
Network-Oblivious Algorithms∗

Gianfranco Bilardi1,2, Andrea Pietracaprina1, Geppino Pucci1, and Francesco Silvestri1

1 Dept. of Information Engineering 2 IBM T.J. Watson Research Center

University of Padova, Italy Yorktown Heights, NY 10598, USA

{bilardi,capri,geppo,silvest1}@dei.unipd.it

Abstract

The design of algorithms that can run unchanged
yet efficiently on a variety of machines characterized
by different degrees of parallelism and communication
capabilities is a highly desirable goal. We propose a
framework for network-obliviousness based on a model
of computation where the only parameter is the prob-
lem’s input size. Algorithms are then evaluated on a
model with two parameters, capturing parallelism and
granularity of communication. We show that, for a
wide class of network-oblivious algorithms, optimality
in the latter model implies optimality in a block-variant
of the Decomposable BSP model, which effectively de-
scribes a wide and significant class of parallel plat-
forms. We illustrate our framework by providing op-
timal network-oblivious algorithms for a few key prob-
lems, and also establish some negative results.

1 Introduction

Communication is a major factor determining the
performance of algorithms on current computing sys-
tems. Since the relevance of this factor increases with
the size of the system, communication will play an even
greater role in future years. Reducing the communica-
tion requirements of algorithms is then of paramount
importance, if they have to run efficiently on physi-
cal machines. Recognition of this fact has motivated
a large body of results in algorithm design and analy-
sis. While often useful and sometimes deep, these re-
sults do not yet provide a coherent and unified theory

∗This work was supported in part by MIUR of Italy un-
der project MAINSTREAM, and by the EU under the EU/IST
Project 15964 AEOLUS.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

of the communication requirements of computations.
One major obstacle toward such a theory lies in the
fact that, prima facie, communication is defined only
with respect to a specific mapping of a computation
onto a specific machine structure. Furthermore, the
impact of communication on performance depends on
the latency and bandwidth properties of the channels
connecting different parts of the target machine. In this
scenario, algorithm design, optimization, and analysis
can become highly machine dependent, which is unde-
sirable from the economical perspective of developing
efficient and portable software. The outlined situation
has been widely recognized and a number of approaches
have been proposed to solve it or mitigate it.

On one end of the spectrum, we have the parallel
slackness approaches, based on the assumption that,
if a sufficient amount of parallelism is provided by al-
gorithms, then general and automatic latency-hiding
techniques can be deployed to achieve an efficient ex-
ecution. Broadly speaking, the required algorithmic
parallelism would be proportional to the product of
the number of processing units by the worst-case la-
tency of the target machine [23]. Further assuming
that this amount of parallelism is typically available
in computations of practical interest, algorithm design
can dispense altogether with communication concerns
and focus on the maximization of parallelism. The
functional/data-flow and the PRAM models of com-
putations have often been supported with similar ar-
guments. Unfortunately, as argued in [8, 9], latency
hiding is not a scalable technique, due to fundamental
physical constraints. Hence, parallel slackness does not
really solve the communication problem. (Neverthe-
less, functional and PRAM models are quite valuable
and have significantly contributed to the understand-
ing of other dimensions of computing.)

On the other end of the spectrum, we could place
the universality approach, whose objective is the devel-

opment of machines (nearly) as efficient as any other
machine of (nearly) the same cost, at executing any
computation (see, e.g., [20, 8, 4]). To the extent that
a universal machine with very small performance and
cost gaps could be identified, one could adopt a model
of computation sufficiently descriptive of such a ma-
chine, and focus most of the algorithmic effort on this
model. As technology approaches the inherent physi-
cal limitations to information processing, storage, and
transfer, the emergence of a universal architecture be-
comes more likely. Economy of scale can also be a
force favoring convergence in the space of commercial
machines. While this appears as a perspective worthy
of investigation, at this stage, neither the known theo-
retical results nor the trends of commercially available
platforms indicate an imminent convergence.

In the middle of the spectrum, a variety of
models proposed in the literature can be viewed
as variants of an approach aiming at realizing an
efficiency/portability/design-complexity tradeoff. Well-
known examples of these models are LPRAM [2], BSP
[23] and its refinements [13, 6], LogP [12], QSM [16],
and several others. These models aim at capturing
features common to most (reasonable) machines, while
ignoring features that differ. The hope is that perfor-
mance of real machines be largely determined by the
modeled features, so that optimal algorithms in the
proposed model translate into near optimal ones on real
machines. A drawback of these models is that they in-
clude parameters that affect execution time. Then, in
general, efficient algorithms are parameter-aware, since
different algorithmic strategies can be more efficient
for different values of the parameters. One parameter
present in virtually all models is the number of proces-
sors. Most models also exhibit parameters describing
the time required to route certain communication pat-
terns. Increasing the number of parameters, from just
a small constant to logarithmically many in the num-
ber of processors, can considerably increase the effec-
tiveness of the model with respect to realistic architec-
tures, such as point-to-point networks, as extensively
discussed in [7]. A price is paid in the increased com-
plexity of algorithm design necessary to gain greater
efficiency across a larger class of machines. The com-
plications further compound if the hierarchical nature
of the memory is also taken into account, so that com-
munication between processors and memories becomes
an optimization target as well.

It is natural to wonder whether, at least for some
problems, algorithms can be designed that, while inde-
pendent of any machine/model parameters, are never-
theless efficient for a wide range of such parameters. In
other words, we are interested in exploring the world

of efficient network-oblivious algorithms, in the same
spirit as the exploration of efficient cache-oblivious al-
gorithms proposed in [15].

Of course, the first step is to develop a framework
where the concept of network-obliviousness and of algo-
rithmic efficiency are precisely defined. The framework
we propose is based on three models of computation,
each with a different role, as briefly outlined next.

• Algorithm specification model. This model, de-
noted by M(n), is a set of n CPU/memory nodes,
called processing elements (PEs), computing in su-
persteps, and able to send messages to each other.
Network-oblivious algorithms will be formulated
in this model. The number of PEs, n, is chosen by
the algorithm designer exclusively as a function
of the problem input (reasonably, n reflects the
amount of parallelism of the algorithm at hand).

• Algorithm evaluation model. This model, denoted
by M(p, B), has two parameters: the number of
PEs, p, and a block size, B, which models the
fixed payload size of any message exchanged by
two PEs. As for M(n), the computation is orga-
nized in supersteps. A cost function is defined,
called the communication complexity of a super-
step which, when summed over all supersteps of
an algorithm gives the communication complexity
of the algorithm. An M(n) algorithm will execute
on an M(p, B) with p ≤ n, by letting each PE of
the M(p, B) carry out the work of a pre-specified
set of n/p PEs of the M(n).

The quality of a network-oblivious algorithm A,
with input size n, is defined with respect to
the communication complexity HA(n, p, B) of its
execution on M(p, B), by measuring how close
HA(n, p, B) comes to the minimum communica-
tion complexity H∗(n, p, B) achievable by any
M(p, B) algorithm solving the same problem as
A. Algorithm A is optimal if HA(n, p, B) =
O(H∗(n, p, B)), for a suitable set of (p, B) pairs.

• Execution machine model. This model aims at de-
scribing the set of platforms on which we expect
the network-oblivious algorithm to be actually ex-
ecuted. Technically, we adopt for this role a block-
based variant of the decomposable Bulk Syn-
chronous Parallel model, D-BSP(P, g, B), where g

and B are vectors with logarithmically many pa-
rameters in P . Thanks to this multiplicity of pa-
rameters, the model can describe reasonably well
the behavior of a large class of point-to-point net-
works. For example, in [6], it is shown how, under
suitable assumptions, optimal D-BSP algorithms

do translate into optimal algorithms for multi-
dimensional arrays.

Fortunately, as shown in this paper, for a wide and
interesting class of network-oblivious algorithms,
optimality with respect to the M(p, B) model, for
suitable ranges of (p, B) translates into optimal-
ity with respect to the D-BSP(p, g, B), for suit-
able ranges of g and B. It is this circumstance
that motivates the introduction of the evaluation
model, as a tool to substantially symplify the per-
formance analysis of oblivious algorithms.

To help placing our network-oblivious framework in
perspective, it may be useful to compare it with the
well established cache-oblivious framework [15]. In the
latter, the algorithm specification model is the Ran-
dom Access Machine; the algorithm evaluation model
is the Ideal Cache Model IC(Z, L), a machine with only
one level of cache of size Z and line length L; and the
machine execution model is a machine with a hierarchy
of many caches, each with its own size and line length.
In the cache-oblivious context, the simplification in the
analysis arises from the fact that, loosely speaking, op-
timality on IC(Z, L) for all values of Z and L translates
into optimality on multilevel hierarchies.

The rest of this paper is organized as follows. In
Section 2, we define the three models relevant to the
framework and establish the key relations among them.
In Section 3, we illustrate the framework by deriving
network-oblivious algorithms for key problems, such
as matrix multiplication, matrix transposition, FFT,
and sorting, showing their optimality for wide ranges
of parameters. In the case of matrix transposition, we
also present a negative result proving that no network-
oblivious algorithm can achieve optimality for a full
range of parameters. In the conclusions, we outline
directions for further work.

2 The Framework

In this section, we introduce the models of computa-
tion for the specification and the analysis of network-
oblivious algorithms, and develop some key relations
between these models, which provide the justification
for the framework.

Let Π be a given computational problem and let
n (for simplicity, a power of two) be a suitable func-
tion of the input size. A network-oblivious algorithm
A for Π is designed for a complete network M(n) of
n Processing Elements (PEs), PE0, . . ., PEn−1, each
consisting of a CPU and an unbounded local memory.
A consists of a sequence of labeled supersteps, with la-
bels in the integer range [0, logn). (In the paper, all

logarithms are taken to the base 2.) For 0 ≤ i < log n
and 0 ≤ j < n, in an i-superstep, PEj can perform op-
erations on locally held data, and send words of data
only to any PEk whose index k agrees with j in the
i most significant bits, i.e., k and j are both in the
interval [⌊j2i/n⌋, ⌊j2i/n⌋ + n/2i) 1.

In order to analyze A’s communication complexity
on different machines, we introduce the machine model
M(p, B), where the parameters p and B are positive
integers (for simplicity, powers of two). M(p, B) is es-
sentially an M(p) with a communication cost function
parametrized by B, whose processing elements are de-
noted as PEp

j , with 0 ≤ j < p, to distinguish them
from those of M(n). Specifically, the block-degree of
a superstep where processing element PEp

j sends wjk

words to PEp
k, with 0 ≤ j, k < p, is defined as

h(p, B) = max
0≤j<p

{

max

(

p−1
∑

k=0

⌈wjk/B⌉,
p−1
∑

k=0

⌈wkj/B⌉
)}

.

The communication complexity of an algorithm is the
sum of the block-degrees of its supersteps. In M(p, B),
words exchanged between two PEs in a superstep can
be envisioned as traveling within blocks of fixed size B
(in words). The block-degree of a superstep can then be
viewed as the maximum number of blocks sent/received
by a single PE in that superstep. Hence, the model
rewards batched over fine-grained communication. The
quantity h = h(p, 1) is also called the word-degree of
the superstep. Clearly, ⌈h/B⌉ ≤ h(p, B) ≤ h.

A network-oblivious algorithm A formulated for
M(n) can be naturally executed on an M(p, B) ma-
chine, for every 1 ≤ p ≤ n and for every B, by stipulat-
ing that processing element PEp

j , 0 ≤ j < p, of M(p, B)
will carry out the operations of the n/p consecutively
numbered processing elements of M(n) starting with
PE(n/p)j. Supersteps with a label i < log p on M(n)
become supersteps with the same label on M(p, B); su-
persteps with label i ≥ log p become local computation.
Let us number the supersteps of A from 1 to S, where S
is the number of supersteps executed by the algorithm,
and let hs(n, p, B) be the block-degree of the execution
of superstep s on M(p, B). The central quantity in our
analysis is the communication complexity

HA(n, p, B) =
S
∑

s=1

hs(n, p, B),

of A on M(p, B), for varying p and B.

1The results of this paper would hold even if, in the various
models considered, supersteps were not explicitly labeled. How-
ever, explicit labels can help reduce synchronization costs; they
become crucial for efficient simulation of algorithms on point-to-
point networks, especially those of large diameter.

As a cache-oblivious algorithm “ignores”, hence can-
not explicitly use, cache size and line length, so does
a network-oblivious algorithm ignore, hence cannot ex-
plicitly use, the actual number of PEs that will carry
out the computation, and the block size of the commu-
nication. Similarly, as in the cache-oblivious framework
the algorithm designer “knows” that memory accesses
with stack distance not greater than Z/L will be ser-
viced by an ideal cache of at least Z/L cache lines [21],
in the network-oblivious framework the designer does
know that messages between PEs of M(n) whose num-
bers coincide in the m most significant bits will trans-
late into local memory accesses in a machine with at
most 2m PEs.

Definition 1 A network-oblivious algorithm A for a
problem Π is optimal if for any instance of size n and
for every p and B, with p ≤ n and B ≥ 1, the execu-
tion of A on an M(p, B) machine yields an algorithm
with asymptotically minimum communication complex-
ity among all algorithms for Π on M(p, B).

To substantiate the usefulness of the above defini-
tion, we now show that, under certain assumptions, an
optimal network-oblivious algorithm can run optimally
on an wide class of parallel machines, whose under-
lying interconnection network exhibits a hierarchical
structure with respect to its bandwidth characteris-
tics. To model machines in this class, we introduce
a block variant of the Decomposable BSP (D-BSP)
model [7], denoted as a D-BSP(P, g, B), where g =
(g0, g1, . . . glog P−1) and B = (B0, B1, . . . Blog P−1). D-
BSP(P, g, B) is essentially an M(P, ·) machine featur-
ing various block sizes, where the communication time
of a superstep is defined to be h(P, Bi)gi, where i is the
label of the superstep and h(P, Bi) denotes the block-
degree of the superstep with respect to block-size Bi.
The communication time T of an algorithm is the sum
of the communication times of its supersteps.

Within the D-BSP model, for 0 ≤ i < log P , a set
formed by all the P/2i PEs whose numbers share the
most significant i bits is called an i-cluster. Informally,
Bi can be thought of as the block size and gi as an
inverse measure of bandwidth, in time units per block,
for i-clusters. For simplicity, we take all the Bi’s to be
powers of two. Also, we assume that both the Bi’s and
the ratios gi/Bi are non-increasing for 0 ≤ i < log P .
It is indeed reasonable that, in smaller submachines,
smaller block sizes suffice to hide latency and smaller
time suffices to route message sets with the same word-
degree h. Previous versions of D-BSP [13, 6] did not
feature blocks but included a latency parameter vector
(ℓ0, ℓ1, . . . ℓlog P−1), so that the cost of an i-superstep of
word-degree h was hgi + ℓi. The introduction of blocks

makes the model more descriptive of actual platforms
and also compensates for the absence of the latency
parameters.

In the reminder of this section, we show that an
optimal network-oblivious algorithm A translates into
an optimal D-BSP algorithm under some reasonable
assumptions on the communication patterns employed
by the algorithm and on the machine parameters. We
begin with the following technical lemma.

Lemma 1 For m ≥ 1, let 〈X0, X1, . . . , Xm−1〉 and
〈Y0, Y1, . . . , Ym−1〉 be two arbitrary sequences of non-
negative integers, and let 〈f0, f1, . . . , fm−1〉 be a non-
increasing sequence of nonnegative real values. If
∑i

j=0 Xj ≤∑i
j=0 Yj, for every 0 ≤ i < m, then

m−1
∑

j=0

Xjfj ≤
m−1
∑

j=0

Yjfj .

Proof By defining S−1 = 0 and Sj =
∑j

i=0(Yi−Xi) ≥
0, for 0 ≤ j ≤ m − 1, we have:

m−1
∑

j=0

fj(Yj − Xj) =

m−1
∑

j=0

fj(Sj − Sj−1) =

=

m−1
∑

j=0

fjSj −
m−1
∑

j=1

fjSj−1 ≥

≥
m−1
∑

j=0

fjSj −
m−1
∑

j=1

fj−1Sj−1 = fm−1Sm−1 ≥ 0.

�

In the next definitions, we introduce some useful
parameters and properties of network-oblivious algo-
rithms.

Definition 2 Given an algorithm A for M(n), for
0 ≤ i < log n, we define i-granularity bi the minimum
number of words ever exchanged by two communicating
PEs in any superstep of the execution of A on M(2i, 1).

Consequently, when executing A on M(2i, 1), in any
superstep, if PEp

j sends any words to PEp
k , then it

sends at least bi words to it.

Definition 3 Let α > 0 be constant. An algorithm A
for M(n) is said to be (α, P)-wise if, for any i such
that 1 ≤ 2i ≤ P , we have

HA(n, 2i, 1) ≥ α(n/2i)
∑

s∈Li

hs(n, n, 1).

where Li is the set of indices of the supersteps with
labels j < i.

To put the above definition into perspective, we observe
that an algorithm where for each j-superstep and for
every i > j there is always at least one segment of
n/2i consecutively numbered PEs each communicat-
ing the maximum amount of words for that superstep
to processors outside the segment, is surely an (α, P)-
wise algorithm. However, (α, P)-wiseness holds even if
the aforementioned communication scenario is realized
only in an average sense.

Many algorithms are likely to exhibit a good level
of granularity and can be arranged to be (α, P)-wise.
Indeed, this is the case for all network-oblivious algo-
rithms developed in this paper. Quite interestingly,
these algorithms achieve optimal performance on D-
BSP, as better established in the following theorem.

Theorem 1 Let A be an (α, P ∗)-wise optimal
network-oblivious algorithm for a problem Π, speci-
fied for the M(n) model, with i-granularity bi, for
0 ≤ i ≤ log P ∗. Then, A exhibits asymptotically op-
timal communication time when executed on any D-
BSP(P, g, B), with P ≤ P ∗ and Bi ≤ blog P , for
0 ≤ i < log P .

Proof Let DA(j) be the sum of block-degrees of all
j-supersteps when A is executed on D-BSP(P, g, B).
From the hypthesis on the granularity of A, we have
that the minimum amount of ever exchanged by two
communicating PEs in any superstep is at least blog P ≥
Bi, for every 0 ≤ i < log P . Hence,

DA(i) ≤ 2
n

P

∑

s∈Li+1\Li

hs(n, n, 1)

Bi
, ∀0 ≤ i < log P.

Since A is (α, P ∗)-wise, we have that

HA(n, 2i, Bi) ≥
HA(n, 2i, 1)

Bi
≥ α

∑

s∈Li

n

2i

hs(n, n, 1)

Bi

≥ α
i−1
∑

j=0

n

2iBi

∑

s∈Lj+1\Lj

hs(n, n, 1) ≥ α

2

i−1
∑

j=0

P

2i
DA(j)

Bj

Bi
.

By definition, the overall communication time of A on
D-BSP(P, g, B) is T =

∑log P−1
j=0 DA(j)gj . Suppose

A′ were an asymptotically faster D-BSP(P, g, B) al-
gorithm for Π. Then, for every constant ǫ > 0 and
sufficiently large input size n, A′ would exhibit com-
munication time T ′ < ǫT , so that, with obvious nota-
tion,

log P−1
∑

j=0

DA′(j)gj < ǫ

log P−1
∑

j=0

DA(j)gj .

The above relation can be rewritten as

log P−1
∑

j=0

DA′(j)Bj
gj

Bj
< ǫ

log P−1
∑

j=0

DA(j)Bj
gj

Bj
.

Recalling that the ratios gi/Bi are non-increasing, we
can apply Lemma 1, with m = log P , fj = gj/Bj,
Xj = ǫDA(j)Bj , and Yj = DA′(j)Bj , to show that
there exists an i ≤ log P such that

i−1
∑

j=0

DA′(j)Bj < ǫ

i−1
∑

j=0

DA(j)Bj .

Now, we can naturally interpret A′ as an M(2i, Bi)
algorithm, whose communication complexity satisfies

HA′(n, 2i, Bi) ≤
i−1
∑

j=0

P

2i
DA′(j)

Bj

Bi
<

< ǫ
i−1
∑

j=0

P

2i
DA(j)

Bj

Bi
≤ 2ǫ

α
HA(n, 2i, Bi),

which is a contradiction, since 2ǫ/α is an arbitrary
value and, by definition, A is asymptotically optimal
for M(2i, Bi). (Note that in the above inequalities we
used the fact that the Bj ’s are powers of two and that
are non-increasing.) �

As a final remark, observe that by setting all block
sizes equal to 1, the above framework can be special-
ized to the case where the block transfer feature is not
accounted for.

3 Algorithms for key problems

In this section we develop optimal network-oblivious
algorithms for a number of relevant computational
problems, namely matrix multiplication, matrix trans-
position, FFT and sorting. In some cases, optimality
requires restrictions on the ranges of some machine and
input parameters and, in one case, we will prove that
these restrictions are necessary to obtain optimality in
a network-oblivious fashion.

3.1 Matrix multiplication

The n-MM problem consists of multiplying two√
n×√

n matrices using only semiring operations. We
first establish a lower bound on the communication
complexity of any M(p, B) algorithm for this problem.

Theorem 2 Let A be any algorithm solving the n-MM
problem on an M(p, B), with 1 < p ≤ n and 1 ≤ B ≤

n/p. If initially the inputs are evenly distributed among
the p PEs, then the communication complexity of the
algorithm is

Ω

(

n

Bp2/3

)

.

Proof The theorem is an immediate consequence of
[18, Lemma 5.1]. �

Next, we describe an optimal network-oblivious algo-
rithm for the n-MM problem. Let X , Y and Z de-
note, respectively, the two input matrices and the out-
put matrix, and suppose that their entries are evenly
distributed among the PEs. For 0 ≤ i, j <

√
n, we

denote by P (i, j) the processing element PEi
√

n+j of
M(n), and require that such a PE holds [X]ij , [Y]ij ,
and [Z]ij . The algorithm is based on the following
simple recursive strategy. Partition each matrix A
(A = X, Y or Z) into four

√
n/2 × √

n/2 quadrants
Ahk, with h, k ∈ {0, 1}. Define Mhkℓ = Xhℓ · Yℓk,
whence Zhk = Mhk0 + Mhk1. The algorithm works as
follows:

1. Regard the n PEs as partitioned into eight seg-
ments Shkℓ, with h, k, ℓ ∈ {0, 1}, of n/8 PEs each.
Replicate and distribute the inputs so that the en-
tries of Xhℓ and Yℓk be evenly spread among the
PEs in Shkℓ.

2. For h, k, ℓ ∈ {0, 1} in parallel, compute recursively
the product Mhkℓ within Shkℓ.

3. For h, k, ℓ ∈ {0, 1} and 1 ≤ i, j ≤ n/2 in parallel,
send [Mhkℓ]ij to P (i + h

√
n/2, j + k

√
n/2).

4. For 1 ≤ i, j ≤ n in parallel, compute [Z]ij in
P (i, j) by adding the two values received in the
previous step.

Theorem 3 The communication complexity of the
above n-MM algorithm when executed on an M(p, B)
machine, with 1 < p ≤ n and 1 ≤ B ≤ n/p, is

HMM(n, p, B) = O

(

n

Bp2/3

)

,

which is optimal for all values of p and B in the spec-
ified ranges.

Proof The communication complexity of the al-
gorithm is obtained by solving the recurrence
HMM(n, p, B) = HMM(n/4, p/8, B) + Θ (n/(Bp)), for
all values p and B specified in the statement of the
theorem. �

Note that the above recursive algorithm incurs a mem-
ory blow-up of Θ

(

p1/3
)

when executed on an M(p, B)
machine. In [18] it is shown that such a blow-up is nec-
essary to achieve minimum communication time. Us-
ing results from the same paper, it can be shown that
any M(p, B) algorithm solving the n-MM problem with
constant memory blow-up requires Ω

(

n/(Bp1/2)
)

com-
munication complexity. An optimal network-oblivious
algorithm with constant memory blow-up can be ob-
tained by still using the above recursive strategy but
letting each segment of n/4 PEs of the M(n) machine
solve two (n/4)-MM subproblems sequentially. (More
details will be provided in the full version of this ex-
tended abstract.)

3.2 Matrix transposition

The n-MT problem consists of transposing an
√

n×√
n matrix. To completely specify the problem in the

parallel setting, we require that, initially (resp., fi-
nally), the entries of the matrix are evenly distributed
among the available PEs according to a row-major
(resp., column-major) ordering. While the problem is
trivially solved on any M(p, 1) machine, as we will see,
it becomes harder for larger block sizes. The following
theorem establishes a lower bound on the communica-
tion complexity of the n-MT problem.

Theorem 4 Let A be an algorithm solving the n-MT
problem on an M(p, B) with 1 < p ≤ n and 1 ≤ B ≤
n/p. The communication complexity of the algorithm
is

Ω

(

n

pB

(

1 +
log(min{(n/p), p})
log(1 + n/(pB))

))

Proof (sketch) We use an argument similar to the
one employed in [3] to bound from below the I/O
complexity of transposition in external memory. For
0 ≤ i < p we define the i-th target group as the set of
entries that will be in PEp

i at the end of the algorithm.
Let H be the communication complexity of the algo-
rithm and H ′ ≤ Hp be the overall number of blocks
exchanged by the PEs during the entire execution. Let
us index the blocks communicated among the PEs from
1 to H ′, so that the indices assigned to blocks communi-
cated in one superstep are smaller than those assigned
to blocks communicated in any subsequent superstep.
For 0 ≤ t ≤ H ′, define xi,j(t) as the number of entries
of the i-th target group held by PEp

j after block t has
been communicated (xi,j(0) reflects the initial condi-
tion). We define the potential of A after the block of
index t has been communicated as

POT(t) =

p−1
∑

i=0

p−1
∑

j=0

f(xi,j(t)),

where f(x) = x log x, for x > 0, and f(0) = 0. It can
be easily seen that POT(0) = n log(⌈√n/p⌉2) and that
POT(H ′) = n log(n/p). By reasoning as in [3], it can
be shown that, for a suitable constant c > 0, the block
of index t increases the potential by the quantity

POT(t)−POT(t− 1) ≤ cB log(1 + n/(pB))
def

= ∇POT.

Therefore,

p · H · ∇POT ≥ POT(H ′) − POT(0)

= n log(n/p) − n log
(

⌈
√

n/p⌉2
)

,

and the theorem follows. �

We now describe a network-oblivious algorithm for
the n-MT problem on M(n). For a nonnegative inte-
ger i, let B(i) denote the binary representation of i,
and let B−1(·) be such that B−1(B(i)) = i. Given two
binary strings u = (ud−1 . . . u0) and v = (vd−1 . . . v0)
we let u ⊲⊳ v denote their bitwise interleaving, i.e.,
u ⊲⊳ v = ud−1vd−1 . . . u0v0. Let A be the

√
n × √

n
input matrix and let P (i, j) denote the processing el-
ement PEi

√
n+j , which initially holds [A]ij and at the

end will hold [AT]ij , with 0 ≤ i, j <
√

n. The algorithm
consists of a 1-superstep followed by a 0-superstep.

1. For 0 ≤ i, j <
√

n, P (i, j) sends [A]ij to the PEq,
where q = B−1(B(i) ⊲⊳ B(j));

2. For 0 ≤ q < n, if the PEq has received entry
[A]ij in the previous substep, then it forwards it
to P (j, i).

We observe that the first superstep rearranges matrix
entries according the Z-Morton permutation defined in
[11]. The communication complexity of the above al-
gorithm, whose correctness is immediate, is established
in the following theorem.

Theorem 5 The communication complexity of the
above n-MT algorithm when executed on an M(p, B)
machine, with 1 < p ≤ n and 1 ≤ B ≤

√

n/p, is

HMT(n, p, B) = O

(

n

Bp

)

,

which is optimal for the specified ranges of p and B.

Proof (sketch) For simplicity, when defining
M(p, B) we assumed B to be a power of two. With
this assumption, it can be easily shown that in the
first superstep each segment of B consecutive PEs
of M(n) sends their entries to PEs belonging to a
segment of size at most B2 ≤ n/p. Similarly, it can
be shown that in the second superstep each segment

of B PEs of M(n) receives all their data from PEs
belonging to a segment of size 2B2. Therefore, when
the algorithm is executed on M(p, B) with B ≤

√

n/p,
the block-degree of the communication involved in
each superstep is O (n/(pB)). Optimality follows
from Theorem 4. (The theorem holds also when B is
not a power of two, and the proof needs only slight
modifications whose details will be provided in the full
version.) �

The restriction on the range of B in the above theo-
rem is what we call small-block assumption and is rem-
iniscent of the tall-cache assumption made in the con-
text of cache-oblivious algorithms [15]. We will now
prove that, under reasonable constraints, the small-
block assumption is necessary to achieve network-
oblivious optimality for the n-MT problem, just as the
tall-cache assumption was shown to be necessary to
achieve cache-oblivious optimality for n-MT [22]. We
say that an M(p, B) algorithm is full if in each of its
supersteps all processors send/receive the same num-
ber of blocks, with each block containing Θ (B) data
words.

Theorem 6 There cannot exist a network-oblivious
algorithm A for the n-MT problem such that, for ev-
ery 1 < p ≤ n and 1 ≤ B ≤ n/p, its execution on
M(p, B) yields a full algorithm whose communication
complexity matches the one stated in Theorem 4.

Proof Assume that such a network-oblivious algo-
rithm A exists, and let H1 and H2 be the communi-
cation complexities of A when executed on M(p1, B1)
and M(p2, B2), with p1 > p2. Since the two executions
are full by hypothesis, and every data communicated in
the M(p2, B2) execution must be also communicated in
the M(p1, B1) execution, we must have that B1p1H1 =
Ω (B2p2H2), whence B1p1H1/(B2p2H2) = Ω (1) (the
asymptotics is w.r.t. n). Now, let us choose p1 = n/2,
B1 = 1, p2 = Θ (nǫ), with ǫ constant, 0 < ǫ < 1, and
B2 = Θ (n/p2). Then, by Theorem 4 we have that
(B1p1H1)/(B2p2H2) = Θ (1/ logn) = o(1), a contra-
diction. �

Next, we prove that the n-MT lower bound can al-
ways be matched by parameter-aware full algorithms,
hence the impossibility stated above stems from requir-
ing network-obliviousness.

Theorem 7 For every 1 < p ≤ n and 1 ≤ B ≤ n/p,
there exists a full M(p, B) algorithm for the n-MT
problem whose communication complexity matches the
one stated in Theorem 4.

Proof (sketch) The algorithm is obtained by suit-
ably parallelizing the recursive strategy of [3] employed
for solving the n-MT problem in external memory. The
M(p, B) algorithm makes explicit use of parameters p
and B. Full details will be given in the full version. �

3.3 FFT

The n-FFT problem consists of computing an n-
input FFT dag.

Theorem 8 Let A be any algorithm solving the n-
FFT problem on an M(p, B) with 1 < p ≤ n and
1 ≤ B ≤ n/p. If the inputs are initially evenly dis-
tributed among the p PEs, then the communication
complexity of the algorithm is

Ω

(

n

pB

log n

log(1 + n/p)

)

.

Proof (sketch) The result follows by a suitable adap-
tation of the similar lower bound derived for the
LPRAM model in [2]. �

The network-oblivious n-FFT algorithm on M(n)
exploits the well-known recursive decomposition of the
dag into two sets of

√
n-input FFT subdags, with each

set containing
√

n such dags [1]. Inputs are initially
distributed one per PE in such a way that the inputs
of the j-th subdag in the first set are assigned to the
j-th segment of

√
n consecutively numbered PEs. The

outputs of the first set of subdags are permuted to be-
come the inputs of the second set, where the permu-
tation pattern is equivalent to a matrix transposition.
We have:

Theorem 9 The communication complexity of the
above n-FFT algorithm when executed on an M(p, B)
machine, with 1 < p ≤ n and 1 ≤ B ≤

√

n/p, is

HFFT(n, p, B) = O

(

n

pB

log n

log(1 + n/p)

)

,

which is optimal for the specified ranges of p and B.

Proof When the algorithm is run on an M(p, B) ma-
chine with p ≤ √

n, each subdag is computed locally by
a single PE, and in this case, we must account only for
the transposition step, which entails each PE sending
and receiving Θ (n/(pB)) blocks. Otherwise, the total
communication complexity of the algorithm obeys the
recurrence HFFT(n, p, B) = 2HFFT(

√
n, p/

√
n, B) +

Θ (n/(pB)), whose solution yields the stated result. �

The small-block assumption needed to prove the opti-
mality of the n-FFT network-oblivious algorithm de-
rives from the use of matrix transposition. It is an
interesting open problem to determine to what extent
such an assumption is really needed in the n-FFT case.
A similar question regarding the tall-cache assumption
is open in the realm of cache-obliviousness.

3.4 Sorting

The n-Sort problem consists of sorting n keys. We
require that the inputs be evenly distributed among the
PEs, and that, at the end, the keys held by the i-th PE
are all less than or equal to those held by the j-th PE,
for every j > i. The following theorem establishes a
lower bound on the communication complexity of any
M(p, B) algorithm for this problem.

Theorem 10 Let A be an algorithm solving the n-Sort
problem on an M(p, B) with 1 < p ≤ n and 1 ≤ B ≤
n/p. If the word-degree of each superstep is O (n/p),
then the communication complexity of A is:

Ω

(

n

pB

log n

log(1 + n/p)

)

.

Proof The theorem follows by dividing by B the lower
bound for M(p, 1) given in [17]. �

We now describe a network-oblivious algorithm for n-
Sort based on a recursive version of the Columnsort
algorithm as described in [19]. We regard both the
n keys and the PEs of M(n) as arranged in an s × r
matrix, with s = n1/3 and r = n2/3. The algorithm
consists of seven phases numbered from 1 to 7. During
Phases 1, 3, 5 and 7 the keys in each row are sorted
recursively (in Phase 5 adjacent rows are sorted in re-
verse order). During Phase 2 (resp., 4) a transposition
(resp., reverse transposition) of the s× r matrix is per-
formed maintaining the s × r shape. In Phase 6 two
steps of odd-even transposition sort are applied to each
column.

Observe that when executed on an M(p, B) the
above algorithm has the property that the word-degree
of each superstep is O (n/p), hence the lower bound
proved before applies to it. We have:

Theorem 11 The communication complexity of the
above n-Sort algorithm when executed on an M(p, B)
machine with 1 < p ≤ n and 1 ≤ B ≤

√

n/p is

HSort(n, p, B) = O

(

n

pB

(

log n

log(1 + n/p)

)log3/2 4
)

,

which is optimal when p ≤ n1−ǫ, for any constant ǫ
with 0 < ǫ < 1.

Proof (sketch) The transposition performed in
Phases 2 and 4 can be implemented by separately
transposing each s × s submatrix and then suitably
permuting the blocks among the PEs. It is easy
to show that by employing the network-oblivious
algorithm described in Subsection 3.2 for each
submatrix and by using the stated upper bound
on B, the transposition of the s × r matrix has
communication complexity Θ (n/pB). The stated
communication complexity of the entire algorithm is
obtained by solving the recurrence HSort(n, p, B) =
4HSort

(

n2/3, p/n1/3, B
)

+ Θ (n/pB). �

We conjecture that a similar result can be obtained by
adapting other known sorting algorithms such as, for
example, the one in [17].

4 Conclusions

In this paper, we have introduced a framework to ex-
plore the design of algorithms that, without resorting
to parameters used for tuning on the target platform,
can execute efficiently on machines with different band-
width characteristics. In this framework, an optimal al-
gorithm written for n “virtual” processors is one that
minimizes a suitable measure of interprocessor com-
munication, irrespective of the number p of “physical”
processors used for the execution, as long as a suitable
mapping is assumed between virtual and physical pro-
cessors. When the algorithm is actually executed on a
machine of p interconnected nodes, optimality in the
above sense translates into minimization of the com-
munication between certain submachines and the rest
of the system, which leads to good performance.

In the network-oblivious approach to algorithm de-
sign and implementation, any intelligence about the
locality of communication is embedded in the linear or-
dering of the virtual PEs. Clearly, the mapping of vir-
tual processors to physical processors has to be based
on the bandwidth properties of the target machine.
When the machine is modeled as a D-BSP system, the
mapping is indeed specified by the chosen correspon-
dence between the PEs of the machine and the PEs of
D-BSP. For example, the results of [6], concerning the
translation of algorithms that are optimal for D-BSP
into algorithms that are optimal for multi-dimensional
arrays, assume a natural mapping obtained by a re-
cursive bisection of the array into equal-size subarrays.
The efficiency of recursive bisection for other types of
networks deserves further investigation. In all cases, an
efficient processor mapping needs to be known to and
to be enforced by the operating and run-time systems,
for the efficiency of a network-oblivious algorithms to
be properly exploited.

We have shown that a number of key problems admit
optimal network-oblivious algorithms. It is too early
to say how wide the class of these problems is with-
out further exploration of both positive and negative
cases. In the analogous context of cache-obliviousness,
a number of optimal algorithms have been developed.
In comparison, negative results are quite few (e.g.,
[5, 10, 22]), and techniques of general applicability have
not yet emerged. However, the pursuit of oblivious al-
gorithms appears worthwhile even when the outcome
is a proof that no such algorithm can be optimal on
all target machines. Indeed, the analysis behind such
a result is likely to reveal what kind of adaptivity to
the target machine is essential to optimal performance.
In turn, this can provide valuable insights, particu-
larly to the development of adaptive libraries, based
on parametrized implementations that can be tuned to
best the properties of the target platform, in the spirit
of the ATLAS library for linear algerbra [24] and of the
FFTW library for Fourier transforms [14].

The present work can be naturally extended in sev-
eral directions, some of which are briefly outlined next.

• Naturally, the design of efficient network-oblivious
algorithms can be considered for many key prob-
lems, beyhond the few case studies of this paper.

• An interesting, but challenging goal is the develop-
ment of lower-bound techniques that limit the level
of optimality that network-oblivious algorithm can
reach on certain classes of target platforms.

• It would be useful to weaken the assumptions un-
der which an optimal network-oblivious algorithm
achieves optimal time in the D-BSP model.

• It would be useful to identify other classes of
machines, for which network-oblivious optimality
translates into optimal time.

• Another natural question to investigate is how to
determine an efficient virtual-to-physical processor
mapping, for a network with arbitrary topology.

References

[1] A. Aggarwal, A. Chandra, and M. Snir. Hierar-
chical memory with block transfer. In Proc. of
the 28th IEEE Symp. on Foundations of Computer
Science, pages 204–216, 1987.

[2] A. Aggarwal, A. Chandra, and M. Snir. Commu-
nication complexity of PRAMs. Theoretical Com-
puter Science, 71:3–28, 1990. See also Proc. of
ICALP ’88, 1–17.

[3] A. Aggarwal and J. Vitter. The input/output
complexity of sorting and related problems. Com-
munications of the ACM, 31(9):1116–1127, 1988.

[4] S. Bhatt, G. Bilardi, and G. Pucci. Area-universal
circuits with constant slowdown. In Proc. of the
18th Int. Conference on Advanced Research in
VLSI, pages 89–98, 1999.

[5] G. Bilardi and E. Peserico. A characterization
of temporal locality and its portability across
memory hierarchies. In Proc. of 28th Int. Col-
loquium on Automata, Languages and Program-
ming, LNCS 2076, pages 128–139, 2001.

[6] G. Bilardi, A. Pietracaprina, and G. Pucci. A
quantitative measure of portability with applica-
tion to bandwidth-latency models for parallel com-
puting. In Proc. of EUROPAR 99, LNCS 1685,
pages 543–551, Sept. 1999.

[7] G. Bilardi, A. Pietracaprina, and G. Pucci. De-
composable BSP: A bandwidth-latency model for
parallel and hierarchical computation. In J. Reif
and S. Rajasekaran, editors, Handbook of Parallel
Computing: Models, Algorithms and Applications,
pages 277–315. CRC Press, 2007. To appear.

[8] G. Bilardi and F. Preparata. Processor-time
tradeoffs under bounded-speed message propaga-
tion: Part I, upper bounds. Theory of Computing
Systems, 30:523–546, 1997.

[9] G. Bilardi and F. Preparata. Processor-time
tradeoffs under bounded-speed message propaga-
tion: Part II, lower bounds. Theory of Computing
Systems, 32:531–559, 1999.

[10] G. Brodal and R. Fagerberg. On the limits of
cache-obliviousness. In Proc. of the 35th ACM
Symp. on Theory of Computing, pages 307–315,
June 2003.

[11] S. Chatterjee, A. Lebeck, P. Patnala, and
M. Thottethodi. Recursive array layouts and fast
matrix multiplication. IEEE Trans. Parallel Dis-
trib. Syst., 13(11):1105–1123, 2002.

[12] D. Culler, R. Karp, D. Patterson, A. Sahay,
E. Santos, K. Schauser, R. Subramonian, and
T. Eicken. LogP: A practical model of paral-
lel computation. Communications of the ACM,
39(11):78–85, Nov. 1996.

[13] P. De la Torre and C. Kruskal. Submachine local-
ity in the bulk synchronous setting. In Proc. of
EUROPAR 96, LNCS 1124, pages 352–358, Aug.
1996.

[14] M.Frigo and S.G.Johnson. FFTW: An Adaptive
Software Architecture for the FFT. ICASSP, pp.
1381-1384, Seattle, WA, 1998.

[15] M. Frigo, C. Leiserson, H. Prokop, and S. Ra-
machandran. Cache-oblivious algorithms. In Proc.
of 40th IEEE Symp. on Foundations of Computer
Science, pages 285–298, 1999.

[16] P. Gibbons, Y. Matias, and V. Ramachandran.
Can a shared-memory model serve as a bridging-
model for parallel computation? Theory of Com-
puting Systems, 32(3):327–359, 1999.

[17] M. Goodrich. Communication-efficient parallel
sorting. SIAM Journal on Computing, 29(2):416–
432, 1999.

[18] D. Irony, S. Toledo, and A. Tiskin. Communica-
tion lower bounds for distributed-memory matrix
multiplication. Journal of Parallel and Distributed
Computing, 64(9):1017–1026, 2004.

[19] F. Leighton. Introduction to Parallel Algorithms
and Architectures: Arrays • Trees • Hypercubes.
Morgan Kaufmann, San Mateo, CA, 1992.

[20] C. Leiserson. Fat-trees: universal networks for
hardware-efficient supercomputing. IEEE Trans.
on Computers, C-34(10):892–901, Oct. 1985.

[21] R. Mattson, J.Gecsei, D. Slutz, and I. Traiger.
Evaluation techniques for storage hierarchies. IBM
Systems Journal, 9(2):78–117, 1970.

[22] F. Silvestri. On the limits of cache-oblivious ma-
trix transposition. In Proc. of 2nd Symp. of Trust-
worthy Global Computing, pages 147–157, Nov.
2006.

[23] L. Valiant. A bridging model for parallel computa-
tion. Communications of the ACM, 33(8):103–111,
Aug. 1990.

[24] R.C.Whaley and J.J.Dongarra. Auto-
matically Tuned Linear Algebra Software.
http://www.netlib.org/atlas/index.html

