
A Lower Bound Technique for Communication
on BSP with Application to the FFT ?

Gianfranco Bilardi, Michele Scquizzato, and Francesco Silvestri

Department of Information Engineering, University of Padova, Italy
{bilardi,scquizza,silvest1}@dei.unipd.it

Abstract. Communication complexity is defined, within the Bulk Syn-
chronous Parallel (BSP) model of computation, as the sum of the degrees
of all the supersteps. A lower bound to the communication complexity is
derived for a given class of DAG computations in terms of the switching
potential of a DAG, that is, the number of permutations that the DAG
can realize when viewed as a switching network. The proposed technique
yields a novel and tight lower bound for the FFT graph.

1 Introduction

A substantial fraction of the time and energy cost of a parallel algorithm is due
to the exchange of information between processing and storage elements. As in
all endeavors where performance is pursued, it is important to be able to evaluate
the distance from optimality of a proposed solution.

In this paper, we consider the Bulk Synchronous Parallel (BSP) model of
computation [23]. We develop a lower bound technique for a metric, called com-
munication complexity, which captures a relevant component of the cost of BSP
computations. This technique applies to a class of computations that can be
modeled in terms of a Directed Acyclic Graph (DAG), whose vertices represent
operations (of both input/output and processing type) and whose arcs represent
data dependencies. The same DAG computation can be performed in many dif-
ferent ways, depending on the superstep and the processing element chosen for
the execution of an operation and the way (routing path and schedule of the
message along such a path) in which a value is routed from the processor that
computes it to a processor that utilizes it. Our proposed technique further as-
sumes that each operation is executed only once, but the case where repetitions
are allowed is also of interest.

The complexity of communication of DAGs on various models of computation
has received considerable attention. Lower bounds are often established through
adaptations of the techniques of Hong and Kung [13] for hierarchical memory,
or by critical path arguments, such as those in [1]. For applications of these and
other techniques see [18, 2, 12, 9, 5, 14, 3] as well as [19] and references therein.
? This work was supported, in part, by MIUR-PRIN Project AlgoDEEP, by PAT-

INFN Project AuroraScience, by the University of Padova Projects STPD08JA32
and CPDA099949, and by the IBM Visiting Scientist Program.

The resulting bounds are often tight, but not in all cases. A notable example
is the computation of an n-input FFT DAG on a BSP with p processors: when
inputs are initially evenly distributed among the processors, an adaptation of
the dominator set technique of [13] yields a lower bound of1 Ω

(
n log n

p log(n log n/p)

)
to the communication complexity, which does not match the best known upper
bounds when p = ω (n/ log n). As this example indicates, communication lower
bounds deserve further exploration.

The main contribution of this paper is the switching potential technique, to
obtain communication lower bounds for DAG computations in the BSP model.
The communication complexity of a BSP computation is defined as the sum of
the degrees of all its supersteps. The proposed technique applies to DAGs with
n input nodes where all nodes, except for inputs and outputs, have out-degree
equal to the in-degree. Such a graph can be viewed as a switching network [19],
whose switching potential γ(n) is defined as the number of different permutations
that it can realize. We show that, for executions of a DAG without recomputation
of its nodes, the BSP communication complexity satisfies a suitable lower bound
expressed in terms of the switching potential. As a corollary of this general result,
we obtain a tight bound for the communication complexity of the FFT on the
BSP. The bound has the form Ω

(
n log n

p log(n/p)

)
and matches an upper bound of [23]

for any p = O (n).2 A similar bound was derived earlier in [12], for the special
class of algorithms performing exclusively supersteps of degree Θ (n/p).

Our FFT lower bound has the same form as the lower bound derived for
the communication complexity of the FFT in the LPRAM model, by Aggarwal,
Chandra, and Snir [1]. In addition to being developed for a different model, the
argument of [1] follows a different route: the lower bound is first established for
sorting, then claimed (by analogy) for permutation networks, and finally adapted
to the FFT network, by exploiting the property that, as shown in [24], the
cascade of three FFT networks has the topology of a full permutation network.
Finally, we observe that while when recomputation is not allowed our FFT lower
bound improves on the dominator-set result mentioned above, the latter remains
of interest when recomputation is allowed.

In addition to the well known general motivations for lower bound techniques,
we stress that striving for tight bounds for the whole range of model’s param-
eters has special interest in the study of so-called oblivious algorithms, whose
specification does not refer to such parameters, but are designed with the goal
of achieving (near) optimality for all values of the parameters. Notable exam-
ples are cache-oblivious algorithms [11], multicore-oblivious algorithms [10] and,
closer to the scenario of this paper, network-oblivious algorithms [8, 7], where
algorithms are designed and analyzed on a BSP-like model. In fact, many BSP
algorithms are only defined or analyzed for a number of processors p that is
sufficiently small with respect to the input size n. For the analysis of the FFT

1 We denote by logn the logarithm in base two, and by lnn the natural logarithm.
2 When p = Ω (n) a suitable adaptation of our argument gives an Ω (logn) bound,

which is also tight.

DAG, it is often assumed p2 ≤ n, where the complexity is Θ (n/p). Our results
allow for the removal of such restrictions.

The rest of the paper is organized as follows. Section 2 introduces the concept
of switching DAG and its switching potential. Then, it formulates the envelope
game, a convenient framework for studying the communication occurring when
evaluating a DAG. Section 3 briefly reviews the BSP model and develops a re-
lationship between the switching potential of a DAG and its communication
complexity on BSP, in the form of a mathematical program. The latter is an-
alyzed in Section 4 and the results are applied to the FFT DAG. Finally, in
Section 5 we draw some conclusions and discuss future work.

2 The Switching Potential of Computation DAGs

A computation DAG G = (V,E) is a directed acyclic graph where nodes repre-
sent operations and arcs represent data dependencies. More specifically, an arc
(u, v) ∈ E indicates that the value produced by the operation associated with
u is one of the operands of the operation associated with v, and we say that u
is a predecessor of v and v a successor of u. The number of predecessors of a
node v is called its in-degree and denoted δin(v), while the number of its suc-
cessors is called its out-degree and denoted δout(v). A node v is called an input
if δin(v) = 0 and an output if δout(v) = 0. We denote by Vin and Vout the set
of input and output nodes, respectively. The remaining nodes are said to be
internal and their set is denoted by Vint.

For many models of computation, the execution of an algorithm on a par-
ticular input can be naturally described by a computation DAG. Of particular
interest is the case when this DAG is the same for all inputs of the same size n,
and can then be denoted as G(n). In fact, a number of graph-theoretic properties
of G(n) can be related to processing, storage, and communication requirements
of the underlying algorithm, as well as to its amount of parallelism. In this con-
text, we introduce one such property, the switching potential, defined for a class
of relevant computation DAGs.

Definition 1. A switching DAG G = (V,E) is a computation DAG where for
any internal node v ∈ Vint we have δout(v) = δin(v). We refer to n = |Vin| as to
the input size of G and introduce the switching size of G defined as

N =
∑

v∈Vin

δout(v) =
∑

v∈Vout

δin(v),

where the equality between the two summations is easily established.

It is not difficult to see that if, for any internal node ofG, a one-to-one relation
R is established between the incoming arcs and the outgoing arcs, then a set R
of N arc-disjoint paths naturally arises, where paths are formed by the arcs that
belong to the same equivalence class of R∗, the transitive closure of R. Let us
now number the arcs incident upon input nodes from 1 to N (in some arbitrarily

chosen order) and do the same for the arcs incident upon the output nodes. Then,
to the above set R there corresponds a permutation ρ = (ρ(1), ρ(2), . . . , ρ(N))
of (1, 2, . . . , N), where ρ(j) is the (number of the) last arc of the (unique) path
in R whose first arc is numbered j. In terms of these concepts, we now introduce
a key property of switching DAGs.

Definition 2. Given a switching DAG G = (V,E), consider the set Γ of all
permutations corresponding to one or more sets of N arc-disjoint paths. The
switching potential of G is defined as the number γ = |Γ | of such permutations.

Intuitively, if the internal nodes are viewed as switches, then items initially
positioned on the input nodes can travel without conflicts on arc-disjoint paths
and reach the output nodes. Indeed, in the special case where δout(v) = 1 for
all input nodes and δin(v) = 1 for all output nodes, one has N = n = |Vin| =
|Vout| and the switching DAG can be viewed as a switching network in the
traditional sense. Furthermore, if γ = n! (all permutations can be realized), then
the switching network is said to be a permutation (or, rearrangeable) network.

Next, we define the envelope game, to be played on a switching DAG G, based
on a given one-to-one relation R between the incoming arcs and the outgoing
arcs of each internal node. The game is subject to the following rules.

1. A set of N distinguishable envelopes is given, with exactly δout(v) envelopes
placed on each input node v.

2. The set of envelopes remains invariant during the game and at any stage
each envelope is at exactly one node of G.

3. One elementary move consists in moving one envelope along an arc, that is,
from one node u to one node v, such that (u, v) ∈ E.

4. No envelope can be moved from a node v before all δin(v) envelopes that
must be placed on v have actually been placed.

5. The game is completed when all envelopes have reached an output node.

Speaking rather informally, it is easy to see that from the orchestration of
the envelope game on a given model of computation one can immediately derive
a schedule without recomputation for evaluating a DAG G, on the same model,
and viceversa. We just need to imagine that each envelope carries a (rewritable)
card where, when a node ofG is computed, its result is written on the card of each
envelope currently at that node. It is also intuitive that, if nodes u and v of arc
(u, v) are processed at different sites, then moving the envelope from u to v will
result in some communication. It ought to be observed that given two arcs (u, v)
and (u,w) with the same origin, if both v and w are processed at sites different
from that of u, then two envelope moves will contribute to communication. This
may result in an overcounting, in the case when v and w are processed at the same
site, as just one of the two envelopes would be sufficient here, since they carry
the same information. However, this overcounting is bounded from above by the
maximum out-degree of any node,∆ = maxv∈V δout(v), which is a small constant
for many interesting DAGs. The reverse process, of obtaining an execution of
the envelope game from an evaluation of the DAG, is also straightforward, with
an increase in communication upper bounded by ∆.

While the preceding considerations can be made precise only after having
specified a model of computation, they do convey a useful intuition, which will
be made rigorous for BSP in the next section, but could prove valuable on other
models as well.

In the next section, we show that executing a switching DAG on BSP requires
an amount of communication bounded from below by a certain function of its
switching potential. This result is of interest, since several relevant computation
DAGs are switching DAGs. Examples include the DAGs of networks of switches,
of networks of comparators (e.g., for sorting or merging), the DAGs modeling
computations of bounded-degree networks (as defined, e.g., in [17]), the DAGs
of several stencil computations, and others.

3 Switching Potential and Communication on BSP

The Bulk Synchronous Parallel (BSP) model was introduced by Valiant [23] as a
“bridging model” for general-purpose parallel computing, providing an abstrac-
tion of both parallel hardware and software. It has been widely studied (see,
e.g., [20] and references therein) together with a number of variants (such as
D-BSP [22, 6], BSP* [4], E-BSP [15], and BSPRAM [21]).

The architectural component of the model consists of p processing elements
P1, P2, . . . , Pp, each equipped with unbounded local memory, interconnected by
a communication medium. The execution of a BSP algorithm consists of a se-
quence of phases, called supersteps: in one superstep, each processor can perform
operations on data residing in its local memory, send messages and, at the end,
execute a global synchronization instruction. A message sent during a superstep
becomes visible to the receiver only at the beginning of the next superstep. The
running time of the i-th superstep is expressed in terms of two parameters g and
` as Ti = wi + hig + `, where wi is the maximum number of local operations
performed by any processor and hi is the maximum number of messages sent or
received by any processor (i.e., the i-th superstep performs an hi-relation). Intu-
itively, 1/g can be interpreted as the available bandwidth per processor, while `
as an upper bound on the time required for global barrier synchronization. The
running time TA of a BSP algorithm A is the sum of the times of its supersteps
and can be expressed as WA + HAg + SA`, where SA is the number of super-
steps, WA =

∑SA
i=1 wi is the local computation complexity and HA =

∑SA
i=1 hi is

the communication complexity. In this paper, we study the latter metric, which
often represents the dominant component.

We focus on algorithms whose execution can be described by a computation
DAG G(n) solely determined by the input size n. The lower bounds are derived
under the assumption that G(n) is a switching DAG and that each node of the
DAG (operation) is executed only once (no recomputation). In particular, we
analyze the envelope game on G. In any given execution of such a game, a given
node of G is assigned to a unique BSP processor. If (u, v) ∈ E is an arc with u
assigned to processor P and v assigned to processor P ′ 6= P , then the envelope
must be routed from P to P ′, possibly through intermediate processors. A key

observation is that a BSP execution of the envelope game corresponding to a
given relation R on arcs (intuitively, a setting of the switches) can be adapted to
any other relation R′ without changing the number of superstep of the sources
and destinations sent at each superstep. Simply, the messages will carry different
envelopes. We now introduce the critical quantity that we analyze.

Definition 3. Consider the execution of a switching DAG G(n) on the BSP.
The distribution potential at superstep j, denoted ηj(n, p), is defined as the
number of different distributions of the N envelopes across the p processors that
result at the end of the j-th superstep, when relation R is varied in all possible
ways. (The order of the envelopes within a processor is irrelevant.)

Intuitively, two tradeoffs are captured by the lower bound argument de-
veloped below. First, the communication complexity h of a given superstep is
bounded from below in terms of the growth of the distribution potential in that
superstep. Second, the distribution potential after the last superstep is bounded
from below by the switching potential of the DAG.

At the beginning of the computation (after the 0-th superstep), η0(n, p) = 1,
since the only achievable distribution of envelopes among processors is the one
corresponding to the input distribution protocol. Denote by U the maximum
number of envelopes held by any processor at the end of the algorithm. If the
algorithm completes in K supersteps, then ηK(n, p) ≥ γ(n)/(U !)N/U , where
(U !)N/U is a corrective term due to the definition of ηK(n, p). Let oi ≤ U be the
number of envelopes stored at the end of the algorithm in the i-th processor; then,
there are at most Πp

i=1(oi!) ≤ (U !)N/U envelope permutations differing only on
the output values held by the same processor which yield the same distribution
of the envelopes among processors. We denote the number of envelopes held by
the i-th processor after the j-th superstep by ti,j , for each i ∈ [p] and j ∈ [K],
where [x] denotes the set {1, 2, . . . , x}. Clearly, by the rules of the envelope game,
we have

∑p
i=1 ti,j = N and ti,j ≥ 0. (The latter equation would not necessarily

hold if the envelope game were extended in order to allow for recomputation.)
Now consider a processor i ∈ [p] and a superstep j ∈ [K]. The ti,j envelopes

held by processor i after the j-th superstep are of two kinds: the si,j envelopes
that will be sent by i to some other processors during the subsequent superstep,
and the other ri,j = ti,j− si,j remaining envelopes. (The quantities ti,j , si,j , and
ri,j are all functions of n and p, although this dependence is not made explicit
in the notation, for better readability. For the same reason, when clarity is not
compromised, we will write ηj in place of ηj(n, p).) Thus, there are

(
ti,j

si,j

)
choices

of the set of envelopes to send and (given a fixed schedule of the algorithm, i.e.,
a fixed pattern of communication) these envelopes can be sent in at most si,j !
different ways to the other processors. Hence, at each superstep j each processor
i has at most (

ti,j
si,j

)
si,j ! =

(
ri,j + si,j

si,j

)
si,j ! =

(si,j + ri,j)!
ri,j !

communications choices. Then, ηj/ηj−1 ≤ Πp
i=1(si,j + ri,j)!/ri,j !.

Assembling the above observations, we conclude that the communication
complexity H of any algorithm for G is no smaller than the value an optimal
solution to the following mathematical program.

H ≥ min
K∑

j=1

max
i
si,j

s.t.
K∏

j=1

p∏
i=1

(si,j + ri,j)!
ri,j !

≥ γ(n)/(U !)N/U

p∑
i=1

(si,j + ri,j) = N ∀j ∈ [K]

ri,j , si,j ≥ 0 ∀i ∈ [p],∀j ∈ [K].

4 Solving the Mathematical Program

We relax the above system by observing that, for each j ∈ [K],

p∏
i=1

(si,j + ri,j)!
ri,j !

≤
p∏

i=1

(si,j + ri,j)si,j .

The relaxation will enable us to exploit the following lemma.

Lemma 1. Let q and N be two positive integer values. Then, an optimal solution
of the following mathematical program

max
q∏

i=1

(ai + bi)ai

s.t.
q∑

i=1

(ai + bi) = N

ai, bi ≥ 0 ∀i ∈ [q]

must satisfy biA = ai (N −A) for each i ∈ [q], where A =
∑q

i=1 ai.

Proof. When A = 0 or there is just one ai 6= 0 the lemma is straightforward. It
is also easy to see that, in an optimal solution, bi = 0 whenever ai = 0. Hence,
in the following we assume that ai 6= 0 for each i ∈ [q].

Let A > 0. We first study the case q = 2, and then use this as a building-block
for determining the solution to the general case. Consider an optimal solution
(a1, b1, a2, b2), and suppose a1 and a2 are given. Consider the first derivative in
b1 of the objective function. The constraint of the system imposes

b1 + b2 = N − (a1 + a2) = N −A, (1)

hence we have
d

db1
(a1 + b1)a1(a2 + b2)a2 =

d

db1
(a1 + b1)a1(N − a1 − b1)a2

= a1(a1 + b1)a1−1(N − a1 − b1)a2 − (a1 + b1)a1a2(N − a1 − b1)a2−1.

Since a1, a2 > 0, we have that the derivative is non-negative when a1(N − a1 −
b1) ≥ a2(b1 + a1), that is, using Equation 1,

b1 ≤
a1(N − a1 − a2)

a1 + a2
= a1

(
N −A
A

)
.

Since the above derivative is first non-negative and then non-positive, the point
b1 where the value of the derivative is zero is unique, and thus must satisfy

b1 = a1

(
N −A
A

)
and b2 = a2

(
N −A
A

)
.

We now turn our attention to the situation when q is arbitrary. Let (a, b) be
an optimal solution, with a = a1, a2, . . . , aq and b = b1, b2, . . . , bq, and a is given.
We claim that bi = ai

(
N−A

A

)
for each i ∈ [q]. In fact, suppose this is not true.

Then, there must exist an optimal solution (a, b̄) 6= (a, b) and a pair of indices
h, k such that b̄h/ah 6= b̄k/ak. We can prove this by contradiction. In fact, if
b̄h/ah = b̄k/ak for each h ∈ [q], we have the following system of equations with
q variables b̄1, b̄2, . . . , b̄q and q constraints:

b̄h
ah

=
b̄h+1

ah+1
∀h ∈ [q − 1]∑q

j=1(b̄j + aj) = N.

To derive its unique solution, we can rewrite the last constraint as
∑q

j=1(b̄j/aj +
1)aj = N. By the first q−1 constraints we have b̄h/ah = b̄k/ak for each h, k ∈ [q],
and thus

q∑
j=1

(
b̄h
ah

+ 1
)
aj = N ∀h ∈ [q],

that is (
b̄h
ah

+ 1
)
A = N ∀h ∈ [q],

which implies

b̄h = ah

(
N −A
A

)
= bh ∀h ∈ [q],

a contradiction. Therefore, we have shown that there exists a pair (b̄h, b̄k) such
that b̄h/ah 6= b̄k/ak. However, as seen for the case q = 2, we can always find
a pair (b̃h, b̃k) such that (b̃h + ah)ah(b̃k + ak)ak > (b̄h + ah)ah(b̄k + ak)ak , thus
contradicting the optimality of (b̄, v) and (u, v). This pair is

b̃h = ah

(
b̄h + b̄k
ah + ak

)
and b̃k = ak

(
b̄k + b̄h
ak + ah

)
,

which is the solution of the system b̃h
ah

=
b̃k
ak

b̃h + b̃k = b̄h + b̄k.

It remains to check that the mathematical program is not unbounded. Ob-
serve that the objective function is real-valued and continuous on a domain which
is non-empty, closed, and bounded. By the classical Weierstrass theorem, such
a function admits a maximum, and this must be achieved at (a, b). ut

We are now ready to prove the main result of the paper; we will establish
the desired lower bound for the FFT graph as a corollary. The lower bound in
the theorem exhibits a tradeoff between the communication and the maximum
number U of envelopes held by a processor at the end of the algorithm: indeed,
as U increases the number of envelope permutations differing only on the output
values stored in the same processor increases as well, and thus the required
communication complexity may decrease.

Theorem 1. Let x? be the value of an optimal solution of the mathematical
program of the previous section. Then,

x? ≥ ln(γ(n)/(U !)N/U)
p ln(eN/p)

.

Proof. We consider only supersteps where at least one message is sent over the
network. (Supersteps without communication do not increase the number of
envelope distributions.) We use the following notation: sj = maxi si,j and Sj =∑p

i=1 si,j . By setting ai = si,j , bi = ri,j , and q = p in Lemma 1, we have that,
for a given superstep j,

p∏
i=1

(si,j + ri,j)si,j ≤
p∏

i=1

(
si,j + si,j

(
N − Sj

Sj

))si,j

=
p∏

i=1

s
si,j

i,j

(
N

Sj

)si,j

=
(
N

Sj

)Sj p∏
i=1

s
si,j

i,j .

We partition the values of the index j into three sets K1, K2, and K3 as follows:
j ∈ K1 iff sj > N/p, j ∈ K2 iff N/(ep) < sj ≤ N/p, j ∈ K3 iff sj ≤ N/(ep),
where e is the base of the natural logarithm. For simplicity, we assume p ≤ N/e.
If j ∈ K1, we have (

N

Sj

)Sj p∏
i=1

s
si,j

i,j ≤ e
N/esN

j ,

because function (N/x)x is increasing in x until x < N/e and x = N/e is the
maximum of the function. The constraints on the problem implies

∑p
i=1 si,j ≤ N ,

and then
∏p

i=1 s
si,j

i,j is maximized when N/sj values si,j are set to sj and the
remaining ones to zero. On the other hand, when j ∈ K2, we have(

N

Sj

)Sj p∏
i=1

s
si,j

i,j ≤
(
N

Sj

)Sj

s
psj

j ≤ eN/es
psj

j ,

since, si,j ≤ sj . Finally, when j ∈ K3 we have(
N

Sj

)Sj p∏
i=1

s
si,j

i,j ≤
(
N

Sj

)Sj

s
psj

j ≤
(
N

psj

)psj

s
psj

j =
(
N

p

)psj

,

since the function (N/x)x is increasing in x until x < N/e and the maximum
value is (N/(psj))psj when Sj ≤ psj ≤ N/e.

Therefore, the first constraint of the minimization problem that we are study-
ing can be relaxed as follows:∏

j∈K1

eN/esN
j

∏
j∈K2

eN/es
psj

j

∏
j∈K3

(
N

p

)psj

≥ γ(n)
(U !)N/U

.

By taking the natural logarithm of both sides we have∑
j∈K1

(
N

e
+N ln sj

)
+
∑

j∈K2

(
N

e
+ psj ln sj

)
+
∑

j∈K3

psj ln(N/p) ≥ ln
(

γ(n)
(U !)N/U

)
.

Since sj > N/(ep) if j ∈ K1 ∪K2, we get∑
j∈K1

N ln(esj) +
∑

j∈K2

psj ln(esj) +
∑

j∈K3

psj ln(N/p) ≥ ln
(

γ(n)
(U !)N/U

)
.

Let K̂i =
∑

j∈Ki
sj . By the concavity of ln(esj) and the convexity of sj ln(esj),

we have that the first two summations are maximized when sj = N/p for each
j ∈ K1 ∪K2, |K1| = K̂1/(N/p) and |K2| = K̂2/(N/p). Then we get

pK̂1 ln(eN/p) + pK̂2 ln(eN/p) + pK̂3 ln(N/p) ≥ ln
(

γ(n)
(U !)N/U

)
,

which yields the sought lower bound to the minimum solution of the problem:

min
K∑

j=1

sj ≥ K̂1 + K̂2 + K̂3 ≥
ln(γ(n)/(U !)N/U)

p ln(eN/p)
.

ut

Corollary 1. Let A be any algorithm computing an n-input FFT DAG on a
BSP with p processors, and let U be the maximum number of envelopes held by
any processor at the end of the algorithm. If U ≤ N/2 = n and recomputation is
not allowed, then the communication complexity of the algorithm is

HA(n, p) = Ω

(
n log n

p log(n/p)

)
.

Proof (Sketch). The FFT DAG has n(log n + 1) nodes and can produce at the
output nodes γ(n) = 2n(log n+1) distinct permutations of the N = 2n envelopes.
Hence, by Theorem 1, we get HA(n, p) ≥ (n/p) log(2n/U2)/ log(n/p). Since an
FFT DAG can perform any cyclic shift of a vector, an Ω (U) lower bound follows
by an argument based on the information flow of cyclic shifts [19, Lemma 10.5.2].
Therefore, we have

HA(n, p) = Ω

(
n log(2n/U2)
p log(n/p)

+ U

)
.

We have that U ≥ 2n/p. In this range, the above bound is minimized by setting
U = 2n/p, yielding the stated bound. ut

Several similar results can be obtained, for example for the Beneš permuta-
tion network, and for the bitonic and the AKS sorting networks.

5 Conclusions

In this paper, we have studied some aspects of the communication complexity
of parallel algorithms. We have developed a new technique for deriving lower
bounds on communication complexity for computations that can be represented
by a certain kind of DAGs. We have demonstrated the power of this technique on
the FFT DAG for which, assuming non-recomputation, the derived lower bound
is tight for any possible values of parameters n and p, thus improving previous
work.

It is natural to wonder whether our main lower bound holds (asymptotically)
when recomputation of intermediate values is allowed. (Re-execution of opera-
tions is known, for instance, to enhance some simulations among networks [16].)
While it is not difficult to see that our lower bound holds when each node of the
DAG can be recomputed O (1) times, in the general case (an adaptation of) our
technique yields, for the FFT DAG, the same bound as that of the dominator-set
result mentioned in the introduction. We feel that settling this question might
shed new light on the role of recomputation in I/O- and communication-efficient
computing, which is not yet fully understood.

Acknowledgments. The authors would like to thank Andrea Pietracaprina and
Geppino Pucci for insightful discussions.

References

1. Aggarwal, A., Chandra, A.K., Snir, M.: Communication complexity of PRAMs.
Theor. Comp. Sci. 71, 3–28 (1990)

2. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Comm. ACM 31(9), 1116–1127 (1988)

3. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Graph expansion and commu-
nication costs of fast matrix multiplication. In: Proc. 23rd SPAA. pp. 1–12. ACM
(2011)

4. Bäumker, A., Dittrich, W., Meyer auf der Heide, F.: Truly efficient parallel algo-
rithms: 1-optimal multisearch for an extension of the BSP model. Theor. Comp.
Sci. 203(2), 175–203 (1998)

5. Bilardi, G., Pietracaprina, A., D’Alberto, P.: On the space and access complexity
of computation DAGs. In: Proc. 26th WG. pp. 47–58. Springer (2000)

6. Bilardi, G., Pietracaprina, A., Pucci, G.: Decomposable BSP: A bandwidth-latency
model for parallel and hierarchical computation. In: Handbook of Parallel Com-
puting: Models, Algorithms and Applications, pp. 277–315. CRC Press (2007)

7. Bilardi, G., Pietracaprina, A., Pucci, G., Scquizzato, M., Silvestri, F.: Network-
oblivious algorithms (2012), to be submitted

8. Bilardi, G., Pietracaprina, A., Pucci, G., Silvestri, F.: Network-oblivious algo-
rithms. In: Proc. 21st IPDPS. pp. 1–10. IEEE (2007)

9. Bilardi, G., Preparata, F.: Processor-time tradeoffs under bounded-speed message
propagation: Part II, lower bounds. Theor. Comp. Syst. 32(5), 531–559 (1999)

10. Chowdhury, R.A., Silvestri, F., Blakeley, B., Ramachandran, V.: Oblivious algo-
rithms for multicores and network of processor. In: Proc. 24th IPDPS. pp. 1–12.
IEEE (2010)

11. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. ACM Trans. Algorithms 8(1), 4:1–4:22 (2012)

12. Goodrich, M.T.: Communication-efficient parallel sorting. SIAM J. Computing
29(2), 416–432 (1999)

13. Hong, J.W., Kung, H.T.: I/O complexity: The red-blue pebble game. In: Proc.
13th STOC. pp. 326–333. ACM (1981)

14. Irony, D., Toledo, S., Tiskin, A.: Communication lower bounds for distributed-
memory matrix multiplication. J. Par. & Distr. Comp. 64(9), 1017–1026 (2004)

15. Juurlink, B.H.H., Wijshoff, H.A.G.: A quantitative comparison of parallel compu-
tation models. ACM Trans. Comput. Syst. 16(3), 271–318 (1998)

16. Koch, R.R., Leighton, F.T., Maggs, B.M., Rao, S.B., Rosenberg, A.L., Schwabe,
E.J.: Work-preserving emulations of fixed-connection networks. J. ACM 44(1), 104–
147 (1997)

17. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers (1992)

18. Papadimitriou, C.H., Ullman, J.D.: A communication-time tradeoff. SIAM J. Com-
puting 16(4), 639–646 (1987)

19. Savage, J.E.: Models of Computation: Exploring the Power of Computing. Addison-
Wesley (1998)

20. Tiskin, A.: BSP (bulk synchronous parallelism). In: Encyclopedia of Parallel Com-
puting, pp. 192–199. Springer (2011)

21. Tiskin, A.: The bulk-synchronous parallel random access machine. Theor. Comp.
Sci. 196(1-2), 109–130 (1998)

22. de la Torre, P., Kruskal, C.P.: Submachine locality in the bulk synchronous setting.
In: Proc. 2nd Euro-Par. LNCS, vol. 1124, pp. 352–358. Springer (1996)

23. Valiant, L.G.: A bridging model for parallel computation. Comm. ACM 33(8),
103–111 (1990)

24. Wu, C.L., Feng, T.Y.: The universality of the shuffle-exchange network. Trans.
Computers 30, 324–332 (1981)

