Cache-oblivious algorithm

- A cache-oblivious algorithm is an algorithm that does not use memory parameters M and B (Frigg et al., 1999). Blocks are moved between the two memory levels by an automatic replacement policy (e.g., OPT, IRU).

The I/O model

- Input graphs are usually big and do not fit in internal memory.
- Use the I/O model [Vitter 2008] (also known as external memory model):
 - Consists of two memory levels.
 - A (potentially) unbounded slow memory, named external memory.
 - A fast memory of size M (in words), named internal memory.
- Data are moved between the two levels in blocks of B words.
- The CPU can only read and write data in the internal memory.
- Complexity of an algorithm: number of I/O operations.

Cache-aware algorithm

Preliminaries

- Vertices are ordered (e.g., by ID).
- A triangle (v_1, v_2, v_3) is (e_1, e_2, e_3)-colored if:
 - $v_1 \neq v_2 \neq v_3$, $v_1 \neq v_3$.
 - v_1 has color c_1, v_2 has color c_2, v_3 has color c_3.
- E_{c_1, c_2, c_3}: edges with colors c_1, c_2, c_3.
- E_{c_1, c_2, c_3}: edges with colors c_1, c_2, c_3.

I/O complexity

- For each (c_1, c_2, c_3), we need: K_{c_1, c_2, c_3}.
- Each set has expected size M.

Expected number of blocks: $\left(\frac{E_{c_1, c_2, c_3}}{M} \right)$.

Lower bound

- Assumption: information on edges/vertices is indivisible: that is, for enumerating a triangle we need all its edges in memory at the same time.
- Best-case lower bound: applies to each input to T triangles and every possible algorithm execution.
- Main lower bound: the enumeration of T distinct triangles requires $\left(\frac{E_{c_1, c_2, c_3}}{M} \right)$ I/Os.

Sketch of the proof

- Let J be the simulation of an algorithm enumerating T triangles with M memory.
- Let A be the simulation of A on a memory of size $2M$ so that A can be decomposed in rounds:
 - Each round starts with M blocks and ends with M reads.
 - Some asymptotic I/O complexity as A.
- The simulation relies on the following ideas:
 - Half of the memory simulates the memory used by J.
 - Half of the memory is used as buffer for I/Ds.
- In each round, there are M edges in memory.

References