
Neutron Sensitivity and Software Hardening Strategies for

Matrix Multiplication and FFT on Graphics Processing Units

Paolo Rech

Instituto de Informática
UFRGS

Av. Bento Gonçalves
Porto Alegre, RS, Brazil

prech@inf.ufrgs.br

Laercio L. Pilla
Instituto de Informática

UFRGS
Av. Bento Gonçalves

Porto Alegre, RS, Brazil

llpilla@inf.ufrgs.br

Francesco Silvestri
Dip. Ingegneria dell’Informazione

Università di Padova
via Gradenigo 6B

35131 Padova, Italy

silvest1@dei.unipd.it

Philippe O. A. Navaux
Instituto de Informática

UFRGS
Av. Bento Gonçalves

Porto Alegre, RS, Brazil

navaux@inf.ufrgs.br

Luigi Carro
Instituto de Informática

UFRGS
Av. Bento Gonçalves

Porto Alegre, RS, Brazil

carro@inf.ufrgs.br

ABSTRACT

In this paper, we compare the radiation response of GPUs

executing matrix multiplication and FFT algorithms. The provided

experimental results demonstrate that for both algorithms, in the

majority of cases, the output is affected by multiple errors. The

architectural and code analysis highlight that multiple errors are

caused by shared resources corruption or thread dependencies.

The experimental data and analytical studies can be fruitfully

employed to evaluate the expected error rate of GPUs in realistic

applications and to design specific and optimized software-based

hardening procedures.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing, and

Fault-Tolerance.

Keywords

GPU, radiation effects, parallel architectures sensitivity, software-

based hardening.

1. INTRODUCTION
Graphic Processing Units (GPUs) are electronic devices designed

to perform high-performance stream processing typically used in

desktop computers, laptops or portable devices to accelerate

graphics rendering. In order to achieve the proposed objective,

GPUs manipulate a large number of memory locations, and are

typically able to execute several elementary tasks in parallel at

high speeds [1][2].

Due to their highly parallel structure, GPUs are more effective

than general-purpose CPUs when large blocks of data need to be

processed in parallel. GPUs have recently become popular for

high performance computing applications in which parallel

algorithms are employed, such as oil exploration, air traffic flow

analysis, medical image processing, linear algebra, statistics, 3D

reconstruction, and stock options pricing determination [3][4].

Moreover, thanks to their high computing power, GPUs are used

in modern supercomputers like TITAN, which is composed of

18,000 GPUs [5].

Modern GPUs are cutting edge processors built with novel

technologies and, thus, may be very prone to experience radiation-

induced failures. We have already demonstrated in [6][7] that

radiation-induced errors, including from the terrestrial neutron

radiation environment, are one of the major issues for the newest

GPU cores reliability. While CPU radiation responses, test

procedure, and hardening techniques are well documented, and

standardized [8][9], only few papers describe possible radiation

test methods for extreme parallel systems and fewer analyze

parallel algorithms behaviors in radiation environments.

Unfortunately, the experimental data presented here demonstrate

that, when both matrix multiplication and FFT are concerned,

most of the corrupted executions are affected by multiple errors,

hence refuting the traditional hypothesis that just single output

errors may occur in extreme parallel computing systems. Having

multiple output errors is an extremely tricky situation to deal with.

On one side, as they are unexpected, multiple output errors may

remain undetected, seriously compromising the system

dependability. On the other side, most of the available hardening

techniques for parallel algorithms are based on the assumption

that just one single error affects the output, and may become

ineffective or inefficient when multiple errors occur [10]. The

purpose of this work is to take advantage of experimental results,

algorithm analyses, and architectural studies, to identify the

causes of multiple output errors and propose dedicated and

efficient hardening strategies to correct them.

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the

full citation on the first page. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

FTXS’13, June 18, 2013, New York, NY, USA.

Copyright © 2013 ACM 978-1-4503-1983-6/13/06...$15.00.

http://en.wikipedia.org/wiki/Central_processing_unit

In this paper we analyze the radiation experiments results of

extensive test campaigns performed at ISIS, Rutherford Appleton

Laboratories, Didcot, UK, and at LANSCE, Los Alamos National

Laboratories, Los Alamos, NM, USA. The performed experiments

allow the realistic evaluation of the output error rate of a

representative set of classical applications in high performance

computing executed on GPUs exposed to the natural neutron flux.

We will compare the experimental results of matrix multiplication

with the FFT ones, giving particular attention to the different

causes of multiple errors. As detailed in the following section,

matrix multiplication is composed of independent threads but

heavily employs cache memory, which is shared among several

threads. A radiation-induced error in the cache is then likely to

affect the execution of various threads. On the contrary, FFT

computation requires sequential iterations and, thus, a thread

output may depend on previously executed threads. If a thread

fails, the error is then likely to spread over the following threads.

Finally, we compare the algorithmic structures and analyze the

GPU architecture to propose dedicated and efficient software-

based approaches and programming guidelines to lower the

impact of multiple errors on massively parallel system and avoid

the radiation-induced failure to affect the output.

The hardening philosophy we follow is based on the Algorithm

Based Fault Tolerance (ABFT) technique that exploits the

properties of the computational problem and of the adopted

algorithmic approach to efficiently detect and, whenever possible,

correct silent faults. We extend the ABFT solution designing

dedicated and optimized procedures for the detection and

correction of multiple output errors. Moreover, the correction

capability of the technique can be tuned with the experimentally

evaluated error rate so to prevent the introduction of useless

overheads and avoid excessive performance degradation, which is

essential in high performance computing applications.

The remainder of the paper is organized as follows. Section 2

introduces the GPU structure, and the possible radiation-effects on

its internal resources. Section 3 describes the neutrons spectra and

fluxes, the experimental setup, and the tested algorithms. Section

4 and section 5 describe the matrix multiplication and FFT

algorithms, respectively, discussing the obtained experimental

results, highlighting the presence and causes of multiple output

errors, and propose dedicated hardening procedures, while section

6 concludes the paper.

2. GPU INTERNAL STRUCTURE
GPUs are divided into various computing units, named Streaming

Multiprocessors (SM), each of which has the ability to execute

several threads in parallel (see Figure 1). Each basic computing

unit (named CUDA core in NVIDIA devices) in the SM executes

one thread with dedicated memory locations, avoiding complex

resource sharing or the need of long pipelines [2].

It is the programmer’s task to divide the instantiated threads into a

grid of blocks, and each SM in the GPU will treat a block of

threads at a time (see Figure 2). Thus, some blocks will be queued

for later computation if the grid size exceeds the number of SMs

available in the GPU. Before assigning a queued block to the first

SM that becomes available, the GPU scheduler needs to check if

some SM completed the current block execution and, if so, it

transfers the results to the on-board DDR memories. The queued

block is then assigned to the SM, input data are read from the

DDR, and, finally, the queued block execution is triggered and

synchronized [11].

Generally, on modern GPUs each SM can execute a warp of up to

32 parallel threads in a computing cycle. If the block size exceeds

32, some threads execution will be delayed until the computation

of the preceding warps of the block has been completed (see

Figure 3). It is worth noting that the next block to be treated will

be assigned to the SM when all the threads in the current block

have been processed. So, if the number of threads in a block is not

a multiple of 32, in the last cycle the SM will execute less than 32

threads (warp N in Figure 2), wasting parallel capabilities.

A neutron striking a CUDA core may generate a functional

interruption, preventing the thread assigned to it from completing

its computation, corrupt an internal register or disturb the logic

gates that are calculating an operation, leading the thread to

produce a silent fault. CUDA cores are isolated such that a

radiation-induced event in one CUDA core will only corrupt the

thread assigned to it. Threads that follow the corrupted one or

threads assigned to CUDA cores near the struck one will not be

affected.

Even thought CUDA cores are isolated, the corruption of

resources shared among various threads may lead the GPU to

Figure 1: Simplified internal structures of a GPU.

threads instantiated

Block 1 Block 3Block 2 Block N

….

SM 1 SM 2 SM 3

executed blocks

delayed Blocks

Figure 2: The instantiated threads are grouped into a

grid of blocks. Each of the available Streaming

Multiprocessor (SM1, SM2, and SM3) treats just one

block at a time.

Block of threads assigned to the SM

Warp 1 Warp 2 Warp N

….

delayed threads

Streaming Multiprocessor

Figure 3: The block of threads assigned to a SM is

divided into warps. Just one warp of threads is executed

at a time in the SM.

experience multiple output errors. This occurs, for instance, when

various threads in a SM use as input the same data stored in the

SM cache or in the GPU shared memory, which is the case of

matrix multiplication, as described in section 4. If radiation

corrupts shared data, all threads using it as input will produce a

faulty output. In some algorithms, like the Fast Fourier Transform

(FFT), several iterations are necessary to conclude the calculation.

At each iteration, threads use the output of previously executed

threads as an input. A neutron-induced error on a thread in one

iteration will then propagate over the following ones, as detailed

in section 5.

GPU schedulers are needed to trigger and synchronize threads

execution, to check if computation is complete, and, if so, to

pipeline the exceeding threads allocated [11]. A scheduler is a

critical resource, as its radiation-induced failure has severe

repercussion on the system functionalities [10]. Potentially, the

threads handled by a corrupted scheduler may produce a wrong

output. However, if some of the handled threads already finished

computation when the scheduler is struck, just the remaining

threads will present an incomplete, and thus faulty, result.

On a reliability point of view, it is feasible to avoid cache

corruption from affecting computation adding an Error Correction

Code (ECC), while adding redundancy on the scheduler will

require costly modifications to the GPU physical structure. As we

will demonstrate in the following sections, cache corruption

normally generates detectable output patterns that could be

efficiently corrected with software-based hardening strategy,

while a scheduler failure is likely to lead to random output errors,

which are not always correctable and, even when possible, output

correction requires a great computation effort [10].

3. EXPERIMENTAL METHODOLOGY

AND DEVICES

3.1 Tested Devices
The Devices Under Test (DUT) were commercial-off-the-shelf

GeForce GTX480 GPUs designed by NVIDIA in a 40nm

technology node [12] and can run with a maximum frequency of

1.215GHz. The DUT is composed of 15 Streaming

Multiprocessors, and disposes of 480 CUDA cores (32 for each

SM). For the GTX480 GPU, 15 blocks of threads can be executed

in parallel with a maximum of 32 threads in each block for a total

of 480 threads. If more threads or blocks are instantiated, their

execution will be delayed until they can be scheduled.

3.2 Neutron fluxes and spectra
Experiments were performed at Los Alamos National

Laboratory’s (LANL) Los Alamos Neutron Science Center

(LANSCE) Irradiation of Chips and Electronics House II, called

ICE House II, in September 2012 and at VESUVIO, in ISIS,

Rutherford Appleton Laboratories, Didcot, UK, in December

2012. Both of these facilities provide a white neutron source that

emulates the energy spectrum of the atmospheric neutron flux (see

Figure 4).

The available neutron flux was approximately 1x106 n/(cm2·s) at

LANSCE and 4x104 n/(cm2 s) at ISIS for energies above 10MeV.

The flux denotes the number of particles hitting the device per

unit area and time. The higher the flux is, the higher the

probability of observing output errors in the GPU. The flux used

for tests allows one to obtain a statistically significant amount of

errors in a short time. As we will detail in the following section,

the experimental setup was tuned in order to prevent more than

one neutron from corrupting the device during the same code

execution. This is necessary to avoid the occurrence of multiple

errors caused by the high flux used during experiments and, so,

the experimentally measured error rate can be scaled to the

realistic error rate caused by the much lower atmospheric neutron

flux.

The beam was focused on a spot with a diameter of 2cm plus 1cm

of penumbra, which provided uniform irradiation of the GPU chip

without affecting nearby DDR memories. Even if the LANSCE

and ISIS beams are well focused, some thermal neutrons (i.e. low

energy neutrons) may still be produced by scattering and may

collide with devices in the proximity of the beam azimuth,

possibly causing failures if the struck device includes boron-10

[15]. The DDR content was periodically checked during the

experiments, and no radiation-induced error was ever found. It is

worth noting that input and output data were stored in the DDR,

so the observed errors were only caused by the corruption of logic

resources or internal memories or registers. Irradiation was

performed at room temperature with normal incidence and

nominal voltages.

3.3 Test Procedure
The Device Under Test (DUT) was controlled by a desktop PC

through a 2.5GHz PCI-Express bus. The PC was kept out of the

beam using a 20cm GPI-Express bus extension and shielded by

boron plastic panels to avoid errors induced by scattering of

thermal neutrons from the beam to affect its functionalities and to

better align the DUT with the neutron beam. Moreover, the PCI-

Express extension was provided with fuses on power lines, so to

prevent eventual radiation-induced latchups on the GPU to

propagate to the PC motherboard. Operating voltage was provided

externally with a current-controlled power supply to the DUT in

order to promptly cut power in the event of latchup. It is worth

mentioning that we never observed any destructive latchup on the

irradiated GPU even after several week of irradiation. The tested

GPUs can then be considered immune to neutron-induced

latchups.

The only role of the CPU during the test is to initialize the GPU

and gather experimental results. The procedure designed for

experiments is divided in three parts:

1. Initialization: the CPU loads data and instructions in the

GPU.

2. Test: the GPU runs the instruction; the test is actually

performed while the CPU is in idle state.

3. Readback: test results are transferred from the GPU to

the CPU and checked.

Figure 4: ISIS and LANSCE spectrum compared to those of

the TRIUMF facilities and to the terrestrial one at sea level

multiplied by 107 and 108 [14].

Thanks to the extreme high frequencies of operation of both the

PCI-express bus and the CPU, steps 1 and 3 are performed so

quickly (order of ms in the worst case) that one can consider the

probability of a neutron to generate an error during their execution

negligible (observed error rates were lower than 0.1 errors/s).

Steps 1 to 3 were then performed repetitively under the neutron

beam to gain a statistically significant amount of errors.

4. MATRIX MULTIPLICATION (MxM)

4.1 MxM Algorithm Description
We executed on the irradiated GPU an algorithm that multiplies

two matrices (A and B) composed of 2048x2048 random double

precision floating-point elements taking full advantage of the

GPU parallelism capabilities [11]. The algorithm, named MxM,

instantiates 2048x2048 parallel threads, each of which is in charge

of calculating a single element of the resulting matrix M following

Equation 1.

() [] ∑ [] []

Where n is the number of rows and columns of the matrices A, B,

and M.

During the code execution, threads can be considered independent

from each other, as the thread output is evaluated using just the

input data, not the result of other threads calculations. To limit

execution latency, the SM stores in its cache the data required by

the threads it hosts.

As stated in section 3, the GTX480 can execute up to 480 threads

in parallel. Thus, not all the threads instantiated in MxM will be

physically executed in parallel. MxM computation will then

require several different threads and blocks allocations to be

completed, exacerbating scheduler employment. The presented

results were obtained grouping threads in blocks of size 1024.

Results with different block sizes can be found in [16]. The

matrices dimension were chosen big enough to allow the

gathering of a statistically significant amount of data in a short

time, but yet small enough so that one can be reasonably sure that

at most one neutron per MxM execution generates errors

(observed error rates were lower than 3x10-2 errors/execution).

The observed multiple output errors were then not caused by the

high particle flux used during experiments, but rather by the

corruption of GPU critical resources and so are likely to occur

also when the GPU is irradiated with the natural neutron flux.

4.2 MxM Experimental Results Analysis
The first column of Table I encloses the experimentally measured

cross section for MxM executed on the GTX480 with double

floating point data. The experimental cross section for MxM

executed with integer data is 2.22 10-6, as reported in [10]. The

MxM cross section is obtained dividing the observed output errors

per unit time by the flux (i.e., the number of neutrons hitting the

device per unit time and unit area). The cross section is then the

probability for a neutron that hits the GPU executing MxM to

produce an output error. The output error rate of MxM on a

realistic application can be evaluated multiplying its cross section

by the expected amount of neutrons that hit the device in the

environment of interest. Table I also reports the Failure In Time

(FIT), i.e. the number of errors in 109 hours of continuous

operation, expected at New York City when MxM is executed

with double precision floating point data. The FIT is calculated

multiplying the MxM cross section experimentally measured and

the natural neutron flux in New York (i.e., 14 n/(cm2 h) [17]). The

evaluated FIT is realistic and precise as the spectrum of neutron

energies at ISIS and LANSCE resembles the atmospheric one (see

Figure 4). The experimentally evaluated FIT of MxM is 2.81 104,

which equals of about one error every 3.5 years. The MxM

neutron-induced error rate may seem reasonable for entertainment

applications or video/audio editing. However, the GPU FIT is

extremely high for safety critical applications, in which a high

reliability is required. For instance, the car pedestrian detection

system, designed for promptly activating the vehicle brakes in

order to prevent the collision with pedestrians, is actually being

implemented with a GPU. In the event of radiation-induced

failure, the GPU may suddenly trigger the brakes, possibly

causing accidents. Moreover, the GPU FIT may be unacceptable

for supercomputers, in which thousands of GPUs run in parallel,

as the probability of having at least one GPU corrupted is very

high. It is then mandatory to design and evaluate hardening

strategies for GPUs.

The first row of Table II report the percentage of corrupted

matrices affected by single and multiple errors. As one can see, in

the majority of cases multiple errors occur when MxM is executed

on a GPU. We can further study the observed phenomena

analyzing the different multiple error patterns detected in the

output matrix. As reported in the last two column of the first row

of Table II, in most of the cases multiple errors are distributed on

a single row or column of the resulting matrix. Errors on the same

row/column are due to cache corruption. As demonstrated in [11],

for evaluating a row MxM uses the same row of input matrix A

(see Eq. 1), which is stored in the cache to avoid multiple accesses

to the DDR. If that row is corrupted, all threads using its values

will produce a wrong output. The same considerations apply to

column. It is very unlikely to have more than 10 errors in a row or

column and more than 32 errors were never observed in our

experiments [10]. This is because not all the threads in the SM

whose cache has been corrupted are calculating elements on the

same row or column.

TABLE I
MXM CROSS SECTION AND FIT AT NYC

 Cross section FIT

MxM GTX480 2.0110-6cm2 2.81104

TABLE II

MXM SINGLE AND MULTIPLE ERRORS PERCENTAGES AND FIT

 Single Multiple Row/Col Random

Percentage 48.48% 51.51% 47.47% 4.04%

FIT [103] 13.60 14.50 13.36 1.14

Figure 5: MxM output errors patterns FIT at NYC when

executed with double data.

The causes for randomly distributed errors could be various.

For instance, pairwise errors in the cache flags or multiple cells

upset in the cache array may lead various threads to work with

corrupted data and, thus, to produce an output error. As stated in

section 2, a scheduler failure is likely to affect multiple thread

executions. The scheduler is in charge of designating the block of

threads that has to be executed in a Streaming Multiprocessor, and

of detecting if all threads have completed the assigned

computation. If so, results are presented at the output and another

block of threads is triggered for execution. In the event of

scheduler corruption, some results may be transferred to the

output even if some threads have not yet completed their

computation, leading to a faulty output matrix. The same

considerations apply to the scheduling necessary when the number

of threads inside a block exceeds 32 (i.e., the highest amount of

threads a Streaming Multiprocessor can execute in parallel).

Threads affected by scheduler failure may be calculating different

locations of the output matrix, not necessarily on the same column

of row, leading to randomly-distributed multiple errors.

Unfortunately, no detailed information is currently available on

the scheduler structure. Nevertheless, radiation tests of GPUs

varying scheduler strains show that the occurrence of randomly

distributed errors is lower when an efficient scheduling is

exploited [16]. This empiric result supports the statement that the

scheduler is a critical resource for the GPU and its corruption may

indeed lead to randomly distributed errors. In the future, further

tests are going to be performed to investigate the probability of

occurrence and the effects of scheduler failures in a parallel

algorithm output.

The occurrence of different error distributions on a real

application is evaluated by calculating the FIT at New York City

for all the observed error patterns (see second row of Table II). As

shown in Figure 5, a consistent portion of the observed multiple

errors is due to cache corruption. Cache bits can be protected

adding ECC. To mitigate the radiation effects on their devices,

NVIDIA actually introduced in the latest GPUs an ECC able to

correct single errors and detect double errors on the same word.

Nevertheless, ECC will not detect errors affecting the scheduler or

the logic resources nor functional interruption on a thread or on a

SM. Furthermore, the ECC introduced overhead is far from being

negligible. In fact, when the NVIDIA ECC is enabled, the amount

of user accessible memory (DDR and internal cache) is reduced

by 12.5% [13]. Moreover, depending on the algorithm and device,

typically the ECC reduces the GPU performances in the range of

20-30% [18]. If the reliability ensured by ECC or the overhead

introduced by ECC are found to be unacceptable for an

application, programmers can exploit software-based hardening

techniques to correct radiation-induced errors. Some hardening

techniques for matrix multiplication are presented and compared

in [11]. In particular, as cache corruption produces multiple errors

on the same row or column of the output matrix, errors can be

corrected in constant time by adding checksums in the input

matrices extending the Algorithm Based Fault Tolerance (ABFT)

technique proposed in [19], based on Freivalds’ results [20].

As can be seen in Figure 5, random multiple errors are less likely

to occur then single errors or errors on a row or column.

Nevertheless their occurrence is definitely not negligible (1.14 103

FIT, see last column of Table II) and, mostly, they are potentially

very dangerous. On one side it is not possible to physically harden

the scheduler, whose corruption is the main cause for multiple

random errors and, on the other, a high amount of random errors

are extremely difficult to be corrected with software-based

techniques. As demonstrated in [11], in fact, random errors are

surely correctable only if no more than 3 locations are found as

corrupted in the output matrix. In all the other situations it is

necessary to check if correction is possible and, even when

possible, output correction requires a great computation effort.

Experimentally we never observed more than 4 randomly

distributed errors on the output matrix.

5. FAST FOURIER TRANSFORM (FFT)

5.1 FFT Algorithm Description
The second tested algorithm on the irradiated GPU, named FFT,

is a 64-points 1D Fast Fourier Transform (FFT) calculated on

512x512 vectors. The FFT input is then composed of a

64x512x512 double precision floating-point matrix for the real

part and a 64x512x512 matrix for the imaginary part. The

implemented algorithm is based on the FT kernel of the NAS

Parallel Benchmarks [21] implemented in C and ported to the

GPU using CUDA. The executed algorithm performs a 64-points

complex-to-complex 1D FFT on each of the 512x512 vectors.

The 64-points 1D FFT kernel is composed of 6 iterations

(log264=6) of a variant of the Stockham FFT algorithm [22]. All

iterations are executed sequentially in the GPU using two

temporary matrices for scratch. At each iteration, the GPU

instantiates 512x512 parallel threads, grouped in blocks of 512

threads each. A thread is in charge of evaluating the intermediate

FFT values on the assigned complex vector of size 64, updating in

each iteration two-by-two the values of all the floating-point

elements in the complex matrix.

The FFT algorithm is then divided into threads that are not

completely independent. In fact, a thread in one iteration takes the

output of threads executed on the previous iteration as input. If a

thread output is corrupted, in the next iteration a thread will take a

faulty value as input and evaluate two intermediate values of the

FFT with it. A single output error in one thread will then spread in

the following iterations, generating multiple corrupted locations in

the FFT output. The worst case occurs when errors appear in the

first iteration. If one of the 64 locations updated by a thread in the

first iteration is corrupted one can expect to have 25 = 32 errors in

the output (the number of errors doubles at each iteration). If two

or more locations are wrongly updated, all the 64 elements of the

1-D FFT will be faulty.

We choose to test 64-points FFT to limit the number of iterations

and ease the study of errors propagation in the code, while having

512x512 1D FFTs eases gathering a statistically significant

TABLE III

FFT CROSS SECTION AND FIT AT NYC

 Cross section FIT

FFT 3.69 10-6cm2 5.17 105

TABLE IV

REAL AND IMAGINARY PART PERCENTAGE, CROSS SECTION, AND FIT

 Percentage Cross section FIT

FFT Real 94.96% 3.50 10-6cm2 4.90 105

FFT Imaginary 96.17% 3.55 10-6cm2 4.97 105

TABLE V

FFT SINGLE AND MULTIPLE ERRORS

 FFT Real FFT Imaginary

 Single Multiple Single Multiple

Percentage 1.61% 98.39% 4.00% 96.00%

FIT 7.89 103 4.82 105 19.80 103 4.67 105

amount of errors. Each thread works over its own sequential

vector in memory to complete the 1D 64-point FFT, thus no

shared cache memory is used. Vector dimensions were chosen

small enough to be reasonably sure that at most one impinging

neutron per FFT execution generates errors (observed error rates

were lower than 2x10-2 errors/execution). The observed multiple

output errors were then not caused by the high particle flux used

during experiments.

5.2 FFT Experimental Results Analysis
Table III reports the experimentally measured cross sections and

the FIT for FFT. FFT gives complex double data as an output,

divided in real and imaginary parts. An execution is considered as

faulty if at least one error is detected in the real, imaginary or both

part of the output. The cross section is obtained dividing the

number of faulty executions per unit time by the flux.

The experimentally evaluated FIT is 5.17 105, which is higher

than the MxM one. Even if executed on the same GPU, FFT and

MxM have different throughput and execution time, which may

indeed turn into different radiation-induced error rates. In

particular, the FFT elaborates 8 times more data than MxM

(64x512x512 complex elements in the FFT versus 2048x2048 real

elements in the MxM), but instantiate less threads (512x512 for

each of the 6 iterations in the FFT versus 2048x2048 in the MxM).

The computational effort required by each thread to complete the

assigned task is higher in the MxM algorithm, as each thread

executes 2047 sums and 2048 multiplications, while a thread in

one iteration of the FFT requires 3 sums, 3 subtractions, and 4

multiplications, for each couple of values to update, for a total of

96 sums, 96 subtractions and 128 multiplications.

The implemented algorithm is symmetric for the real and

imaginary parts. One thread, in fact, uses the same operations and

the same amount of internal registers to calculate both the real and

imaginary part of an element, updating two output values using

two complex numbers as an input. Nevertheless, some executions

experienced errors just in the imaginary part or just in the real

part. Table IV shows the percentage of faulty execution of the

FFT algorithm in which the real or imaginary part was detected as

corrupted as well as the cross section and FIT of just the real and

imaginary part. As stated in the second column of Table IV, in

less than 5% of the executions considered as faulty no error was

detected in the real part. This means that in those executions the

FFT experienced an error just in the imaginary part. The same

considerations apply to errors in just the real part, which are less

than the 4% of the overall faulty executions. Errors in just the real

or imaginary part are due to the corruption of internal registers

used by the thread for storing the intermediate values of the

complex number.

Dissimilarly to MxM, the FFT algorithm is composed of threads

that are not independent, as a thread uses the output of previously

executed threads to update the real and imaginary part of the

complex output. It is then very likely that a radiation-induced

event affecting a thread in the early stages of the FFT execution

will spread, affecting various location of the output. Experimental

results support this assertion. In fact, as stated in Table V, just

1.41% of the faulty executions have a single error in the real part

and 4% have a single error in the imaginary part. The importance

TABLE VI

FFT REAL AND IMAGINARY SINGLE AND MULTIPLE ERRORS PERCENTAGES

 1 2 4 6 8 12 14 16 18 19 22 24 26 27 28 30

Real 1.63 6.91 5.28 5.28 4.47 4.47 2.44 2.85 0.81 0.40 0.81 5.29 0.40 0 6.50 6.91

Imaginary 4.00 7.20 6.40 4.00 4.00 4.40 3.60 3.60 0.40 0.40 0.80 4.00 0.40 0.40 6.40 6.80

 32 34-39 40 42 44 48 52 56 60 62 64 66-126 128 >130

Real 8.94 0 1.63 0.81 0.80 1.63 0.80 2.40 1.63 4.88 8.54 5.60 0.41 3.66

Imaginary 9.20 1.20 0.40 0.82 0.80 2.00 0.41 2.01 1.21 4.44 8.80 3.20 1.60 4.00

Figure 7: FFT real and imaginary multiple output errors percentages. Some distributions that were never experimentally

observed are grouped in the picture (it is the case of 9 to 11 errors, 20 and 21 etc.). In most of the cases, the output is affected

by less then 16 errors, about 32 or 64 errors. It is very unlikely to have an odd number of errors or more than 128 errors.

of the occurrences of multiple errors in realistic applications is

highlighted in the last row of Table V, in which the FIT of FFT

affected by single or multiple errors in the real and imaginary

parts are reported.

Table VI lists the percentage of FFT faulty executions affected by

the different multiple errors distributions for both the real and

imaginary part. Distributions observed in none or in less than the

0.4% of the faulty executions are not listed in Table VI.

As shown in Figure 7, it is very unlikely to have an odd number of

errors in the real or imaginary part of the output. Actually

radiation can lead the thread to produce a single output error

corrupting, for instance, the internal register that stores the value

of just one of the elements to update or disturbing just one of the

operations needed to calculate the FFT. If such a situation occurs,

the thread can complete its execution, allowing the correct

calculation of the remaining complex numbers. However, even if

radiation produces a single output error in a thread, in the

consequent iteration two complex numbers will be updated using

the corrupted value, leading to an even amount of errors in the

final output. Single error in the output occurs when radiation leads

a thread in the last iteration to produce just one faulty complex

value. As stated in Table VI, this occurred in just 1.63% of the

faulty executions for the real and in 4% of the faulty executions

for the imaginary part.

The multiple errors distributions shown in Figure 7 are explained

considering how errors propagate from one iteration to the

following ones. As said, the amount of errors doubles at each

iteration. Let ei be the amount of errors in the i-th iteration. The

amount of error in the j-th iteration, named ej is evaluated through

Equation 2.

()

The worst case occurs when radiation affects the execution of a

thread in the first iteration. As 6 iterations are necessary to

complete the FFT execution, if a single error occur in the first

iteration, the amount of output errors is going to be e6 = 25 e1 or e6

= 32. As said in Section 2, radiation can either corrupt a thread

internal registers or operation execution, leading to a single error,

or prevent the thread from completing the execution, generating a

thread functional interruption that possibly leads to have all the 64

elements wrongly updated. In the former situation, e1 = 1, and the

error will spread through the iterations, generating at most 32

errors in the output vector. In the latter, e1 depends on how many

elements were correctly updated before the occurrence of the

functional interruption. As 2 elements are updated at the same

time in a thread, e1 will be at least 2 and, thus, 64 errors will be

present in the output vector.

Experimental results support these assertions, as in most of the

executions less then 64 errors were observed while it is very

unlikely to have more than 64 errors in the output. This rare

situation occurs when radiation leads a Streaming Multiprocessor

to experience a functional interruption preventing a whole warp of

32 threads or even a whole block of 512 threads from completing

execution. Those errors will then spread as described in Equation

2, possibly in more than a single 64-points FFT, and a huge

amount of errors are expected at the output.

As errors double at each iteration, even the 6 sequential iterations

required to compute the 64-points FFTs are sufficient to have a

considerable amount of multiple output errors. In order to reduce

the occurrence of multiple output errors and increase the FFT

reliability it is essential to avoid errors propagation from an

iteration to the following one. This can be achieved extending to

the parallel FFT the results presented in the recent work [22] that

proposes ABFT recursive algorithms for dynamic programming in

sequential platforms. The idea is to exploit fingerprints for a

prompt detection of errors to avoid their propagation. A

fingerprinting algorithm is a procedure that maps an arbitrarily

large data item (e.g., a vector) to a short bit string, i.e. its

fingerprint, with a negligible probability for two items to have the

same fingerprint.

The ABFT version has the same organization of the tested FFT

algorithm, but exploits fingerprints of the input and output vectors

of each iteration for detecting errors. Fingerprints could be

computed in linear time using the Karp-Rabin fingerprints

procedure [24] that just requires a scanning of the vector. When

the i-th iteration is called, the input fingerprints (or the

fingerprints returned by previous iterations) is used for checking

data correctness while processing data and multiplying for the

twiddle factors. If an error is detected, the call fails and returns to

the previous iteration, i-1. The input of the failed subproblem is

then recomputed and the i-th iteration is executed again. If no

faults are detected, the output vector and the associated fingerprint

are returned, since this output is used as input in subsequent

iterations. We suppose that each iteration uses different vectors

(e.g., operations are not in place). In such a way, if an iteration

fails and returns to the previous one, the input can be restored by

using another copy of the data which has a small probability to be

corrupted as well (nevertheless, new corruptions are detected

through fingerprints).

The proposed procedure applied to a N-point FFT is an

O(N log2N) algorithm and captures radiation induced errors

requiting re-calculation. Unfortunately, the characteristics of FFT

do not allow a prompt error correction like in MxM. Nevertheless,

since most of the work of the proposed FFT algorithm is devoted

to solve small subproblems, the occurrence of an error will force

the re-computation of just small parts of the execution, limiting

the introduced overhead.

6. CONCLUSIONS
Radiation-induced errors from the terrestrial neutron radiation

environment are one of the major issues for the newest GPU cores

reliability. As experimentally demonstrated, neutrons generate

mostly multiple output errors even if threads are executed on

independent processors.

Multiple output errors are caused by the corruption of resources

shared among various threads, like the Streaming Multiprocessor

cache, or of critical resources, like the GPU scheduler. In the case

of the FFT, the iterations needed to complete the convolution have

the countermeasure of letting the errors spread.

Specific and efficient software-based hardening strategies can be

designed analyzing the code structure and the GPU architecture.

Matrix Multiplication can be hardened adding a checksum on the

input matrices, as every thread is independent and does not

interact with the others. On the contrary, FFT requires the

introduction of checkpoints at every iteration to avoid error

propagation. In order to optimize the hardening procedure and

avoid useless overhead or excessively affect the code

performance, it is necessary to tune its correction capabilities with

experimental results.

7. ACKNOLEDGMENTS
This work is partially supported by CAPES foundation of the

Ministry of Education, CNPq research council of the Ministry of

Science and Technology, FAPERGS research agency of the State

of Rio Grande do Sul, Brazil, Microsoft Corporation, and by

University of Padova, Italy, under projects STPD08JA32 and

CPDA121378.

Experiments were performed in the ISIS facility, Rutherford

Appleton Laboratories, Didcot, UK thanks to Christopher Frost

and were founded by the Science and Technology Faculty Council

(STFC), UK. Experiments in the LANSCE facility, Los Alamos

National Laboratories, NM, USA were performed thanks to

Heather Quinn and Thomas Fairbanks.

8. REFERENCES
[1] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone,

and J.C. Phillips, “GPU Computing” Proceedings of the

IEEE, vol.96, no.5, pp.879-899, May 2008.

[2] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,

“NVIDIA Tesla: A Unified Graphics and Computing

Architecture” IEEE MICRO, vol. 28, n. 2, March/April 2008,

pp. 39-55.

[3] J. Kruger and R. Westermann, “Linear Algebra operators for

GPU implementation of numerical algorithms”, ACM Trans.

Graph. n. 22, vol. 3, 2003, pp. 908-916.

[4] J. Liepe, C. Barnes, E. Cule, K. Erguler, P. Kirk, T. Toni, and

M. P. H. Stumpf, “ABC-SysBio-approximate Bayesian

computation in Python with GPU support” – Bioinformatics,

vol. 26, n. 14, July 2012, pp. 1797-1799.

[5] Introducing Titan, www.olcf.ornl.gov/titan.

[6] P. Rech, C. Aguiar, R. Ferreira, M. Silvestri, A. Griffoni, C.

Frost, and L. Carro, “Neutron-Induced Soft Error in Graphic

Processing Units”, in proc. IEEE REDW 2012, Miami, FL,

USA.

[7] P. Rech, C. Aguiar, C. Frost, and L. Carro, “Neutron

Radiation Test of Graphic Processing Units”, in proc. IEEE

IOLTS 2012, Sitges, Spain.

[8] N. Seifert, Zhu Xiaowei, and L. W. Massengill, “Impact of

Scaling on Soft-Error Rates in Commercial

Microprocessors”, IEEE Trans. Nucl. Sci, vol. 46, no. 6, pp.

3100, 2002, 3106.

[9] H.T. Nguyen, Y. Yagil, N. Seifert, and M. Reitsma, “Chip-

level Soft Error Estimation Method”, IEEE Trans. Device

and Materials Reliability, vol. 5, no. 3, 2005, pp. 356, 381.

[10] P. Rech, C. Aguiar, C. Frost, and L. Carro, “Experimental

Evaluation of Software Hardening Techniques for GPUs”, in

proc. IEEE RADECS 2012, Bordeaux, France.

[11] D. B. Kirk, W.W. Hwo, “Programming Massively Parallel

Processors”, MK Publishers

[12] NVIDIA GeForce GTX 480/470/465 GPU Datasheet

[13] NVIDIA Tesla C2050/C2075 GPU Datasheet

[14] M. Violante, et al., “A New Hardware/Software Platform and

a New 1/E Neutron Source for Soft Error Studies: Testing

FPGAs at the ISIS Facility”, IEEE Trans. Nucl. Sci., vol. 54,

no. 4, pp. 1184-1189

[15] R.C. Baumann, “Neutron-induced boron fission as a major

source of soft errors in deep submicron SRAM devices”, in

proc. IEEE IRPS 2000, pp. 152-157

[16] P. Rech, C. Aguiar, C. Frost, and L. Carro, “Experimental

Evaluation of Thread Distribution Effects on Multiple Output

Errors in GPUs”, in proc. IEEE ETS 2013, Avignon, France

[17] E. Normand, “Single Event Effects in Avionics”, IEEE

Trans. Nucl. Sci., Vol. 43, No. 2, Apr. 1996, pp. 461-474.

[18] NVIDIA BENCH: Tesla C2050 Performance Benchmarks

[19] K.H. Huang and J.A. Abraham, “Algorithm-Based Fault

Tolerance for Matrix Operations”, IEEE Trans. on

Computers, vol. c-33, no. 6, June 1984, pp. 518-528

[20] R. Freivalds, Fast Probabilistic Algorithms, In Matematical

Formulations of CS, Lecture notes in Computer Science, vol.

74, 1979, pp. 57-69

[21] D. Bailey, et al., “The NAS Parallel Benchmarks”, RNR

Technical Report RNR-94-007, March 1994.

[22] T. G. Stockham, “High-Speed Convolution and Correlation”,

in proc. Spring Joint Computer Conference, 1966, pp. 229-

233.

[23] S. Caminiti, I. Finocchi, E. G. Fusco, and F. Silvestri,

“Dynamic programming in faulty memory hierarchies

(cache-obliviously)”, in proc. of 31st FSTTCS, LIPIcs 13, pp.

433-444.

[24] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-

matching algorithms”, IBM J. Res. Dev., 1987, vol. 31, no. 2,

pp. 249–260.

