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ABSTRACT 

In this paper, we compare the radiation response of GPUs 

executing matrix multiplication and FFT algorithms. The provided 

experimental results demonstrate that for both algorithms, in the 

majority of cases, the output is affected by multiple errors. The 

architectural and code analysis highlight that multiple errors are 

caused by shared resources corruption or thread dependencies. 

The experimental data and analytical studies can be fruitfully 

employed to evaluate the expected error rate of GPUs in realistic 

applications and to design specific and optimized software-based 

hardening procedures.   

Categories and Subject Descriptors  
B.8.1 [Performance and Reliability]: Reliability, Testing, and 

Fault-Tolerance. 

Keywords 

GPU, radiation effects, parallel architectures sensitivity, software-

based hardening. 

1. INTRODUCTION 
Graphic Processing Units (GPUs) are electronic devices designed 

to perform high-performance stream processing typically used in 

desktop computers, laptops or portable devices to accelerate 

graphics rendering. In order to achieve the proposed objective, 

GPUs manipulate a large number of memory locations, and are 

typically able to execute several elementary tasks in parallel at 

high speeds [1][2]. 

Due to their highly parallel structure, GPUs are more effective 

than general-purpose CPUs when large blocks of data need to be 

processed in parallel. GPUs have recently become popular for 

high performance computing applications in which parallel 

algorithms are employed, such as oil exploration, air traffic flow 

analysis, medical image processing, linear algebra, statistics, 3D 

reconstruction, and stock options pricing determination [3][4]. 

Moreover, thanks to their high computing power, GPUs are used 

in modern supercomputers like TITAN, which is composed of 

18,000 GPUs [5]. 

Modern GPUs are cutting edge processors built with novel 

technologies and, thus, may be very prone to experience radiation-

induced failures. We have already demonstrated in [6][7] that 

radiation-induced errors, including from the terrestrial neutron 

radiation environment, are one of the major issues for the newest 

GPU cores reliability. While CPU radiation responses, test 

procedure, and hardening techniques are well documented, and 

standardized [8][9], only few papers describe possible radiation 

test methods for extreme parallel systems and fewer analyze 

parallel algorithms behaviors in radiation environments. 

Unfortunately, the experimental data presented here demonstrate 

that, when both matrix multiplication and FFT are concerned, 

most of the corrupted executions are affected by multiple errors, 

hence refuting the traditional hypothesis that just single output 

errors may occur in extreme parallel computing systems. Having 

multiple output errors is an extremely tricky situation to deal with. 

On one side, as they are unexpected, multiple output errors may 

remain undetected, seriously compromising the system 

dependability. On the other side, most of the available hardening 

techniques for parallel algorithms are based on the assumption 

that just one single error affects the output, and may become 

ineffective or inefficient when multiple errors occur [10]. The 

purpose of this work is to take advantage of experimental results, 

algorithm analyses, and architectural studies, to identify the 

causes of multiple output errors and propose dedicated and 

efficient hardening strategies to correct them. 
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In this paper we analyze the radiation experiments results of 

extensive test campaigns performed at ISIS, Rutherford Appleton 

Laboratories, Didcot, UK, and at LANSCE, Los Alamos National 

Laboratories, Los Alamos, NM, USA. The performed experiments 

allow the realistic evaluation of the output error rate of a 

representative set of classical applications in high performance 

computing executed on GPUs exposed to the natural neutron flux. 

We will compare the experimental results of matrix multiplication 

with the FFT ones, giving particular attention to the different 

causes of multiple errors. As detailed in the following section, 

matrix multiplication is composed of independent threads but 

heavily employs cache memory, which is shared among several 

threads. A radiation-induced error in the cache is then likely to 

affect the execution of various threads. On the contrary, FFT 

computation requires sequential iterations and, thus, a thread 

output may depend on previously executed threads. If a thread 

fails, the error is then likely to spread over the following threads. 

Finally, we compare the algorithmic structures and analyze the 

GPU architecture to propose dedicated and efficient software-

based approaches and programming guidelines to lower the 

impact of multiple errors on massively parallel system and avoid 

the radiation-induced failure to affect the output. 

The hardening philosophy we follow is based on the Algorithm 

Based Fault Tolerance (ABFT) technique that exploits the 

properties of the computational problem and of the adopted 

algorithmic approach to efficiently detect and, whenever possible, 

correct silent faults. We extend the ABFT solution designing 

dedicated and optimized procedures for the detection and 

correction of multiple output errors. Moreover, the correction 

capability of the technique can be tuned with the experimentally 

evaluated error rate so to prevent the introduction of useless 

overheads and avoid excessive performance degradation, which is 

essential in high performance computing applications. 

The remainder of the paper is organized as follows. Section 2 

introduces the GPU structure, and the possible radiation-effects on 

its internal resources. Section 3 describes the neutrons spectra and 

fluxes, the experimental setup, and the tested algorithms. Section 

4 and section 5 describe the matrix multiplication and FFT 

algorithms, respectively, discussing the obtained experimental 

results, highlighting the presence and causes of multiple output 

errors, and propose dedicated hardening procedures, while section 

6 concludes the paper.  

2. GPU INTERNAL STRUCTURE 
GPUs are divided into various computing units, named Streaming 

Multiprocessors (SM), each of which has the ability to execute 

several threads in parallel (see Figure 1). Each basic computing 

unit (named CUDA core in NVIDIA devices) in the SM executes 

one thread with dedicated memory locations, avoiding complex 

resource sharing or the need of long pipelines [2]. 

It is the programmer’s task to divide the instantiated threads into a 

grid of blocks, and each SM in the GPU will treat a block of 

threads at a time (see Figure 2). Thus, some blocks will be queued 

for later computation if the grid size exceeds the number of SMs 

available in the GPU. Before assigning a queued block to the first 

SM that becomes available, the GPU scheduler needs to check if 

some SM completed the current block execution and, if so, it 

transfers the results to the on-board DDR memories. The queued 

block is then assigned to the SM, input data are read from the 

DDR, and, finally, the queued block execution is triggered and 

synchronized [11]. 

Generally, on modern GPUs each SM can execute a warp of up to 

32 parallel threads in a computing cycle. If the block size exceeds 

32, some threads execution will be delayed until the computation 

of the preceding warps of the block has been completed (see 

Figure 3). It is worth noting that the next block to be treated will 

be assigned to the SM when all the threads in the current block 

have been processed. So, if the number of threads in a block is not 

a multiple of 32, in the last cycle the SM will execute less than 32 

threads (warp N in Figure 2), wasting parallel capabilities. 

A neutron striking a CUDA core may generate a functional 

interruption, preventing the thread assigned to it from completing 

its computation, corrupt an internal register or disturb the logic 

gates that are calculating an operation, leading the thread to 

produce a silent fault. CUDA cores are isolated such that a 

radiation-induced event in one CUDA core will only corrupt the 

thread assigned to it. Threads that follow the corrupted one or 

threads assigned to CUDA cores near the struck one will not be 

affected.  

Even thought CUDA cores are isolated, the corruption of 

resources shared among various threads may lead the GPU to 

 

Figure 1: Simplified internal structures of a GPU. 
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Figure 2: The instantiated threads are grouped into a 

grid of blocks. Each of the available Streaming 

Multiprocessor (SM1, SM2, and SM3) treats just one 

block at a time. 
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Figure 3: The block of threads assigned to a SM is 

divided into warps. Just one warp of threads is executed 

at a time in the SM. 

 



experience multiple output errors. This occurs, for instance, when 

various threads in a SM use as input the same data stored in the 

SM cache or in the GPU shared memory, which is the case of 

matrix multiplication, as described in section 4. If radiation 

corrupts shared data, all threads using it as input will produce a 

faulty output. In some algorithms, like the Fast Fourier Transform 

(FFT), several iterations are necessary to conclude the calculation. 

At each iteration, threads use the output of previously executed 

threads as an input. A neutron-induced error on a thread in one 

iteration will then propagate over the following ones, as detailed 

in section 5. 

GPU schedulers are needed to trigger and synchronize threads 

execution, to check if computation is complete, and, if so, to 

pipeline the exceeding threads allocated [11]. A scheduler is a 

critical resource, as its radiation-induced failure has severe 

repercussion on the system functionalities [10].  Potentially, the 

threads handled by a corrupted scheduler may produce a wrong 

output. However, if some of the handled threads already finished 

computation when the scheduler is struck, just the remaining 

threads will present an incomplete, and thus faulty, result. 

On a reliability point of view, it is feasible to avoid cache 

corruption from affecting computation adding an Error Correction 

Code (ECC), while adding redundancy on the scheduler will 

require costly modifications to the GPU physical structure. As we 

will demonstrate in the following sections, cache corruption 

normally generates detectable output patterns that could be 

efficiently corrected with software-based hardening strategy, 

while a scheduler failure is likely to lead to random output errors, 

which are not always correctable and, even when possible, output 

correction requires a great computation effort [10]. 

3. EXPERIMENTAL METHODOLOGY 

AND DEVICES 
 

3.1 Tested Devices 
The Devices Under Test (DUT) were commercial-off-the-shelf 

GeForce GTX480 GPUs designed by NVIDIA in a 40nm 

technology node [12] and can run with a maximum frequency of 

1.215GHz. The DUT is composed of 15 Streaming 

Multiprocessors, and disposes of 480 CUDA cores (32 for each 

SM). For the GTX480 GPU, 15 blocks of threads can be executed 

in parallel with a maximum of 32 threads in each block for a total 

of 480 threads. If more threads or blocks are instantiated, their 

execution will be delayed until they can be scheduled. 

3.2 Neutron fluxes and spectra 
Experiments were performed at Los Alamos National 

Laboratory’s (LANL) Los Alamos Neutron Science Center 

(LANSCE) Irradiation of Chips and Electronics House II, called 

ICE House II, in September 2012 and at VESUVIO, in ISIS, 

Rutherford Appleton Laboratories, Didcot, UK, in December 

2012. Both of these facilities provide a white neutron source that 

emulates the energy spectrum of the atmospheric neutron flux (see 

Figure 4). 

The available neutron flux was approximately 1x106 n/(cm2·s) at 

LANSCE and 4x104 n/(cm2 s) at ISIS for energies above 10MeV. 

The flux denotes the number of particles hitting the device per 

unit area and time. The higher the flux is, the higher the 

probability of observing output errors in the GPU. The flux used 

for tests allows one to obtain a statistically significant amount of 

errors in a short time. As we will detail in the following section, 

the experimental setup was tuned in order to prevent more than 

one neutron from corrupting the device during the same code 

execution. This is necessary to avoid the occurrence of multiple 

errors caused by the high flux used during experiments and, so, 

the experimentally measured error rate can be scaled to the 

realistic error rate caused by the much lower atmospheric neutron 

flux. 

The beam was focused on a spot with a diameter of 2cm plus 1cm 

of penumbra, which provided uniform irradiation of the GPU chip 

without affecting nearby DDR memories. Even if the LANSCE 

and ISIS beams are well focused, some thermal neutrons (i.e. low 

energy neutrons) may still be produced by scattering and may 

collide with devices in the proximity of the beam azimuth, 

possibly causing failures if the struck device includes boron-10 

[15]. The DDR content was periodically checked during the 

experiments, and no radiation-induced error was ever found. It is 

worth noting that input and output data were stored in the DDR, 

so the observed errors were only caused by the corruption of logic 

resources or internal memories or registers. Irradiation was 

performed at room temperature with normal incidence and 

nominal voltages. 

3.3 Test Procedure 
The Device Under Test (DUT) was controlled by a desktop PC 

through a 2.5GHz PCI-Express bus. The PC was kept out of the 

beam using a 20cm GPI-Express bus extension and shielded by 

boron plastic panels to avoid errors induced by scattering of 

thermal neutrons from the beam to affect its functionalities and to 

better align the DUT with the neutron beam. Moreover, the PCI-

Express extension was provided with fuses on power lines, so to 

prevent eventual radiation-induced latchups on the GPU to 

propagate to the PC motherboard. Operating voltage was provided 

externally with a current-controlled power supply to the DUT in 

order to promptly cut power in the event of latchup. It is worth 

mentioning that we never observed any destructive latchup on the 

irradiated GPU even after several week of irradiation. The tested 

GPUs can then be considered immune to neutron-induced 

latchups. 

The only role of the CPU during the test is to initialize the GPU 

and gather experimental results. The procedure designed for 

experiments is divided in three parts: 

1. Initialization: the CPU loads data and instructions in the 

GPU. 

2. Test: the GPU runs the instruction; the test is actually 

performed while the CPU is in idle state. 

3. Readback: test results are transferred from the GPU to 

the CPU and checked. 

 

 

Figure 4: ISIS and LANSCE spectrum compared to those of 

the TRIUMF facilities and to the terrestrial one at sea level 

multiplied by 107 and 108 [14]. 

 



Thanks to the extreme high frequencies of operation of both the 

PCI-express bus and the CPU, steps 1 and 3 are performed so 

quickly (order of ms in the worst case) that one can consider the 

probability of a neutron to generate an error during their execution 

negligible (observed error rates were lower than 0.1 errors/s). 

Steps 1 to 3 were then performed repetitively under the neutron 

beam to gain a statistically significant amount of errors. 

4. MATRIX MULTIPLICATION (MxM) 

4.1 MxM Algorithm Description 
We executed on the irradiated GPU an algorithm that multiplies 

two matrices (A and B) composed of 2048x2048 random double 

precision floating-point elements taking full advantage of the 

GPU parallelism capabilities [11]. The algorithm, named MxM, 

instantiates 2048x2048 parallel threads, each of which is in charge 

of calculating a single element of the resulting matrix M following 

Equation 1. 

( )             [   ]  ∑ [   ]   [   ]                         

 

   

 

Where n is the number of rows and columns of the matrices A, B, 

and M. 

During the code execution, threads can be considered independent 

from each other, as the thread output is evaluated using just the 

input data, not the result of other threads calculations. To limit 

execution latency, the SM stores in its cache the data required by 

the threads it hosts. 

As stated in section 3, the GTX480 can execute up to 480 threads 

in parallel. Thus, not all the threads instantiated in MxM will be 

physically executed in parallel. MxM computation will then 

require several different threads and blocks allocations to be 

completed, exacerbating scheduler employment. The presented 

results were obtained grouping threads in blocks of size 1024. 

Results with different block sizes can be found in [16]. The 

matrices dimension were chosen big enough to allow the 

gathering of a statistically significant amount of data in a short 

time, but yet small enough so that one can be reasonably sure that 

at most one neutron per MxM execution generates errors 

(observed error rates were lower than 3x10-2 errors/execution). 

The observed multiple output errors were then not caused by the 

high particle flux used during experiments, but rather by the 

corruption of GPU critical resources and so are likely to occur 

also when the GPU is irradiated with the natural neutron flux. 

4.2 MxM Experimental Results Analysis 
The first column of Table I encloses the experimentally measured 

cross section for MxM executed on the GTX480 with double 

floating point data. The experimental cross section for MxM 

executed with integer data is 2.22 10-6, as reported in [10]. The 

MxM cross section is obtained dividing the observed output errors 

per unit time by the flux (i.e., the number of neutrons hitting the 

device per unit time and unit area). The cross section is then the 

probability for a neutron that hits the GPU executing MxM to 

produce an output error. The output error rate of MxM on a 

realistic application can be evaluated multiplying its cross section 

by the expected amount of neutrons that hit the device in the 

environment of interest. Table I also reports the Failure In Time 

(FIT), i.e. the number of errors in 109 hours of continuous 

operation, expected at New York City when MxM is executed 

with double precision floating point data. The FIT is calculated 

multiplying the MxM cross section experimentally measured and 

the natural neutron flux in New York (i.e., 14 n/(cm2 h) [17]). The 

evaluated FIT is realistic and precise as the spectrum of neutron 

energies at ISIS and LANSCE resembles the atmospheric one (see 

Figure 4). The experimentally evaluated FIT of MxM is 2.81 104, 

which equals of about one error every 3.5 years. The MxM 

neutron-induced error rate may seem reasonable for entertainment 

applications or video/audio editing. However, the GPU FIT is 

extremely high for safety critical applications, in which a high 

reliability is required. For instance, the car pedestrian detection 

system, designed for promptly activating the vehicle brakes in 

order to prevent the collision with pedestrians, is actually being 

implemented with a GPU. In the event of radiation-induced 

failure, the GPU may suddenly trigger the brakes, possibly 

causing accidents. Moreover, the GPU FIT may be unacceptable 

for supercomputers, in which thousands of GPUs run in parallel, 

as the probability of having at least one GPU corrupted is very 

high. It is then mandatory to design and evaluate hardening 

strategies for GPUs. 

The first row of Table II report the percentage of corrupted 

matrices affected by single and multiple errors. As one can see, in 

the majority of cases multiple errors occur when MxM is executed 

on a GPU. We can further study the observed phenomena 

analyzing the different multiple error patterns detected in the 

output matrix. As reported in the last two column of the first row 

of Table II, in most of the cases multiple errors are distributed on 

a single row or column of the resulting matrix. Errors on the same 

row/column are due to cache corruption. As demonstrated in [11], 

for evaluating a row MxM uses the same row of input matrix A 

(see Eq. 1), which is stored in the cache to avoid multiple accesses 

to the DDR. If that row is corrupted, all threads using its values 

will produce a wrong output. The same considerations apply to 

column. It is very unlikely to have more than 10 errors in a row or 

column and more than 32 errors were never observed in our 

experiments [10]. This is because not all the threads in the SM 

whose cache has been corrupted are calculating elements on the 

same row or column. 

TABLE I 
MXM CROSS SECTION AND FIT AT NYC 

 

 Cross section FIT 

MxM GTX480  2.0110-6cm2 2.81104 

 

TABLE II 

MXM SINGLE AND MULTIPLE ERRORS PERCENTAGES AND FIT 
 

 Single Multiple Row/Col Random 

Percentage 48.48% 51.51% 47.47% 4.04% 

FIT [103] 13.60 14.50 13.36 1.14 
 

 

Figure 5: MxM output errors patterns FIT at NYC when 

executed with double data. 

 



The causes for randomly distributed errors could be various. 

For instance, pairwise errors in the cache flags or multiple cells 

upset in the cache array may lead various threads to work with 

corrupted data and, thus, to produce an output error. As stated in 

section 2, a scheduler failure is likely to affect multiple thread 

executions. The scheduler is in charge of designating the block of 

threads that has to be executed in a Streaming Multiprocessor, and 

of detecting if all threads have completed the assigned 

computation. If so, results are presented at the output and another 

block of threads is triggered for execution. In the event of 

scheduler corruption, some results may be transferred to the 

output even if some threads have not yet completed their 

computation, leading to a faulty output matrix. The same 

considerations apply to the scheduling necessary when the number 

of threads inside a block exceeds 32 (i.e., the highest amount of 

threads a Streaming Multiprocessor can execute in parallel). 

Threads affected by scheduler failure may be calculating different 

locations of the output matrix, not necessarily on the same column 

of row, leading to randomly-distributed multiple errors. 

Unfortunately, no detailed information is currently available on 

the scheduler structure. Nevertheless, radiation tests of GPUs 

varying scheduler strains show that the occurrence of randomly 

distributed errors is lower when an efficient scheduling is 

exploited [16]. This empiric result supports the statement that the 

scheduler is a critical resource for the GPU and its corruption may 

indeed lead to randomly distributed errors. In the future, further 

tests are going to be performed to investigate the probability of 

occurrence and the effects of scheduler failures in a parallel 

algorithm output. 

The occurrence of different error distributions on a real 

application is evaluated by calculating the FIT at New York City 

for all the observed error patterns (see second row of Table II). As 

shown in Figure 5, a consistent portion of the observed multiple 

errors is due to cache corruption. Cache bits can be protected 

adding ECC. To mitigate the radiation effects on their devices, 

NVIDIA actually introduced in the latest GPUs an ECC able to 

correct single errors and detect double errors on the same word. 

Nevertheless, ECC will not detect errors affecting the scheduler or 

the logic resources nor functional interruption on a thread or on a 

SM. Furthermore, the ECC introduced overhead is far from being 

negligible. In fact, when the NVIDIA ECC is enabled, the amount 

of user accessible memory (DDR and internal cache) is reduced 

by 12.5% [13]. Moreover, depending on the algorithm and device, 

typically the ECC reduces the GPU performances in the range of 

20-30% [18]. If the reliability ensured by ECC or the overhead 

introduced by ECC are found to be unacceptable for an 

application, programmers can exploit software-based hardening 

techniques to correct radiation-induced errors. Some hardening 

techniques for matrix multiplication are presented and compared 

in [11]. In particular, as cache corruption produces multiple errors 

on the same row or column of the output matrix, errors can be 

corrected in constant time by adding checksums in the input 

matrices extending the Algorithm Based Fault Tolerance (ABFT) 

technique proposed in [19], based on Freivalds’ results [20]. 

As can be seen in Figure 5, random multiple errors are less likely 

to occur then single errors or errors on a row or column. 

Nevertheless their occurrence is definitely not negligible (1.14 103 

FIT, see last column of Table II) and, mostly, they are potentially 

very dangerous. On one side it is not possible to physically harden 

the scheduler, whose corruption is the main cause for multiple 

random errors and, on the other, a high amount of random errors 

are extremely difficult to be corrected with software-based 

techniques. As demonstrated in [11], in fact, random errors are 

surely correctable only if no more than 3 locations are found as 

corrupted in the output matrix. In all the other situations it is 

necessary to check if correction is possible and, even when 

possible, output correction requires a great computation effort. 

Experimentally we never observed more than 4 randomly 

distributed errors on the output matrix. 

5. FAST FOURIER TRANSFORM (FFT) 

5.1 FFT Algorithm Description 
The second tested algorithm on the irradiated GPU, named FFT, 

is a 64-points 1D Fast Fourier Transform (FFT) calculated on 

512x512 vectors. The FFT input is then composed of a 

64x512x512 double precision floating-point matrix for the real 

part and a 64x512x512 matrix for the imaginary part. The 

implemented algorithm is based on the FT kernel of the NAS 

Parallel Benchmarks [21] implemented in C and ported to the 

GPU using CUDA. The executed algorithm performs a 64-points 

complex-to-complex 1D FFT on each of the 512x512 vectors.  

The 64-points 1D FFT kernel is composed of 6 iterations 

(log264=6) of a variant of the Stockham FFT algorithm [22]. All 

iterations are executed sequentially in the GPU using two 

temporary matrices for scratch. At each iteration, the GPU 

instantiates 512x512 parallel threads, grouped in blocks of 512 

threads each. A thread is in charge of evaluating the intermediate 

FFT values on the assigned complex vector of size 64, updating in 

each iteration two-by-two the values of all the floating-point 

elements in the complex matrix. 

The FFT algorithm is then divided into threads that are not 

completely independent. In fact, a thread in one iteration takes the 

output of threads executed on the previous iteration as input. If a 

thread output is corrupted, in the next iteration a thread will take a 

faulty value as input and evaluate two intermediate values of the 

FFT with it. A single output error in one thread will then spread in 

the following iterations, generating multiple corrupted locations in 

the FFT output. The worst case occurs when errors appear in the 

first iteration. If one of the 64 locations updated by a thread in the 

first iteration is corrupted one can expect to have 25 = 32 errors in 

the output (the number of errors doubles at each iteration). If two 

or more locations are wrongly updated, all the 64 elements of the 

1-D FFT will be faulty.  

We choose to test 64-points FFT to limit the number of iterations 

and ease the study of errors propagation in the code, while having 

512x512 1D FFTs eases gathering a statistically significant 

TABLE III 

FFT CROSS SECTION AND FIT AT NYC 
 

 Cross section FIT 

FFT 3.69 10-6cm2 5.17 105 

 

TABLE IV 

REAL AND IMAGINARY PART PERCENTAGE, CROSS SECTION, AND FIT 
 

 Percentage Cross section FIT 

FFT Real 94.96% 3.50 10-6cm2 4.90 105 

FFT Imaginary 96.17% 3.55 10-6cm2 4.97 105 

 

TABLE V 

FFT SINGLE AND MULTIPLE ERRORS 
 

 FFT Real FFT Imaginary 

 Single Multiple Single Multiple 

Percentage 1.61% 98.39% 4.00% 96.00% 

FIT 7.89 103 4.82 105 19.80 103 4.67 105 
 

 



amount of errors. Each thread works over its own sequential 

vector in memory to complete the 1D 64-point FFT, thus no 

shared cache memory is used. Vector dimensions were chosen 

small enough to be reasonably sure that at most one impinging 

neutron per FFT execution generates errors (observed error rates 

were lower than 2x10-2 errors/execution). The observed multiple 

output errors were then not caused by the high particle flux used 

during experiments.  

5.2 FFT Experimental Results Analysis 
Table III reports the experimentally measured cross sections and 

the FIT for FFT. FFT gives complex double data as an output, 

divided in real and imaginary parts. An execution is considered as 

faulty if at least one error is detected in the real, imaginary or both 

part of the output. The cross section is obtained dividing the 

number of faulty executions per unit time by the flux.  

The experimentally evaluated FIT is 5.17 105, which is higher 

than the MxM one. Even if executed on the same GPU, FFT and 

MxM have different throughput and execution time, which may 

indeed turn into different radiation-induced error rates. In 

particular, the FFT elaborates 8 times more data than MxM 

(64x512x512 complex elements in the FFT versus 2048x2048 real 

elements in the MxM), but instantiate less threads (512x512 for 

each of the 6 iterations in the FFT versus 2048x2048 in the MxM). 

The computational effort required by each thread to complete the 

assigned task is higher in the MxM algorithm, as each thread 

executes 2047 sums and 2048 multiplications, while a thread in 

one iteration of the FFT requires 3 sums, 3 subtractions, and 4 

multiplications, for each couple of values to update, for a total of 

96 sums, 96 subtractions and 128 multiplications. 

The implemented algorithm is symmetric for the real and 

imaginary parts. One thread, in fact, uses the same operations and 

the same amount of internal registers to calculate both the real and 

imaginary part of an element, updating two output values using 

two complex numbers as an input. Nevertheless, some executions 

experienced errors just in the imaginary part or just in the real 

part. Table IV shows the percentage of faulty execution of the 

FFT algorithm in which the real or imaginary part was detected as 

corrupted as well as the cross section and FIT of just the real and 

imaginary part. As stated in the second column of Table IV, in 

less than 5% of the executions considered as faulty no error was 

detected in the real part. This means that in those executions the 

FFT experienced an error just in the imaginary part. The same 

considerations apply to errors in just the real part, which are less 

than the 4% of the overall faulty executions. Errors in just the real 

or imaginary part are due to the corruption of internal registers 

used by the thread for storing the intermediate values of the 

complex number. 

Dissimilarly to MxM, the FFT algorithm is composed of threads 

that are not independent, as a thread uses the output of previously 

executed threads to update the real and imaginary part of the 

complex output. It is then very likely that a radiation-induced 

event affecting a thread in the early stages of the FFT execution 

will spread, affecting various location of the output. Experimental 

results support this assertion. In fact, as stated in Table V, just 

1.41% of the faulty executions have a single error in the real part 

and 4% have a single error in the imaginary part. The importance 

TABLE VI 

FFT REAL AND IMAGINARY SINGLE AND MULTIPLE ERRORS PERCENTAGES 

 

 1 2 4 6 8 12 14 16 18 19 22 24 26 27 28 30 

Real 1.63 6.91 5.28 5.28 4.47 4.47 2.44 2.85 0.81 0.40 0.81 5.29 0.40 0 6.50 6.91 

Imaginary 4.00 7.20 6.40 4.00 4.00 4.40 3.60 3.60 0.40 0.40 0.80 4.00 0.40 0.40 6.40 6.80 

 

 32 34-39 40 42 44 48 52 56 60 62 64 66-126 128 >130 

Real 8.94 0 1.63 0.81 0.80 1.63 0.80 2.40 1.63 4.88 8.54 5.60 0.41 3.66 

Imaginary 9.20 1.20 0.40 0.82 0.80 2.00 0.41 2.01 1.21 4.44 8.80 3.20 1.60 4.00 
 

 

Figure 7: FFT real and imaginary multiple output errors percentages. Some distributions that were never experimentally 

observed are grouped in the picture (it is the case of 9 to 11 errors, 20 and 21 etc.). In most of the cases, the output is affected 

by less then 16 errors, about 32 or 64 errors. It is very unlikely to have an odd number of errors or more than 128 errors. 

 



of the occurrences of multiple errors in realistic applications is 

highlighted in the last row of Table V, in which the FIT of FFT 

affected by single or multiple errors in the real and imaginary 

parts are reported. 

Table VI lists the percentage of FFT faulty executions affected by 

the different multiple errors distributions for both the real and 

imaginary part. Distributions observed in none or in less than the 

0.4% of the faulty executions are not listed in Table VI. 

As shown in Figure 7, it is very unlikely to have an odd number of 

errors in the real or imaginary part of the output. Actually 

radiation can lead the thread to produce a single output error 

corrupting, for instance, the internal register that stores the value 

of just one of the elements to update or disturbing just one of the 

operations needed to calculate the FFT. If such a situation occurs, 

the thread can complete its execution, allowing the correct 

calculation of the remaining complex numbers.  However, even if 

radiation produces a single output error in a thread, in the 

consequent iteration two complex numbers will be updated using 

the corrupted value, leading to an even amount of errors in the 

final output. Single error in the output occurs when radiation leads 

a thread in the last iteration to produce just one faulty complex 

value. As stated in Table VI, this occurred in just 1.63% of the 

faulty executions for the real and in 4% of the faulty executions 

for the imaginary part. 

The multiple errors distributions shown in Figure 7 are explained 

considering how errors propagate from one iteration to the 

following ones. As said, the amount of errors doubles at each 

iteration. Let ei be the amount of errors in the i-th iteration. The 

amount of error in the j-th iteration, named ej is evaluated through 

Equation 2. 

( )               
                        

The worst case occurs when radiation affects the execution of a 

thread in the first iteration. As 6 iterations are necessary to 

complete the FFT execution, if a single error occur in the first 

iteration, the amount of output errors is going to be e6 = 25 e1 or e6 

= 32. As said in Section 2, radiation can either corrupt a thread 

internal registers or operation execution, leading to a single error, 

or prevent the thread from completing the execution, generating a 

thread functional interruption that possibly leads to have all the 64 

elements wrongly updated. In the former situation, e1 = 1, and the 

error will spread through the iterations, generating at most 32 

errors in the output vector. In the latter, e1 depends on how many 

elements were correctly updated before the occurrence of the 

functional interruption. As 2 elements are updated at the same 

time in a thread, e1 will be at least 2 and, thus, 64 errors will be 

present in the output vector. 

Experimental results support these assertions, as in most of the 

executions less then 64 errors were observed while it is very 

unlikely to have more than 64 errors in the output. This rare 

situation occurs when radiation leads a Streaming Multiprocessor 

to experience a functional interruption preventing a whole warp of 

32 threads or even a whole block of 512 threads from completing 

execution.  Those errors will then spread as described in Equation 

2, possibly in more than a single 64-points FFT, and a huge 

amount of errors are expected at the output. 

As errors double at each iteration, even the 6 sequential iterations 

required to compute the 64-points FFTs are sufficient to have a 

considerable amount of multiple output errors. In order to reduce 

the occurrence of multiple output errors and increase the FFT 

reliability it is essential to avoid errors propagation from an 

iteration to the following one. This can be achieved extending to 

the parallel FFT the results presented in the recent work [22] that 

proposes ABFT recursive algorithms for dynamic programming in 

sequential platforms. The idea is to exploit fingerprints for a 

prompt detection of errors to avoid their propagation. A 

fingerprinting algorithm is a procedure that maps an arbitrarily 

large data item (e.g., a vector) to a short bit string, i.e. its 

fingerprint, with a negligible probability for two items to have the 

same fingerprint. 

The ABFT version has the same organization of the tested FFT 

algorithm, but exploits fingerprints of the input and output vectors 

of each iteration for detecting errors. Fingerprints could be 

computed in linear time using the Karp-Rabin fingerprints 

procedure [24] that just requires a scanning of the vector. When 

the i-th iteration is called, the input fingerprints (or the 

fingerprints returned by previous iterations) is used for checking 

data correctness while processing data and multiplying for the 

twiddle factors. If an error is detected, the call fails and returns to 

the previous iteration, i-1. The input of the failed subproblem is 

then recomputed and the i-th iteration is executed again. If no 

faults are detected, the output vector and the associated fingerprint 

are returned, since this output is used as input in subsequent 

iterations. We suppose that each iteration uses different vectors 

(e.g., operations are not in place). In such a way, if an iteration 

fails and returns to the previous one, the input can be restored by 

using another copy of the data which has a small probability to be 

corrupted as well (nevertheless, new corruptions are detected 

through fingerprints). 

The proposed procedure applied to a N-point FFT is an 

O(N log2N) algorithm and captures radiation induced errors 

requiting re-calculation. Unfortunately, the characteristics of FFT 

do not allow a prompt error correction like in MxM. Nevertheless, 

since most of the work of the proposed FFT algorithm is devoted 

to solve small subproblems, the occurrence of an error will force 

the re-computation of just small parts of the execution, limiting 

the introduced overhead. 

6. CONCLUSIONS 
Radiation-induced errors from the terrestrial neutron radiation 

environment are one of the major issues for the newest GPU cores 

reliability. As experimentally demonstrated, neutrons generate 

mostly multiple output errors even if threads are executed on 

independent processors. 

Multiple output errors are caused by the corruption of resources 

shared among various threads, like the Streaming Multiprocessor 

cache, or of critical resources, like the GPU scheduler. In the case 

of the FFT, the iterations needed to complete the convolution have 

the countermeasure of letting the errors spread. 

Specific and efficient software-based hardening strategies can be 

designed analyzing the code structure and the GPU architecture. 

Matrix Multiplication can be hardened adding a checksum on the 

input matrices, as every thread is independent and does not 

interact with the others. On the contrary, FFT requires the 

introduction of checkpoints at every iteration to avoid error 

propagation. In order to optimize the hardening procedure and 

avoid useless overhead or excessively affect the code 

performance, it is necessary to tune its correction capabilities with 

experimental results. 
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