Software-Based Hardening Strategies for Neutron
Sensitive FFT Algorithms on GPUs

L. L. Pilla, P. Rech, F. Silvestri, C. Frost, P. O. A. Navaux, M. Sonza Reorda, and L. Carro

Abstract—In this paper we assess the neutron sensitivity of
Graphics Processing Units (GPUs) when executing a Fast Fourier
Transform (FFT) algorithm, and propose specific software-based
hardening strategies to reduce its failure rate. Our research
is motivated by experimental results with an unhardened FFT
that demonstrate a majority of multiple errors in the output
in the case of failures, which are caused by data dependencies.
In addition, the use of the built-in error-correction code (ECC)
showed a large overhead, and proved to be insufficient to provide
high reliability. Experimental results with the hardened algorithm
show a two orders of magnitude failure rate improvement over
the original algorithm (one order of magnitude over ECC) and
an overhead 64% smaller than ECC.

Index Terms—GPU, FFT, neutron sensitivity, ECC, software-
based hardening strategies

I. INTRODUCTION

HE Fast Fourier Transform (FFT) is one of the most

representative algorithms in high performance comput-
ing. FFT algorithms are used in several applications such
as signal processing, vibration and spectrum analysis, speech
processing, communication, linear algebra, statistics, 3D re-
construction, and stock options pricing determination [1],
[2]. In addition to this pervasiveness, the FFT algorithm is
also highly parallel, which makes it a suitable candidate for
acceleration in Graphics Processing Units (GPUs).

Nowadays, every desktop computer, laptop, or portable
device includes at least one GPU, mainly used as a support
for the Central Processing Unit (CPU) to accelerate graphics
rendering. Due to their highly parallel structure, GPUs are
more effective than general-purpose CPUs when large blocks
of data need to be processed in parallel, and have recently be-
come popular for high performance computing. For instance,
TITAN, the second most powerful of supercomputers [3]
in November 2013, includes 18,000 GPUs to enhance its
performance.

As we have demonstrated in previous works, radiation-
induced errors, including those generated by the terrestrial
neutron radiation environment at ground level, are one of the
major issues for the newest GPU cores reliability [4], [5].
Still, the state of the art lacks studies describing radiation test
methods for extremely parallel systems and parallel algorithm

L. L. Pilla, P. Rech, P. O. A. Navaux, and L. Carro are with the Instituto
de Informatica, Federal University of Rio Grande do Sul (UFRGS), Porto
Alegre, RS, Brazil (email: llpilla, prech, navaux, carro @inf.ufrgs.br).

F. Silvestri is with the Dipartimento di Ingegneria dell’Informazione,
University of Padova, Italy (email: silvest] @dei.unipd.it).

C. Frost is with STFC, Rutherford Appleton Laboratories, Didcot, UK
(email: christopher.frost@stfc.ac.uk).

M. Sonza Reorda is with the Dipartimento di Automatica e Informatica,
Politecnico di Torino, Italy (email: matteo.sonzareorda@polito.it).

behavior analysis in radiation environments. Motivated by
these facts, we investigate the behavior of a parallel Fast
Fourier Transform algorithm executed on a GPU irradiated
with neutrons.

The results of extensive radiation test campaigns attest that
the FFT algorithm experiences a very high error rate and, in the
majority of the cases, its output is affected by multiple errors.
As we demonstrate in this paper, based on algorithmic and
architectural analysis, multiple errors occur mainly because
the FFT computation requires sequential iterations which are
dependent on data from previous iterations. If in a given itera-
tion a thread is corrupted by radiation, the error is then likely to
spread over the following iterations leading to multiple output
errors. Additionally, we experimentally demonstrate that the
error-correction code (ECC) available in the latest GPUs is
not sufficient to ensure by itself a high reliability as it address
only L1 and L2 cache memories and registers, leaving logic
and scheduling resources unprotected.

In this scenario, we propose a dedicated software-based
hardening strategy for the FFT algorithm executed on a
GPU based on the Algorithm-Based Fault Tolerance (ABFT)
philosophy [6]. The resulting algorithm, named ABFT-FFT,
uses a hardening strategy designed to profit from the FFT
properties demonstrated by Jou and Abraham [7], and applies
them in the GPU algorithm to detect and correct faulty
executions. The results of our experimental evaluation with
ABFT-FFT under an accelerated neutron beam show a two
orders of magnitude failure rate reduction over the original
FFT algorithm with an increase in execution time of only
18%. We also extend the proposed ABFT approach to achieve
prompt error detection and prevent errors propagation, and
demonstrate its applicability with fault-injection experiments.

The remaining sections of this paper are organized as
follows: the experimental methodology, including the tested
devices and algorithms, is detailed in Sec. II. An evaluation
of the original FFT algorithm and the use of ECC is discussed
in Sec. III. Our hardening strategies and their evaluations are
presented in Sec. IV. Concluding remarks and future work are
drawn in Sec. V.

II. EXPERIMENTAL METHODOLOGY
A. Neutron Beam

Radiation experiments were performed at the ISIS facility
in the Rutherford Appleton Laboratories (RAL) in Didcot,
UK [8]. The available neutron flux was of about 5.5 X
10* n/cm?s. The beam was focused on a spot with a diameter
of 2 cm plus 1 cm of penumbra, which is enough to fully
and homogeneously irradiate the GPU chip without directly

affecting nearby power control circuitry and DDR memories
on the board. Nevertheless, even if the beam is collimated,
scattering neutrons may still wander from the beam spot. Thus,
to ensure that the DDR content was consistent during our
experiments, we periodically checked it during experiments,
but no error has been observed.

It is worth noting that input and output data were stored
in the GPU’s DDR memory, and no L1 cache memory was
employed, so the errors reported in the following sections
were only caused by the corruption of the GPU core logic
resources or internal flip-flops. Irradiation was performed at
room temperature with normal incidence, nominal voltages
and frequency of operation.

B. Tested Devices

We tested commercial-off-the-shelf Tesla C2050 GPUs de-
signed by NVIDIA and manufactured in a 40 nm technology
node. The C2050 model includes 14 Streaming Multiproces-
sors (SMs), each of which is divided into 32 Compute Unified
Device Architecture (CUDA) cores [9]. In the C2050 GPU,
14 blocks of threads can be executed in parallel with a max-
imum of 32 threads in each block for a total of 448 threads.
If more threads or blocks are instantiated, their execution will
be delayed until they can be scheduled.

NVIDIA provides the newest GPUs, such as the C2050
family, with an internal ECC mechanism that can be activated
by the user. This mechanism was first disabled for the eval-
uation of the FFT sensitivity to neutrons, and later enabled.
A discussion on the efficiency and drawbacks of the NVIDIA
ECC mechanism takes place in Sec. III-B.

It is important to emphasize that the input vectors, as well as
the results of computation, are stored in the GPU board DDR,
which was not irradiated. On a realistic application, a higher
number of blocks to be processed may extend the exposure
time of input or output data, increasing the probability of
having them corrupted by neutron-induced Single Event Up-
sets or Single Event Functional Interruptions. However, DDR
sensitivity has been proved to decrease with the shrinking
of technology nodes [10], and modern DDR memories are
provided with efficient ECCs that increase in several orders of
magnitudes the device reliability [11]. It is then reasonable to
consider negligible, even on a real application, the probability
for GPU input or output vectors to be corrupted.

C. Tested FFT Algorithm

We tested under radiation a benchmark that implements
512 x 512 1D-FFTs of 64-point each. The FFT input is
composed of a 64 x 512 x 512 double precision floating-point
matrix for the real part and a 64 x 512 x 512 matrix for the
imaginary part. We choose to test relatively small FFTs (64-
point) to limit the number of iterations and ease the study of
error propagation, while having 512 x 512 1D-FFTs eases the
gathering of a statistically significant amount of errors.

The implemented algorithm is based on the Fast Fourier
Transform kernel of the NAS Parallel Benchmarks [12], named
FT, implemented in C and ported to the GPU architecture using

the NVIDIA CUDA programming model. Each 64-point 1D-
FFT kernel is composed of 6 sequential iterations (log, 64 =
6) of a variant of the Stockham FFT algorithm [13].

Threads update the values of complex floating-point ele-
ments of the matrix in pairs using their previous values as
input. This behavior mimics a butterfly module [7], which
is illustrated in Fig. 1. This process involves reading four
floating-point values to registers (two real and two imaginary
values), using them once to compute their updated values, and
writing them in memory. Due to the amount of data being
processed in parallel, the FFT is not able to benefit from a

caching mechanism.
L 7 L 7
) v
’~ N

)

1
T
1
1
1
1
1
1
1

o e e o e e e ey

S AL /

Fig. 1. A basic butterfly module used to update two-by-two all the 64 elements
composing the FFT.

The execution of the FFT algorithm in the GPU requires the
instantiation of 512 x 512 parallel threads. They are grouped
in blocks of 512 threads each. In this scenario, a thread is in
charge of evaluating the FFT values on its assigned complex
vector of size 64.

III. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the experimental results obtained with
the plain FFT algorithm (i.e. the algorithm without any hard-
ening solution applied, as described in the previous section)
as well as with the use of ECC.

A. Sensitivity of the original FFT

Table I reports the experimentally measured cross section
and failures in time (FIT, or failures in 10° hours) for the tested
FFT code under the neutron beam discussed in Sec. II-A.
The cross section is obtained dividing the number of faulty
FFT executions per unit time by the flux. As the ISIS neu-
tron spectrum of energies is suitable to mimic the terrestrial
one, FITs can be calculated multiplying the experimentally
obtained cross section by the expected natural neutron flux
at sea level (about 13 n/cm?h [14]). The values reported in
Table I confirm that GPUs are extremely prone to be corrupted
by neutrons.

TABLE I
512 x 512 64-POINT FFTS CROSS SECTION AND FIT AT NYC.

Cross section (cm?) FIT

3.69 x 1076 + 4%

512 x 512 4.80 x 10*

The tested FFT algorithm produces complex double-
precision floating-point data as output, which can be split into
real and imaginary parts. An execution is considered as faulty
if at least one difference with respect to the expected value is
detected in the real, imaginary, or both parts of the output.

Table II shows the percentage of faulty executions of the
FFT algorithm in which the real part or the imaginary part
was detected as corrupted, as well as the cross section and
FIT of each of these parts. Even if the implemented algorithm
is symmetric for the real and imaginary parts, as illustrated
in Fig. 1, some executions experienced errors in just one
of the parts. These errors are caused by the corruption of
internal registers used by threads for storing the intermediate
values of the complex number. As stated in the second column
of Table II, more than 90% of the executions considered as
faulty experience errors on both the real and imaginary part of
the output. In all other situations, the radiation induced error
corrupted a resource in a thread and its effect was confined in
the real or imaginary part of the result, without propagating
to the other part.

TABLE II
REAL AND IMAGINARY PART ERRORS ON 512 X 512 64-POINT FFTS.

Percentage Cross section (cm?) FIT
FFT Real 94.96% 350 x 1076 +4% 4.55 x 10*
FFT Imaginary ~ 96.17% 3.55 x 1076 +£4% 4.62 x 104

The computation steps in the FFT algorithm are not in-
dependent, since an iteration uses the output of previously
executed ones to update the real and imaginary parts of two
complex elements (see Fig. 2). It is then very likely that a
radiation-induced event affecting a thread in the early stages
of the FFT execution will spread, affecting various bits of the
output. This fault behavior is illustrated in Fig. 2, where an
error in the first iteration of the FFT corrupts the whole output

vector.

% :

iteration 1 iteration 2

am

L
output: 64-points FFT

input: 64 complex numbers

u

iteration 6

Fig. 2. Graphical representation of the FFT algorithm under radiation. At
each iteration, a thread updates two-by-two all the 64 values of the FFT
using the basic butterfly module. Six iterations are necessary to complete the
execution. If an operation in one iteration is corrupted by radiation, two (or
more) values will be wrongly updated, and the number of errors will double
in the following iteration.

As a thread is in charge of updating two complex values, a
radiation-induced error that prevents the thread from complet-
ing its execution or corrupts the thread input data produces at

least two output errors. Nevertheless, a single error in a thread
can be generated by the corruption of the internal register that
stores the value of just one of the two elements to update,
or disturbing just one of the operations needed to compute
the FFT. A thread can then complete its execution, allowing
the correct calculation of the second complex number. Single
output errors occur in the FFT only if such single thread error
occurs in the last FFT iteration. To illustrate that, Table III
reports the proportion of single and multiple errors in each
part of the complex values. Single output errors occurred in
just 1.63% and 4% of the faulty executions for the real and
imaginary parts, respectively. These errors should become even
less likely with an increase in the number of points computed
by the FFT algorithm, as the number of iterations increases
by the logarithm of the number of points, and so the portion
of execution time spent on iterations other than the last one
also increases.

TABLE III
SINGLE AND MULTIPLE ERRORS ON 512 X 512 64-POINT FFTS.

Number of errors Percentage FIT
) Single 1.61% 7.33 x 102
FFT Real Multiple 98.390% 4.48 x 104
L Single 4.00% 1.85 x 103
FET Imaginary Multiple 96.00% 4.43 x 10

The importance of the occurrence of multiple errors in
realistic applications is highlighted in the last column of
Table III, in which the FIT values of FFT executions affected
by single or multiple errors in the real and imaginary parts are
reported.

The experimentally observed multiple error distributions are
shown in Fig. 3. It is worth noting that, in most cases, 64 or
less output values were found corrupted, and those values
belong to the same 64-point FFT. Such error patterns are
caused by the propagation of errors from one iteration to
the following ones in the same 64-point FFT, as previously
represented in Fig. 2. As said, the amount of errors is likely
to double at each iteration. Thus, it is very unlikely to have
an odd number of errors in the output. This assumption is in
agreement with experimental data reported in Fig. 3.

The worst case for a 64-point FFT occurs when radiation
affects a thread in its first iteration. In such scenario, the cor-
ruption of the thread input or a thread functional interruption
produces 64 output errors in the FFT. Meanwhile, if a single
error is produced in a thread in its first iteration, 32 errors are
expected in its output. This amount of errors is a result of the
following 5 iterations doubling the amount of corrupted values
in the FFT, as it executes for 6 iterations in total, and 2° = 32.
In this sense, having between 32 and 64 errors in the output
vector is very improbable. In fact, as it is very unlikely to have
two neutrons corrupting the GPU in the same FFT execution,
the only way of having more than 32 errors is to have a thread
in the first iteration to generate two or more errors that spread
to 64 errors in the output.

Finally, only few executions experienced more than 64 er-
rors in the output. This situation occurred when radiation led

—o— Real part

Failures in time [10%]

OFRPNWPAUIUITONOOWOO

N 9 A

N

.

PR A D 2P R

--m--Imaginary part

gf’\ O e & &

S 00 9P S

W ;

Multiple errors

Fig. 3. FFT real and imaginary parts multiple output errors FIT. Consecutive distributions that were never experimentally observed are grouped in the picture

(for instance, 9 to 11 errors, and 20 to 21). Statistical error is limited to 5%.

an SM to experience a functional interruption preventing a
whole warp of 32 threads or even a whole block of 512 threads
from completing their execution. This interruption ends up
affecting the outputs of more than one 64-point FFT. Those
errors will then spread and a huge amount of errors are
expected at the output.

B. Sensitivity with error-correction code

NVIDIA latest GPUs, including the irradiated C2050s, are
provided with an ECC mechanism that can be activated or
deactivated by the user. The ECC is applied to the cache and
to the internal memory of the SM, and it is able to correct
single error and detect double errors [15].

When ECC is turned ON, 12.5% of the device memory
becomes unavailable to the user. In addition, depending on
the algorithm and device, ECC typically reduces the GPU
performance in the range of 20 — 30% [15]. However, in the
case of the tested FFT algorithm, a performance overhead
of 50% was measured in our experiments, as reported in
Table IV. In this sense, the computational and area overhead
introduced by ECC are far from being negligible, and may
compromise the GPU efficiency. Unfortunately, no detailed
information about the implementation of the ECC mechanism
is currently available. The analysis of the ECC efficiency
and drawbacks is then limited to what was experimentally
observed.

Table IV shows the average execution time of 512 x 512 64-
point FFTs with and without the use of ECC. It also includes
the measured cross sections under the neutron beam discussed
in Sec. II-A. Data for the FFT without ECC row comes from
the results presented in Sec. III-A.

When ECC was enabled on the irradiated GPU, the observed
number of output errors was reduced by about one order
of magnitude. In particular, no single output error occurred,
while multiple errors patterns formed of 64 or more corrupted
locations were still observed. Those errors are generated
by SM functional interruptions and scheduler failures that
prevent threads from completing execution, which are not
detectable by the ECC mechanism. The proposed software-

TABLE IV
FFT EXECUTION TIMES, CROSS SECTIONS, AND FITS MEASURED WITH
AND WITHOUT THE USE OF ECC.

Execution time Cross section (cm?2) FIT
FFT w/o ECC 106 ms 3.60 x 1076 +£4% 4.80 x 10*
FFT w/ ECC 159 ms 5.33x 1077+ 6% 6.92 x 10°

based hardening strategies presented in the next section are
actually capable of dealing even with this kind of failures.

IV. HARDENING STRATEGIES FOR N-POINT FFTs

This section discusses the proposed strategies to improve the
error detection and correction capabilities of N-point FFTs.
We start by discussing the use of Algorithm-Based Fault
Tolerance (ABFT) [6], followed by its experimental validation
using a neutron beam. An extension of the algorithm to reduce
the recomputation time of the FFTs is discussed in the last
subsection.

A. Algorithm-Based Fault Tolerance

In order to reduce the number of radiation-induced output
errors, we devised ABFT-FFT, an ABFT technique for FFT
algorithms. The proposed hardening strategy derives from the
fault-free N-point FFT network of N processors presented
by Jou and Abraham [7], which is based on the superposition
principle of linear systems and the circular shift property of the
FFT. The basic idea is to detect errors arising in any processor
or connection with the use of input coding and a checksum
comparison at the output.

We implement the fault-free network in software in the GPU
viewing each thread in the GPU as a network. Each CUDA
core in a GPU can be considered as an isolated unit such that
a radiation-induced event in one CUDA core only corrupts
the thread currently assigned to it. Threads that follow the
corrupted one or threads assigned to computing units near the
faulty one will not be affected. This assumption maintains
the same set of premises presented by Jou and Abraham [7],

I —
oS i (J
Xe X2 + .’

input: 64 complex numbers

v\ iteration 1 iteration 2

input coding

..............

o

original 64-points FFT AN

.............

(= (> 63))
~ 2+W'63! 7
+(2+w*?) }

(=)
> >0

output decoding

output: 64-points FFT

| R\ B\ N B\ ¥

R e e n e e L

iteration 6 /
,/

-

{ +

...........................

Fig. 4. FFT hardening scheme. The 64 complex elements of the input are coded, then the 64-point FFT is performed with the original algorithm, and its
output is decoded. Errors are detected comparing the checksum generated summing the output values with Xo X N.

and hence the same mathematical demonstration ensuring the
correctness and efficacy of the approach can be applied.

A few code modifications are required to implement the
ABFT mechanism. They focus on modifying the input and
output data, and do not require any changes to the core
of the FFT algorithm. Considering the FFT algorithm as a
network of butterfly modules (as seen in Fig. 2), its ABFT
version can be seen as a network with some pre- and post-
processing, as illustrated in Fig. 4. Algorithm 1 provides a
more comprehensive view of the GPU implementation of
ABFT-FFT.

Algorithm 1: ABFT-FFT: parallel algorithm-based fault-
tolerant 1D-FFT.
Input: complex matrix X, thread id tid, FFT size N
Output: complex matrix Y, vector vl, vector v2
110
2 vl[tid] < ERR_VAL; v2[tid] +— ERR_VAL
3 while
i <ITER_LIM Awl[tid] # COR_VAL A v2[tid] #
COR_V AL do
4 X' + input_coding(X, tid)
5 for j < 1 to log N do
6 L X' «+ fft_iteration(X', j, tid)

7 Y « output_decoding(X', tid)

8 if error_detection(X,Y,tid) = false then

/+ No errors were detected */
9 vl[tid] + COR_V AL
10 v2[tid) + COR_V AL

11 1+ 1+1

—
(5]

return Y, v1,v2

In this parallel algorithm, each thread on the GPU computes
one N-point FFT. For instance, in the case of the tested
version, 512 x 512 threads are instantiated, and each computes
one 64-point FFT. A thread takes its input sequence of N

complex elements X and encodes it, resulting in the sequence
X'. This process is represented in line 4 and based on Eq. 1.
The original vector X is kept unmodified for the situation
where the FFT has to be recomputed due to any internal error
detected by our mechanism.

X'(i) = {

The FFT is then evaluated using the coded values X’ as
input, as illustrated in lines 5 and 6 of Algorithm 1. When
calculation is complete, the output X’ is decoded through
Eq. 2,

2X (i) + X (i + 1)
2X (i) + X(0)

0<i<N-1
i=N-1 W

2+11u;,k X'(k)

Y(k):{ 0<kE<N |)
where w;,k is the N** root of the unity. The N decoded
results are then summed, generating a checksum. As formally
demonstrated by Jou and Abraham [7], this encoding and
decoding scheme gives each output a nontrivial weighted
contribution to the checksum such that any error will cause a
detectable error syndrome. After computation, the checksum
is compared to N x X (0). Any mismatch will identify the FFT
as faulty, and will signalize the necessity of a recomputation.

In addition to coding and decoding data, our parallel al-
gorithm includes two vectors vl and v2. Their sizes are
equal to the number of FFTs being computed (or the number
of threads), which is much smaller than the size of matrix
X. The additional vectors are employed to signalize any
FFT recomputations needed, and to detect any failures from
SM functional interruptions and scheduler failures that could
prevent threads from completing their execution. We employ
two vectors instead of one for redundancy. Both vectors are
initialized with an error value ERR_V AL, and set to a correct
value COR_V AL when no errors are detected in the FFT.
These vectors are later evaluated in the CPU to check if
any cell differs from the correct value. If that is the case,
it means that a thread was not able to successfully finish its

computations. We never observed in any of our experiments a
difference in the value of the two vectors.

Lastly, an iteration limit ITER_LIM is used to choose
the maximum number of FFT recomputations allowed. This
mechanism is applied to guarantee that the kernel will finish
even if a permanent failure happens in the GPU, or even if
the input data gets corrupted. Still, no FFT was recomputed
more than once in our experiments.

Our Algorithm-Based Fault Tolerance mechanism increases
the GPU memory usage with the addition of the two vectors v1
and v2, and the encoded matrix X’. When compared to the use
of ECC, our algorithm provides a smaller memory overhead if
the input matrix is smaller than 12.5% of the memory available
in the GPU. Even if this is not the case, our mechanism
does not degrade memory performance as ECC does (see
Sec. III-B).

Although performance degradation is expected when com-
paring our ABFT-FFT to the original FFT due to the inser-
tion of more processing, ABFT-FFT keeps the computational
complexity of the original algorithm, which is O(nlogn)
for a n-point FFT. This complexity is maintained because
the functions for input coding, output decoding, and error
detection are O(n).

B. ABFT-FFT Neutron Sensitivity

Table V reports the experimentally measured cross section
and FIT for the ABFT-FFT algorithm under the neutron beam
discussed in Sec. II-A. It also presents the cross section and
FIT of the original FFT algorithm with and without the use of
NVIDIA ECC for comparison. As it can be seen in Table V,
the ABFT-FFT algorithm provides a two orders of magnitude
improvement over the original FFT without ECC, and a one
order of magnitude improvement over the use of ECC.

TABLE V
512 x 512 64-POINT FFT AND ABFT-FFT CROSS SECTION AND FIT AT
NYC.

Cross section (cm?2) FIT
FFT w/o ECC 3.69 x 1076 +4% 4.80 x 10%
FFT w/ ECC 5.33x 1077 £ 6% 6.92 x 103
ABFT-FFT 6.56 x 1078 £4% 8.52 x 102

Besides detecting and correcting failures in the GPU when
possible, ABFT-FFT also detects scheduler failures that pre-
vented threads from completing their execution. When sched-
uler failures happen, the output vector does not contain the
output values from the FFT. By using two verification vectors,
as described in Sec. IV-A, ABFT-FFT is able to diagnose any
interrupted FFTs, which leads to a better failure coverage.

Table VI shows the execution time of ABFT-FFT running
on the GPU, and compares it to the execution time of the
original FFT with and without ECC. As it can be noticed, the
additional coding, decoding, and verification steps incur in a
18% overhead in execution time. This overhead represents an
increase in execution time almost two-thirds smaller than the
use of ECC.

TABLE VI
512 x 512 64-POINT FFT AND ABFT-FFT EXECUTION TIMES.

Execution time Overhead
FFT w/o ECC 106 ms —
FFT w/ ECC 159 ms 50%
ABFT-FFT 125 ms 18%
ABFT-FFT w/ errors 125 ms 18%

Besides comparing the performance of the ABFT-FFT
algorithm without radiation failures, we also evaluated its
performance when detecting and correcting failures. In order to
inject errors during the execution of the ABFT-FFT, additional
code was inserted in the GPU which modifies data stored
in the output register of other threads using probabilities of
injection that derive directly from the experimental results
reported in the previous section. As reported in Table VI, the
recomputation of an FFT due to errors does not increase the
total execution time of ABFT-FFT. As 512 x 512 64-point 1D-
FFTs are being computed in the GPU at the same time, the
overhead of recomputing just one 1D-FFT is hidden in the
execution time of the concurrent threads. The same happens
when forcing errors in all threads in a given block. Still, this
recomputation time could become a problem with larger N-
point FFTs, as the execution time of a single FFT increases.

C. Extended ABFT-FFT

As stated previously, when an error occurs in one iteration,
it is likely to spread to the following ones. Therefore, a
prompt detection of the error would help to prevent error
propagation. The ABFT-FFT hardening strategy has the ability
of detecting all the experimentally observed error patterns, but
requires recomputation in order to provide the correct output,
introducing a not negligible overhead. It is worth noting that
FFTs larger than the tested ones are typically executed on
GPUs.

To better illustrate the recomputation overhead of larger
FFTs, Table VII reports the execution time of a single FFT
(instead of 512 x 512 FFTs as before) of various dimensions,
both for the unhardened version and for the proposed ABFT-
FFT algorithm. The performance overhead of the proposed
technique with respect to the unhardened version ranges
from 60% to 18%, and decreases with FFT size. As expected,
the recomputation of the whole FFT due to the injected errors
nearly doubles the execution time of the ABFT-FFT. The
increase in total execution time when compared to the original
FFT varies from 4.5 times for a 64-point FFT, to 2.6 times
for a 4096-point FFT.

To reduce the recomputation overhead, we devised an
extended ABFT-FFT strategy, named Ext ABFT-FFT. Its main
idea is that the ABFT algorithm proposed in Sec. IV-A can
be repeatedly applied to small portions of the computation,
leading to prompt error detection and reduced recomputation
costs. Smaller FFTs can be computed by dividing the original
problem into small sub-problems. This solution is based on
a well-known property of FFTs: a N-point FFT can be
decomposed into N1 FFTs on N2-point and N2 FFTs on

TABLE VII
UNHARDENED 1D-FFT AND ABFT-FFT EXECUTION TIMES (IN MS) AS A
FUNCTION OF FFT DIMENSION.

64 256 1024 2048 4096
FFT 0.15 0.67 3.14 6.76 14.53
ABFT-FFT 0.24 099 4.27 8.85 19.41
ABFT-FFT w/ injected errors 0.67 1.99 8.64 17.95 37.38

N1-point, where N1 x N2 = N. In this sense, we can still
use the ABFT-FFT strategy but calculating X’ (see Eq. 1)
on the smaller FFTs that compose the sub-problems. Each
sub-problem can be solved either recursively applying the
Ext ABFT-FFT algorithm or directly using ABFT-FFT.

The main advantage of such division is that errors can
be detected on a sub-problem, and only the corrupted sub-
problem needs to be recomputed in the event of an error. When
all sub-problems have been correctly computed, the extended
ABFT-FFT strategy is completed by decoding the FFT using
Eq. 2 and performing a final error verification.

The Ext ABFT-FFT algorithm is then modular, as its formal
correctness is independent on the size of the sub-problems.
The smaller the sub-problems are, the more promptly errors
will be detected, and the lower the recomputation overhead
will be. However, checksums have to be calculated for each
sub-problem, so the higher the number of sub-problems, the
higher the overhead for checksums will be. A user could
select the best trade-off between the overhead required for
recomputation in a coarse-grained version and the overhead
introduced in the checksum evaluation and error detection on
a fine-grained version.

It is worth noting that Ext ABFT-FFT recomputes the whole
FFT only if an error occurs while preparing the sub-problem
inputs or while computing Eq. 2, which is very unlikely
to happen. In fact, there are only O(N) critical operations
that can induce the whole recomputation. In contrast, in the
standard ABFT-FFT all the O(N log ') operations can induce
the whole recomputation.

V. CONCLUSIONS

The Fast Fourier Transform is an algorithm suited to
GPUs that performs important computations for many different
applications. Unfortunately, its execution in GPUs is very
prone to experience neutron-induced errors. As shown by our
experimental evaluations, the characteristic data dependency of
the algorithm lets errors spread, which generates a significant
amount of multiple output errors.

Although the available ECC provides a way to reduce failure
rates, it reduces both the memory available for the application
and its performance. Additionally, it does not guarantee a high
reliability, as scheduler failures and functional interruptions
remain undetected.

We propose an alternative to ECC using the Algorithm-
Based Fault Tolerance technique based on a known fault-free
FFT network. Our technique proved to be able to improve
failure rates by one order of magnitude over the use of ECC,

and two orders of magnitude over the original FFT algorithm.
These improvements were achieved with an 18% execution
time overhead, which is significantly smaller than the 50%
overhead from ECC.

We also discuss an extension of the ABFT-FFT algorithm
using modular error detection and verification, which could
reduce the recomputation time of larger N-point FFTs, but
would require the user to decide the best trade-off between
checksum calculation and recomputation overhead. As future
work, we plan to evaluate Ext ABFT-FFT under radiation, and
to provide automatic ways to find the best trade-off.

REFERENCES

[1] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips,
“GPU Computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879—
899, 2008.

[2] J. Kriiger and R. Westermann, “Linear algebra operators for GPU
implementation of numerical algorithms,” in ACM SIGGRAPH 2003
Papers, ser. SIGGRAPH °03. New York, NY, USA: ACM, 2003,
pp. 908-916. [Online]. Available: http://doi.acm.org/10.1145/1201775.
882363

[3] J. Dongarra, H. Meuer, and E. Strohmaier, “TOP500 Supercomputer
Sites: November 2013,” 2013. [Online]. Available: http://www.top500.
org

[4] P. Rech, C. Aguiar, R. Ferreira, M. Silvestri, A. Griffoni, C. Frost, and
L. Carro, “Neutron-Induced Soft Errors in Graphic Processing Units,” in
Radiation Effects Data Workshop (REDW), 2012 IEEE, 2012, pp. 1-6.

[5] P. Rech, C. Aguiar, C. Frost, and L. Carro, “An Efficient and Experi-
mentally Tuned Software-Based Hardening Strategy for Matrix Multi-
plication on GPUs,” Nuclear Science, IEEE Transactions on, vol. 60,
no. 4, pp. 2797-2804, 2013.

[6] M. D. Lerner, “Algorithm Based Fault Tolerance in Massively Parallel
Systems,” Department of Computer Science, Columbia University, Tech.
Rep., 1988.

[7] J.-Y. Jou and J. Abraham, “Fault-tolerant FFT networks,” Computers,
IEEE Transactions on, vol. 37, no. 5, pp. 548-561, 1988.

[8] M. Violante, L. Sterpone, A. Manuzzato, S. Gerardin, P. Rech,
M. Bagatin, A. Paccagnella, C. Andreani, G. Gorini, A. Pietropaolo,
G. Cardarilli, S. Pontarelli, and C. Frost, “A New Hardware/Software
Platform and a New 1/E Neutron Source for Soft Error Studies: Testing
FPGAs at the ISIS Facility,” Nuclear Science, IEEE Transactions on,
vol. 54, no. 4, pp. 11841189, 2007.

[91 “NVIDIA Tesla C2050/C2075 GPU Datasheet,” 2010.

[10] 1. Haque and V. Pande, “Hard Data on Soft Errors: A Large-Scale

Assessment of Real-World Error Rates in GPGPU,” in Cluster, Cloud

and Grid Computing (CCGrid), 2010 10th IEEE/ACM International

Conference on, 2010, pp. 691-696.

J. W. Sheaffer, D. P. Luebke, and K. Skadron, “A hardware

redundancy and recovery mechanism for reliable scientific

computation on graphics processors,” in Proceedings of the
22nd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics
hardware, ser. GH ’07. Aire-la-Ville, Switzerland, Switzerland:

Eurographics Association, 2007, pp. 55-64. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1280094.1280104

D. Bailey, Barsck, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, S. Fineberg, P. O. Frederickson, T. A.

Lasinski, R. S. Schreiber, H. Simon, V. Venkatakrishnan, and

S. Weeratunga, “The NAS parallel benchmarks,” NASA Ames Research

Center, RNR Technical Report RNR-94-007, 1994. [Online]. Available:

http://hpc.sagepub.com/cgi/content/abstract/5/3/63

T. G. Stockham, Jr., “High-speed convolution and correlation,” in

Proceedings of the April 26-28, 1966, Spring joint computer conference,

ser. AFIPS *66 (Spring). New York, NY, USA: ACM, 1966, pp. 229—

233. [Online]. Available: http://doi.acm.org/10.1145/1464182.1464209

JEDEC, “Measurement and Reporting of Alpha Particle and Terrestrial

Cosmic Ray-Induced Soft Errors in Semiconductor Devices,” JEDEC

Standard, Tech. Rep. JESD89A, 2006.

NVIDIA, “Tesla C2050 Performance Benchmarks.”

(11]

[12]

[13]

(14]

[15]

