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Cache-oblivious	Algorithm
1. If	there	are	O(1) edges,	enumerate	all	triangles	using	

a	naïve	approach.
2. Otherwise:

I. Use	the	cache-aware	algorithm	using	c=2 
colors.

II. Solve	recursively	the	8	coloring	problems	(each	
of	about	1/4	size).

The	algorithm	has	the	same	I/O	complexity	of	the	cache-

aware	algorithm:	XXXXXXXX I/Os	in	expectation.
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Lower	bound
• Assumption:	information	on	edges/vertices	are	indivisible:	that	is,	for	enumerating	a	triangle	

we	need	all	its	edges	in	memory	at	the	same	time.
• Best-case	lower	bound:	applies	to	each	input	with	T triangles	and	every	possible	algorithm	

execution.
• Main	lower	bound:	the	enumeration	of	T distinct	triangles	requires																					I/Os.
• The	hardest	graph	 is	the							-clique:																			I/Os are	required.

Sketch	of	the	proof
• Let	A be	the	execution	of	an	algorithm	enumerating	T triangles	with	M memory
• Let	A’ be	the	simulation	of	A	on	a	memory	of	size	2M so	that
• A’ can	be	decomposed	in	rounds
• Each	round	starts	with M/B inputs	and	ends	with	M/B outputs
• Same	asymptotic	I/O	complexity	as	A

• The	simulation	relies	on	the	following	ideas:
• Half	of	the	memory	simulates	the	memory	used	by	A
• Half	of	the	memory	is	used	as	buffer	for	I/Os

• In	each	round,	there	are	M edges	in	memory:
• triangles	can	be	enumerated	with	M edges	[Aftrati et	al.	2013];
• In	each	round,																		new	triangles	can	be	enumerated;
• rounds	are	required.

• Since	each	round	requires	M/B I/Os the	lower	bound	follows
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INTRODUCTION

Enumerating	vs	listing
• Almost	no	difference	in	RAM	model:
• cost	of	generating	a	triangle	≈	cost	of	storing	a	triangle.

• Huge	difference	in	the	I/O	model:
• Memory	may	not	contain	all	triangles	and																	I/Os	

are	required	for	storing	T triangles.
• Storing	all	triangles	in	a								-clique	requires																			

I/Os.
• The	cost	of	storing	triangles	may	be	larger	than	the	cost	

of	generating	triangles.	Our	work	shows	that	all	triangles	
can	be	generated	in	XXXXXXXXXXX I/Os.				

• In	many	cases,	we	don’t	need	to	store	triangles:
• In	database	systems,	pipelining	of	operations	may	not	

require	to	store	intermediate	results.
• Other	applications	in	which	enumerating	all	triangles	is	a	

preprocessing	step	may	not	require	to	store	all	triangles.
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Some	problems	with	triangles
• Counting	triangles:	compute	the	(approximate)	
number	of	triangles	in	a	graph.
• Listing	triangles:	generate	and	store	all	
triangles	(i.e.	,	store	on	disk).
• Enumerating	triangles:	generate	all	triangles	in	
a	graph,	but	do	not	store	them.

The	problem
• Enumerate	all	triangles	in	a	graph.

Motivation
• Many	algorithms	for	processing	graphs	often	need	to	

consider	small	subgraphs such	as	triangles.	
• Examples:	studying	social	processes	in	networks,	community	

detection,	solving	systems	of	geometric	constraints.	
• Another	example	comes	from	database	theory:		A	database	

is	created	to	store	information	on	sales	people,	and	on	the	
products	types	and	brands	they	sell.	We	use	three	tables	for	
guaranteeing	the	5th normal	form.
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The	joint	of	the	three	tables	reduces	to	find	all	triangles	in	a	
graph:	just	view	each	table	as	a	bipartite	graph	with	vertices	
corresponding	to	attribute	values.

The	I/O	model
• Input	graphs	are	usually	big	and	do	not	fit	in	internal	

memory.
• Use	the	I/O	model	[Vitter	2008]	(also	known	as	external	

memory	model):
• Consists	of	two	memory	levels.
• A	(potentially)	unbounded	slow	memory,	named	

external	memory.
• A	fast	memory	of	size	M (in	words),	named	internal	

memory.
• Data	are	moved	between	the	two	levels	in	blocks	of	B 

words.
• The	CPU	can	only	read	and	write	data	in	the	internal	

memory.
• Complexity	of	an	algorithm:	number	of	I/O	operations.

Cache-oblivious	algorithm
• A	cache-oblivious	algorithm	is	an	algorithm	that	does	not	use	

memory	parameters	M and	B [Frigo et	al.,	1999].	Blocks	are	
moved	between	the	two	memory	levels	by	an	automatic	
replacement	policy	(e.g.,	OPT,	LRU).

CPU

Fast	memory	
of	size	M

Block	transfer	
size	B

Unbounded	
slow	memory

Previous	work
• All	papers	target	the	listing	problem	

• [Dementiev,	PhD	2007]																																		I/Os

• [Menegola,	TR	2010]																						I/Os

• [Hu et	al.,	SIGMOD	2013]																					I/Os

• Provide	worst-case	lower	bound																						I/Os

O
E E logM /B E / B( )

B

!

"
##

$

%
&&

O E + E E
B

!

"
#

$

%
&

O E 2

BM
+
T
B

!

"
#

$

%
&

Ω
E E
B M

+
T
B

"

#
$

%

&
'

Our	results
• Optimal	cache-aware	algorithm	requiring	 XXXXXX

I/Os in	expectation.

• Optimal	cache-oblivious	algorithm	requiring	expected

I/Os in	expectation.

• Derandomization of	the	cache-aware	algorithm	

without	asymptotically	increasing	the	I/O	complexity.

• Best-case	lower	bound:	the	enumeration	of	T

triangles	requires																					I/Os.
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Cache-aware	algorithm
Preliminaries
• Vertices	are	ordered	(e.g.	by	ID)
• A	triangle	(v1, v2, v3) is	(c1, c2, c3)-colored	

if:	
• v1 < v2 < v3

• v1 has	color	c1 ,	v2 has	color	c2 ,	v3 has	
color	c3

• Ec1, c2:	edges	with	colors	c1, c2 ;	Ec1, c3:	
edges	with	colors	c1, c3;	Ec2, c3:	edges	with	
colors	c2, c3,

I/O	complexity

• For	each	(c1, c2, c3 ), we	need:	Ec1, c2 , Ec1, 

c3 , Ec2, c3 Each	set	has	expected	size	M

• Expected	subproblem size:	

• Expected	I/O	of	a	subproblem

• Number	of	subproblems

• Total	expected I/O:

c3 = E
M

E
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The	cache-aware	algorithm
1. Randomly	color	each	vertex	independently	and	uniformly	with																 X		 colors

• A	triangle	can	be	colored	in	c3 ways
• Vertexes	can	be	colored	using	a	4-wise	independent	hash	function

2. For	each	color	triplet	(c1, c2, c3),	with	0 ≤ c1, c2, c3 < c
I. Consider	edge	sets	compatible	with	the	triplet	(c1, c2, c3),	that	is	the	sets	Ec1, c2, 

Ec1, c3, Ec2, c3.
II. Using	[Hu et	al.,	2013],	enumerate	all	(c1, c2, c3 )-colored	triangles	in	the	edge	set	

Ec1, c2 U Ec1, c3 U Ec2, c3.	

MEc /=

Example with	3	colors
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Vertex
coloring
with	c=3

For	any triplet (c1, c2, c3),	find	all	(c1, c2, c3)-
colored	triangles	using	[Hu et	al.,	2013] (i.e,	
27	subproblems)

…

Derandomization
• The	cache-aware	algorithm	can	be	derandomized,	

without	increasing	the	I/O	complexity,	as	follows.
• We	use	a	small	family	of	4-wise	independent	

functions	[Alon et	al.,	1992]
• We	fix	the	color	of	each	vertex	in	log (E/M)

iterations:
• In	each	iteration,	one	bit	of	the	coloring	is	fixed.

• In	each	iteration,	we	compute	how	well	each	
function	balances	subproblems:
• According	to	some	“cost”	function;
• It	can	be	proved	that	a	“good”	function	exists	in	

the	family.
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Abstract
Our focus is on determining the input/output (I/O)
complexity of triangle enumeration. Let E be the number
of edges, M < E the size of internal memory, and B the
block size. We improve the I/O complexity to XXxXXXXXXXX
expected I/Os, which improves the previous bounds by a
factor XXXXXXXXXXXX . We give cache-aware and cache-
oblivious algorithms. We also show that they are I/O
optimal by proving that any algorithm enumerating T
distinct triangles must always use XXXXXX.XXXX I/Os.
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