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ﬂbstract \

- Our focus is on determining the input/output (I/0)
T Uni it complexity of triangle enumeration. Let E be the number
r!fliferﬂg?/ of edges, M < E the size of internal memory, and B the

block size. We improve the I/0 complexity to O(El'5 /(BNM ))
expected |/Os, which improves the previous bounds by a
factor min(~E/M ,NM). We give cache-aware and cache-
oblivious algorithms. We also show that they are 1/O

optimal by proving that any algorithm enumerating T
WStinct triangles must always use Q(T /(B\/H )) I/0Os. j

INTRODUCTION
The problem

* Enumerate all triangles in a graph.

6ome problems with triangles \

* Counting triangles: compute the (approximate)
number of triangles in a graph.

* Listing triangles: generate and store all
triangles (i.e., store on disk).

* Enumerating triangles: generate all triangles in
Qgraph, but do not store them. /

Enumerating vs listing

e Almost no difference in RAM model:

» cost of generating a triangle = cost of storing a triangle.

* Huge difference in the I/0 model:

* Memory may not contain all triangles and Q(T/B) |/Os

are required for storing 7 triangles.

 Storing all triangles in a /g -clique requires Q(E\/E/B)

|/Os.

* The cost of storing triangles may be larger than the cost
of generating triangles. Our work shows that all triangles

can be generated in ©(EVE /(BvM )) 1/0s.

* |In many cases, we don’t need to store triangles:

* In database systems, pipelining of operations may not

require to store intermediate results.

Motivation The 1/0O model
* Many algorithms for processing graphs often need to * Input graphs are usually big and do not fit in internal
consider small subgraphs such as triangles. memory.

* Examples: studying social processes in networks, community ¢ Use the I/O model [Vitter 2008] (also known as external

detection, solving systems of geometric constraints. memory model):
* Another example comes from database theory: A database e Consists of two memory levels.
is created to store information on sales people, and on the . A (potentially) unbounded slow memory, named

products types and brands they sell. We use three tables for

guaranteeing the 5t normal form.

external memory.

e A fast memory of size M (in words), named internal
memory.

Sales person | product Sales person | Brand * Data are moved between the two levels in blocks of B
Product | Brand WOFdS.
H. Simpson | Beer H. Simpson DUFF . . .
Beer DUFE  The CPU can only read and write data in the internal
W. Coyote Beer W. Coyote ACME memaory.
TNT ACME _ ) _
Complexity of an algorithm: number of I/O operations.
W. Coyote TNT W. Coyote DUFF

The joint of the three tables reduces to find all triangles in a
graph: just view each table as a bipartite graph with vertices @

corresponding to attribute values.

e Other applications in which enumerating all triangles is a
preprocessing step may not require to store all triangles.

beer

TNT

o
Unbounded
sowmemory  INNMMMNEEEEEEREER

Fast memory J Block transfer
of size M size B

Cache-oblivious algorithm

* A cache-oblivious algorithm is an algorithm that does not use
memory parameters M and B [Frigo et al., 1999]. Blocks are
moved between the two memory levels by an automatic
replacement policy (e.g., OPT, LRU).

Previous work

* All papers target the listing problem

. [Dementiev, PhD 2007] of £YE!%us(E/B)| | /0
 [Menegola, TR 2010] 0E+¥ 1/Os
e [Huetal., SIGMOD 2013] o| £ +Z) /Os
BM B
* Provide worst-case lower bound @ @+Z |/Os

BJM B

Our results
EVE
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Optimal cache-aware algorithm requiring (—B\/ﬁ)
|/Os in expectation.

* Optimal cache-oblivious algorithm requiring O @

P 8 uining A 3 s

|/Os in expectation.

* Derandomization of the cache-aware algorithm

without asymptotically increasing the 1I/O complexity.

Cache-aware algorithm

Preliminaries

Vertices are ordered (e.g. by ID)

A triangle (v, v,, v;) is (¢,, ¢,, ¢;)-colored

if:

* Vv, <V, <V,

* v, hascolorc,, v, has color c,, v; has

color c;

c

edges with colors ¢, c;; E

colors c,, c;,

1/O complexity

c

E.; .. edgeswithcolorsc;, ¢,; E,; .3
5 o3 edges with

Foreach (¢, ¢, ¢;),weneed: £, ,, E_;

c3’E

C

Expected subproblem size: E[E +E
Expected 1/0 of a subproblem

sk E
Number of subproblems ¢ —M\/;

2 3 Each set has expected size M

1,03

+EC2,63] =

O(QM+E

The cache-aware algorithm

1. Randomly color each vertex independently and uniformly with ¢=+vE/M colors

* Atriangle can be colored in ¢? ways

* Vertexes can be colored using a 4-wise independent hash function

2. For each color triplet (c;, c,, ¢3), with0<c,, ¢, c;<c

Consider edge sets compatible with the triplet (c¢;, ¢,, ¢3), thatis the sets £ ; .,

Ecl, c3 ECZ, c3:
Il.  Using [Hu et al., 2013], enumerate all (c¢,, c,, c;)-colored triangles in the edge set

E

”
<

1, c2 U Ec], c3 U EcZ, c3*

@nple with 3 colors \

(red, blue, green) (red, green, blue)

3

Vertex

with c=3

, )
« Best-case lower bound: the enumeration of T . Total expected [/0: O E\/E B )/cj) S
triangles requires Q(Lj |/OS. B\M colore:; triznglesl,usizag [Iilu etal, 26132i(i.e,
5 B\/ﬁ 27 subproblems)
Cache-oblivious Algorithm Lower bound Acknowledgments

1. If there are O(1) edges, enumerate all triangles using
a naive approach.

2. Otherwise:

|.  Use the cache-aware algorithm using c=2
colors.

Il.  Solve recursively the 8 coloring problems (each
of about 1/4 size).

The algorithm has the same 1/O complexity of the cache-

aware algorithm: O[E EJ I/Os in expectation.
B

M

Derandomization

* The cache-aware algorithm can be derandomized,
without increasing the I/O complexity, as follows.

e  We use a small family of 4-wise independent
functions [Alon et al., 1992]

*  We fix the color of each vertex in log (E/M)
iterations:

* Ineach iteration, one bit of the coloring is fixed.

* In each iteration, we compute how well each
function balances subproblems:

 According to some “cost” function;

* |t can be proved that a “good” function exists in
the family.

Assumption: information on edges/vertices are indivisible: that is, for enumerating a triangle This work was supported by the Danish

we need all its edges in memory at the same time.

Best-case lower bound: applies to each input with 7 triangles and every possible algorithm

execution.

Main lower bound: the enumeration of T distinct triangles requires Q(m) |/Os. CPDA121378.
The hardest graph is the J/E-clique: Q[%\/%JVOS are required.

Sketch of the proof

Let A be the execution of an algorithm enumerating T triangles with A memory
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