
THE INPUT-OUTPUT COMPLEXITY
OF TRIANGLE ENUMERATION

Rasmus Pagh
IT	University	of	Copenhagen
pagh@itu.dk

Francesco	Silvestri
University	of	Padova
silvest1@dei.unipd.it

Cache-oblivious	Algorithm
1. If	there	are	O(1) edges,	enumerate	all	triangles	using	

a	naïve	approach.
2. Otherwise:

I. Use	the	cache-aware	algorithm	using	c=2
colors.

II. Solve	recursively	the	8	coloring	problems	(each	
of	about	1/4	size).

The	algorithm	has	the	same	I/O	complexity	of	the	cache-

aware	algorithm:	XXXXXXXX I/Os	in	expectation.

Acknowledgments
This	work	was	supported	by	the	Danish	
National	Research	Foundation	under	
the	Sapere Aude	program,	by	MIUR	of	
Italy	under	project	AMANDA,	and	by	
the	University	of	Padova under	project	
CPDA121378.

Lower	bound
• Assumption:	information	on	edges/vertices	are	indivisible:	that	is,	for	enumerating	a	triangle	

we	need	all	its	edges	in	memory	at	the	same	time.
• Best-case	lower	bound:	applies	to	each	input	with	T triangles	and	every	possible	algorithm	

execution.
• Main	lower	bound:	the	enumeration	of	T distinct	triangles	requires																					I/Os.
• The	hardest	graph	 is	the							-clique:																			I/Os are	required.

Sketch	of	the	proof
• Let	A be	the	execution	of	an	algorithm	enumerating	T triangles	with	M memory
• Let	A’ be	the	simulation	of	A	on	a	memory	of	size	2M so	that
• A’ can	be	decomposed	in	rounds
• Each	round	starts	with M/B inputs	and	ends	with	M/B outputs
• Same	asymptotic	I/O	complexity	as	A

• The	simulation	relies	on	the	following	ideas:
• Half	of	the	memory	simulates	the	memory	used	by	A
• Half	of	the	memory	is	used	as	buffer	for	I/Os

• In	each	round,	there	are	M edges	in	memory:
• triangles	can	be	enumerated	with	M edges	[Aftrati et	al.	2013];
• In	each	round,																		new	triangles	can	be	enumerated;
• rounds	are	required.

• Since	each	round	requires	M/B I/Os the	lower	bound	follows

Sales	person Brand

H.	Simpson DUFF

W.	Coyote ACME

W.	Coyote DUFF

Sales	person Product

H.	Simpson Beer

W.	Coyote Beer

W.	Coyote TNT

Product Brand

Beer DUFF

TNT ACME

INTRODUCTION

Enumerating	vs	listing
• Almost	no	difference	in	RAM	model:
• cost	of	generating	a	triangle	≈	cost	of	storing	a	triangle.

• Huge	difference	in	the	I/O	model:
• Memory	may	not	contain	all	triangles	and																	I/Os	

are	required	for	storing	T triangles.
• Storing	all	triangles	in	a								-clique	requires																			

I/Os.
• The	cost	of	storing	triangles	may	be	larger	than	the	cost	

of	generating	triangles.	Our	work	shows	that	all	triangles	
can	be	generated	in	XXXXXXXXXXX I/Os.				

• In	many	cases,	we	don’t	need	to	store	triangles:
• In	database	systems,	pipelining	of	operations	may	not	

require	to	store	intermediate	results.
• Other	applications	in	which	enumerating	all	triangles	is	a	

preprocessing	step	may	not	require	to	store	all	triangles.

Ω T / B()

Ω E E / B()E

()()MBEE /Q

Some	problems	with	triangles
• Counting	triangles:	compute	the	(approximate)	
number	of	triangles	in	a	graph.
• Listing	triangles:	generate	and	store	all	
triangles	(i.e.	,	store	on	disk).
• Enumerating	triangles:	generate	all	triangles	in	
a	graph,	but	do	not	store	them.

The	problem
• Enumerate	all	triangles	in	a	graph.

Motivation
• Many	algorithms	for	processing	graphs	often	need	to	

consider	small	subgraphs such	as	triangles.	
• Examples:	studying	social	processes	in	networks,	community	

detection,	solving	systems	of	geometric	constraints.	
• Another	example	comes	from	database	theory:		A	database	

is	created	to	store	information	on	sales	people,	and	on	the	
products	types	and	brands	they	sell.	We	use	three	tables	for	
guaranteeing	the	5th normal	form.

Homer

Coyote

Duff

ACME

beer

TNT

The	joint	of	the	three	tables	reduces	to	find	all	triangles	in	a	
graph:	just	view	each	table	as	a	bipartite	graph	with	vertices	
corresponding	to	attribute	values.

The	I/O	model
• Input	graphs	are	usually	big	and	do	not	fit	in	internal	

memory.
• Use	the	I/O	model	[Vitter	2008]	(also	known	as	external	

memory	model):
• Consists	of	two	memory	levels.
• A	(potentially)	unbounded	slow	memory,	named	

external	memory.
• A	fast	memory	of	size	M (in	words),	named	internal	

memory.
• Data	are	moved	between	the	two	levels	in	blocks	of	B

words.
• The	CPU	can	only	read	and	write	data	in	the	internal	

memory.
• Complexity	of	an	algorithm:	number	of	I/O	operations.

Cache-oblivious	algorithm
• A	cache-oblivious	algorithm	is	an	algorithm	that	does	not	use	

memory	parameters	M and	B [Frigo et	al.,	1999].	Blocks	are	
moved	between	the	two	memory	levels	by	an	automatic	
replacement	policy	(e.g.,	OPT,	LRU).

CPU

Fast	memory	
of	size	M

Block	transfer	
size	B

Unbounded	
slow	memory

Previous	work
• All	papers	target	the	listing	problem	

• [Dementiev,	PhD	2007]																																		I/Os

• [Menegola,	TR	2010]																						I/Os

• [Hu et	al.,	SIGMOD	2013]																					I/Os

• Provide	worst-case	lower	bound																						I/Os

O
E E logM /B E / B()

B

!

"
##

$

%
&&

O E + E E
B

!

"
#

$

%
&

O E 2

BM
+
T
B

!

"
#

$

%
&

Ω
E E
B M

+
T
B

"

#
$

%

&
'

Our	results
• Optimal	cache-aware	algorithm	requiring	 XXXXXX

I/Os in	expectation.

• Optimal	cache-oblivious	algorithm	requiring	expected

I/Os in	expectation.

• Derandomization of	the	cache-aware	algorithm	

without	asymptotically	increasing	the	I/O	complexity.

• Best-case	lower	bound:	the	enumeration	of	T

triangles	requires																					I/Os.

÷÷
ø

ö
çç
è

æ

MB
EEO

÷
ø
ö

ç
è
æW

MB
T

÷÷
ø

ö
çç
è

æ

MB
EEO

Cache-aware	algorithm
Preliminaries
• Vertices	are	ordered	(e.g.	by	ID)
• A	triangle	(v1, v2, v3) is	(c1, c2, c3)-colored	

if:	
• v1 < v2 < v3

• v1 has	color	c1 ,	v2 has	color	c2 ,	v3 has	
color	c3

• Ec1, c2:	edges	with	colors	c1, c2 ;	Ec1, c3:	
edges	with	colors	c1, c3;	Ec2, c3:	edges	with	
colors	c2, c3,

I/O	complexity

• For	each	(c1, c2, c3), we	need:	Ec1, c2 , Ec1,

c3 , Ec2, c3 Each	set	has	expected	size	M

• Expected	subproblem size:	

• Expected	I/O	of	a	subproblem

• Number	of	subproblems

• Total	expected I/O:

c3 = E
M

E
M

E Ec1,c2
+Ec1,c3

+Ec2 ,c3
!" #$= 3M

O
Ec1,c2

+Ec1,c3
+Ec2 ,c3()

2

BM

!

"

#
#

$

%

&
&
=O M / B()

O E
B

E
M

!

"
#

$

%
&

The	cache-aware	algorithm
1. Randomly	color	each	vertex	independently	and	uniformly	with																 X		 colors

• A	triangle	can	be	colored	in	c3 ways
• Vertexes	can	be	colored	using	a	4-wise	independent	hash	function

2. For	each	color	triplet	(c1, c2, c3),	with	0 ≤ c1, c2, c3 < c
I. Consider	edge	sets	compatible	with	the	triplet	(c1, c2, c3),	that	is	the	sets	Ec1, c2,

Ec1, c3, Ec2, c3.
II. Using	[Hu et	al.,	2013],	enumerate	all	(c1, c2, c3)-colored	triangles	in	the	edge	set	

Ec1, c2 U Ec1, c3 U Ec2, c3.	

MEc /=

Example with	3	colors

0

5

3

10

16

111

7 9

13

14

15

12

2

8

6

4

0

5

3

10

16

111

7 9

13

14

15

12

2

8

6

4

0

5

3

10

16

111

7 9

13

14

15

12

2

8

6

4

(red,	blue,	green)

(red,	blue,	red)

0

5

3

10

16

111

7 9

13

14

15

12

2

8

6

4

(red,	green,	blue)

(red,	green,	green)

0

5

3

10

16

111

7 9

13

14

15

12

2

8

6

4

0

5

3

10

16

111

7 9

13

14

15

12

2

8

6

4

Vertex
coloring
with	c=3

For	any triplet (c1, c2, c3),	find	all	(c1, c2, c3)-
colored	triangles	using	[Hu et	al.,	2013] (i.e,	
27	subproblems)

…

Derandomization
• The	cache-aware	algorithm	can	be	derandomized,	

without	increasing	the	I/O	complexity,	as	follows.
• We	use	a	small	family	of	4-wise	independent	

functions	[Alon et	al.,	1992]
• We	fix	the	color	of	each	vertex	in	log (E/M)

iterations:
• In	each	iteration,	one	bit	of	the	coloring	is	fixed.

• In	each	iteration,	we	compute	how	well	each	
function	balances	subproblems:
• According	to	some	“cost”	function;
• It	can	be	proved	that	a	“good”	function	exists	in	

the	family.

References
[Aftrati et	al.	2013]	F.	N.	Afrati,	A.	D.	Sarma,	S.	Salihoglu,	
J.	D.	Ullman.	Upper	and	lower	bounds	on	the	cost	of	a	
Map-Reduce	computation.	Proc.	VLDB	Endow.,	
6(4):277–288,	2013.

[Alon et	al.,	1992]	N.	Alon,	O.	Goldreich,	J.	Hastad,	R.	
Peralta.	Simple	construction	of	almost	k-wise	
independent	random	variables.	Random	Struct.	
Algorithms,	3(3):289–304,	1992.

[Dementiev,	2007]	R.	Dementiev.	Algorithm	engineering	
for	large	data	sets:	hardware,	software,	algorithms.	PhD	
thesis,	Saarland	University,	2007.

[Frigo et	al.,	1999]	M.	Frigo,	C.	E.	Leiserson,	H.	Prokop,	S.	
Ramachandran.	Cache-oblivious	algorithms.	ACM	
Transactions	on	Algorithms,	8(1):4,	2012.

[Hu,	et	al.,	2013]	X.	Hu,	Y.	Tao,		C.	W		Chung.	Massive	
graph	triangulation.	In	Proc.	SIGMOD,	325–336.	ACM,	
2013.	

[Menegola,	2010]	B.	Menegola.	An	external	memory	
algorithm	for	listing	triangles.	Technical	report,	Federal	
University	of	Rio	Grande	Sul,	2010.

[Vitter	2008]	J.S.	Vitter.	Algorithms	and	Data	Structures	
for	External	Memory.	Now	Publishers,	2008.

Abstract
Our focus is on determining the input/output (I/O)
complexity of triangle enumeration. Let E be the number
of edges, M < E the size of internal memory, and B the
block size. We improve the I/O complexity to XXxXXXXXXXX
expected I/Os, which improves the previous bounds by a
factor XXXXXXXXXXXX . We give cache-aware and cache-
oblivious algorithms. We also show that they are I/O
optimal by proving that any algorithm enumerating T
distinct triangles must always use XXXXXX.XXXX I/Os.

())/(5.1 MBEO

),/min(MME

())/(MBTW

÷÷
ø

ö
çç
è

æ

M
E

B
EO

÷
ø
ö

ç
è
æW

MB
T

E ÷÷
ø

ö
çç
è

æ
W

M
E

B
E

()MMO

Round	0

M/B input	
blocks

M/B output	
blocks

new	
triangles
()MMO

Round	1

M/B input	
blocks

M/B output	
blocks

new	
triangles
()MMO

Round	2

M/B input	
blocks

M/B output	
blocks

new	
triangles
()MMO

Round	K

M/B input	
blocks

M/B output	
blocks

new	
triangles
()MMO

…

()MMO

())/(MMTW

ACM		SIGMOD/PODS	Conference,	June 22-27,	
Snowbird,	Utah,	USA.

