailed one, to answer the question “Are
the two systems significantly different?”

Wilcoxon t test
Metric

95% 99% 95% 99%
RR 1020 759 1000 752
P@10 1141 897 1150 915
P@R 1209 989 1142 931
AP 1259 1077 1164 969

RBP, p = 0.5 1067 834 1050 810
RBP, p = 0.8 1164 919 1166 917
RBP, p = 0.95 1231 1006 1209 987

NDCG 1291 1092 1269 1101

The results of the second experiment are shown in Table IV. The trend in
each column of the table is clear—of the conventional metrics in the top part
of the table, AP is more consistent than P@10 is more consistent than RR; and
using the RBP approach, evaluation using p = 0.95 is more likely to yield
system separation than is p = 0.8 or p = 0.5. The NDCG measure appears
to be even more consistent in its behavior. The same pattern is observed over
all four combinations of significance level and statistical test. We conclude that
RBP, with an appropriate choice of p, is comparable to existing metrics in terms
of its usefulness in supporting system comparisons.

6. CONCLUSION

We have defined a new measure of retrieval effectiveness, designed to address
the shortcomings that can be observed in the measures that are currently in
common use. Our rank-biased precision measure has the following attractive
properties:

—It is derived from a straightforward state-based model of user behavior that
has support in empirical user studies.

—It can be interpreted in an economic-modeling sense, as the average rate
at which the user gains utility from performing their search, including in
situations in which graded relevance judgments are being used.

—It measures only the behavior of the system as observed by the user, and it
does not rely on unknowns such as collection size, or the number of documents
relevant to each query.

ACM Transactions on Information Systems, Vol. 27, No. 1, Article 2, Publication date: December 2008.
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Table 2. Significant differences between systems; the total number of system pairs is
1830 and numbers in bold are at least 1% different from [12]

Wilcoxon t test

Metric 99% 95% 99% 95%

RR 1030 763 1000 752
P@10 1153 904 1150 915
P@R 1211 994 1142 931
AP 1260 1077 1164 969
RBP.5 1077 845 1052 812
RBP.8 1163 921 1167 918
RBP.95 1232 1009 1209 987
nDCG 1289 1104 1267 1089

shallow pools they do not converge. This experiment is summarized in Figure 5
on page 19 of the original paper which reports upper and lower bounds of RBP
(with p varying from 0.5 to 0.95) for a given run. In the original paper there is no
indication about which run has been used in this experiment; as a consequence
to reproduce the experiment we had to calculate upper and lower bounds for all
the runs and then proceed by inspection of the plots to determine the run used
in the original paper. We determined that the used run is named “ETHme1”.

In Figure 2 we present a replica of the figure reported in the original paper
where we can see that the upper and lower bound for RBP.5 with the original
pool converge before rank 100, whereas for RBP.8 and RBP.95 they converge
later on; for the measures calculated with pool depth 10 only RBP.5 converges
before rank 100. In this case the original experiment is not easily reproducible
because the name of the chosen run was not reported; the same problem prevents
the possibility of replicating the plot of Figure 6 on page 20 of the original
paper, where the upper and lower bounds of “two systems” are shown: there
is no indication about which system pair among the 1830 possible pairs in in
TREC-05 have been chosen.

The last experiment to be reproduced regards the t test and the Wilcoxon
signed rank test for determining the significant differences between retrieval mod-
els according to different measures. In Table 2 we report the values we obtained
that have to be compared to those in Table 4 on page 24 of the reference paper.
We reported in bold the numbers presenting a difference higher than 1% from the
original ones; as we may see there are three major differences for the Wilcoxon
test and only one for the t test. We highlight that for the Wilcoxon test 94% of
the values are different from the original paper even though the differences are
very small (less than 1%); on the other hand, for the t test the 31% of the values
we obtained are different from those in the original paper.

Reproduced results  
Numbers in bold are those which are at least 1% different from those in the original RBP paper 
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Table IV.
The rate at which different effectiveness metrics allow significant
distinctions to be made between retrieval methods. A total of 61 system
runs were pairwise compared using the TREC-5 queries, making a
total of 61 × 60/2 = 1830 system comparisons. The four columns show
the number of those tests that were judged to be significant using the
indicated statistical comparison. Of the traditional metrics, AP is the
most consistent, in terms of allowing systems to be experimentally
separated; of the RBP variants, that with p = 0.95 is the most consistent.
The NDCG measure is a little better than both RBP and AP. In all cases
the test undertaken was a two-tailed one, to answer the question “Are
the two systems significantly different?”

Wilcoxon t test
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RBP, p = 0.8 1164 919 1166 917
RBP, p = 0.95 1231 1006 1209 987
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The results of the second experiment are shown in Table IV. The trend in
each column of the table is clear—of the conventional metrics in the top part
of the table, AP is more consistent than P@10 is more consistent than RR; and
using the RBP approach, evaluation using p = 0.95 is more likely to yield
system separation than is p = 0.8 or p = 0.5. The NDCG measure appears
to be even more consistent in its behavior. The same pattern is observed over
all four combinations of significance level and statistical test. We conclude that
RBP, with an appropriate choice of p, is comparable to existing metrics in terms
of its usefulness in supporting system comparisons.

6. CONCLUSION

We have defined a new measure of retrieval effectiveness, designed to address
the shortcomings that can be observed in the measures that are currently in
common use. Our rank-biased precision measure has the following attractive
properties:

—It is derived from a straightforward state-based model of user behavior that
has support in empirical user studies.

—It can be interpreted in an economic-modeling sense, as the average rate
at which the user gains utility from performing their search, including in
situations in which graded relevance judgments are being used.

—It measures only the behavior of the system as observed by the user, and it
does not rely on unknowns such as collection size, or the number of documents
relevant to each query.
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1830 and numbers in bold are at least 1% different from [12]
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shallow pools they do not converge. This experiment is summarized in Figure 5
on page 19 of the original paper which reports upper and lower bounds of RBP
(with p varying from 0.5 to 0.95) for a given run. In the original paper there is no
indication about which run has been used in this experiment; as a consequence
to reproduce the experiment we had to calculate upper and lower bounds for all
the runs and then proceed by inspection of the plots to determine the run used
in the original paper. We determined that the used run is named “ETHme1”.

In Figure 2 we present a replica of the figure reported in the original paper
where we can see that the upper and lower bound for RBP.5 with the original
pool converge before rank 100, whereas for RBP.8 and RBP.95 they converge
later on; for the measures calculated with pool depth 10 only RBP.5 converges
before rank 100. In this case the original experiment is not easily reproducible
because the name of the chosen run was not reported; the same problem prevents
the possibility of replicating the plot of Figure 6 on page 20 of the original
paper, where the upper and lower bounds of “two systems” are shown: there
is no indication about which system pair among the 1830 possible pairs in in
TREC-05 have been chosen.

The last experiment to be reproduced regards the t test and the Wilcoxon
signed rank test for determining the significant differences between retrieval mod-
els according to different measures. In Table 2 we report the values we obtained
that have to be compared to those in Table 4 on page 24 of the reference paper.
We reported in bold the numbers presenting a difference higher than 1% from the
original ones; as we may see there are three major differences for the Wilcoxon
test and only one for the t test. We highlight that for the Wilcoxon test 94% of
the values are different from the original paper even though the differences are
very small (less than 1%); on the other hand, for the t test the 31% of the values
we obtained are different from those in the original paper.

Reproduced results  
Numbers in bold are those which are at least 1% different from those in the original RBP paper 
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1. Same experiments employing the same methods but in a 
different context → change the experimental collection 

!

2. Same experiment employing different (but similar) methods in 
a different context → change pool downsampling technique 
and experimental collection
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- We investigated three main aspects: 

A. stability to deterministic downsampling at depth 10 by using 
two TREC and two CLEF collections 

B. robustness to downsampling according to the stratified 
random sampling technique (SRS) 

C. behavior of upper and lower bound in the average case 
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Table 2: Significant di↵erences between systems; the total number of system
pairs is 1830 and numbers in bold are at least 1% di↵erent from [12].

Wilcoxon t test

Metric 99% 95% 99% 95%

RR 1030 763 1000 752
P@10 1153 904 1150 915
P@R 1211 994 1142 931
AP 1260 1077 1164 969
RBP.5 1077 845 1052 812
RBP.8 1163 921 1167 918
RBP.95 1232 1009 1209 987
nDCG 1289 1104 1267 1089

Table 3: Features of the adopted experimental collections.
Collection CLEF 2003 TREC 13 CLEF 2009 TREC 21

Year 2003 2004 2009 2012
Track Ad-Hoc Robust TEL Web
# Documents 1M 528K 2.1M 1B
# Topics 50 250 50 50
# Runs 52 110 43 27
Run Length 1,000 1,000 1,000 10,000
Relevance Degrees 2 3 2 4
Pool Depth 60 100 and 125 60 30 and 25
Languages EN, FR, DE, ES EN DE, EL, FR, IT, ZH EN

– the robustness of RBP to downsampled pools (with di↵erent reduction rates)
according to the stratified random sampling method [2];

– the behavior of RBP upper and lower bound in the average case presenting
confidence intervals.

In the following we consider four public experimental collections, whose
characteristics are reported in Table 3: (i) CLEF 2003, Multilingual-4, Ad-Hoc
Track [1]; (ii) TREC 13, 2004, Robust Track [15]; (iii) CLEF 2009, bilingual
X2EN, The European Library (TEL) Track [7]; and, (iv) TREC 21, 2012, Web
Track [6].

As we can see these collections have di↵erent interesting characteristics which
allow us to test the behaviour of RBP in a wider range of settings. CLEF 2003 has
been used for evaluating multilingual systems with 50 topics and the corpus of
one million documents in four di↵erent languages; TREC-13 has a high number
of runs, topics (i.e. 250) and pool depth (i.e. 125 for 50 topics and 100 for
the other 200); CLEF 2009 presents a corpus of documents composed by short
bibliographic records and not newspaper articles as in the other CLEF collections
and has been used to evaluate bilingual systems working on topics in English and
documents in five di↵erent languages; and TREC-21 presents a huge multilingual



slideRank-Biased Precision Reloaded: Reproducibility and GeneralizationN. Ferro and G. Silvello

A. Stability to Deterministic Downsampling

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean RBP (pool depth 10)

M
ea

n 
R

BP
 (o

rig
in

al
 p

oo
l d

ep
th

)

CLEF multi4, 2003, Ad−Hoc, Mean RBP original depth − depth 10

 

 

p = 0.5
p = 0.8
p = 0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean RBP (pool depth 10)

M
ea

n 
R

BP
 (o

rig
in

al
 p

oo
l d

ep
th

)

TREC 13, 2004, Robust, Mean RBP original depth − depth 10

 

 

p = 0.5
p = 0.8
p = 0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean RBP (pool depth 10)

M
ea

n 
R

BP
 (o

rig
in

al
 p

oo
l d

ep
th

)

CLEF bili X2EN, 2009, TEL, Mean RBP original depth − depth 10

 

 

p = 0.5
p = 0.8
p = 0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean RBP (pool depth 10)

M
ea

n 
R

BP
 (o

rig
in

al
 p

oo
l d

ep
th

)

TREC 21, 2012, Web, Mean RBP original depth − depth 10

 

 

p = 0.5
p = 0.8
p = 0.95

Fig. 3: Robustness of RBP to pool downsampling using di↵erent collections.

Web corpus, topics are created from the logs of a commercial search engine and it
allows us to evaluate up-to-date IR systems working on a Web scale, furthermore
25 topics were judged to depth 30 and 25 to depth 20 [6].

In Figure 3 we can see the correlation between RBP (with the three usual
values of p = {0.5, 0.8, 0.95}) calculated with the original pool depth and with
pool depth 10 across the four selected test collections. The results presented
in [12] with TREC-05 are confirmed for all the tested collections showing that
RBP.5 and RBP.8 are robust to pool downsampling, whereas RBP.95 tends to
underestimate the e↵ectiveness of the runs when calculated using pool depth 10;
this e↵ect is more evident with TREC-21 where also RBP.8 values are slightly
above the bisector.

The stratified random sampling of the pools allows us to investigate the be-
havior of RBP as the relevance judgment sets become less complete following
the methodology presented in [2]: Starting from the original pool (100% of the
relevance judgments) for each topic we select a list of relevant documents in
random order and a list of not-relevant documents in random order; then, we
create alternative pools by taking {90, 70, 50, 30, 10}% of the original pool. For
a target pool which is P% as large as the original pool, we select X = P ⇥ R
relevant documents and Y = P ⇥N not-relevant documents or each topic where

CLEF 2003 TREC 2004

TREC 2012CLEF 2009
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Fig. 3: Robustness of RBP to pool downsampling using di↵erent collections.

Web corpus, topics are created from the logs of a commercial search engine and it
allows us to evaluate up-to-date IR systems working on a Web scale, furthermore
25 topics were judged to depth 30 and 25 to depth 20 [6].

In Figure 3 we can see the correlation between RBP (with the three usual
values of p = {0.5, 0.8, 0.95}) calculated with the original pool depth and with
pool depth 10 across the four selected test collections. The results presented
in [12] with TREC-05 are confirmed for all the tested collections showing that
RBP.5 and RBP.8 are robust to pool downsampling, whereas RBP.95 tends to
underestimate the e↵ectiveness of the runs when calculated using pool depth 10;
this e↵ect is more evident with TREC-21 where also RBP.8 values are slightly
above the bisector.

The stratified random sampling of the pools allows us to investigate the be-
havior of RBP as the relevance judgment sets become less complete following
the methodology presented in [2]: Starting from the original pool (100% of the
relevance judgments) for each topic we select a list of relevant documents in
random order and a list of not-relevant documents in random order; then, we
create alternative pools by taking {90, 70, 50, 30, 10}% of the original pool. For
a target pool which is P% as large as the original pool, we select X = P ⇥ R
relevant documents and Y = P ⇥N not-relevant documents or each topic where

CLEF 2003 TREC 2004

TREC 2012CLEF 2009

The results presented for TREC-05 are confirmed also with 
these collections, showing that RBP.5 and RBP.8 are robust 
to downsampling while RBP.95 tends to underestimate the 

effectiveness of the runs when using pool depth 10
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Using SRS downsampling, RBP.95 is the most robust 
measure and RBP.5 the least robust  

→  
This contradicts the results obtained with the other 

downsampling technique
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Using SRS downsampling, RBP.95 is the most robust 
measure and RBP.5 the least robust  

→  
This contradicts the results obtained with the other 

downsampling technique

Lesson learned #5!
!

It is important to validate our findings adopting several 
different experimental collection and (whenever possible) 

different methods.
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The average case is better for reproducibility purposes  
and more general w.r.t.  

to show the behavior of only one selected run
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- Open source library written in 
MATLAB 

- MATLAB was chosen mainly 
because of its 

- widely tested and robust to numerical 
approximations implementations of 
statistical methods: 

- Kendall’s Tau 

- Student’s t test 

- Wilcoxon signed rank test 

- …

http://matters.dei.unipd.it/

NATURE: http://www.nature.com/

http://matters.dei.unipd.it/
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http://matters.dei.unipd.it/

The code for reproducing this work is available at: 
!

http://ims-svn.dei.unipd.it/repos/matters/ 
trunk/src/scripts/papers/2014/ECIR2015-FS/ 

http://matters.dei.unipd.it/
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Wrapping up
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- The use of public and shared experimental collections enhances 
reproducibility of results and eases generalization 

- Data (pre-)processing choices should be explicitly reported 

- Whenever possible a finding should be validated adopting 
different methods 

- For reproducibility purposes tables are better than plots (put them 
in an appendix or on-line)  

- Share all the code for the experiments
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That’s it: RBP
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REPRODUCED

Questions?


