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Abstract—In this paper we analyze the neutron sensitivity of 

GPU devices when executing a Fast Fourier Transform 
algorithm. The provided experimental results demonstrate that 
in the majority of cases the output is affected by multiple errors, 
caused by thread and data dependencies. ECC is experimentally 
proved not to be sufficient to provide high reliability. 
Experimental data and analytical studies are employed to design 
specific software-based hardening strategies, which are validated 
through fault-injection. 
 

Index Terms—GPU, FFT, neutron sensitivity, ECC, software-
based hardening strategies 
 

I. INTRODUCTION 
HE Fast Fourier Transform (FFT) is one of the most 
representative algorithms in high performance computing. 

FFT algorithms are used in several applications such as signal 
processing, vibration and spectrum analysis, speech 
processing, communication, linear algebra, statistics, 3D 
reconstruction, and stock options pricing determination [1][2].
 Nowadays, every desktop computer, laptop or portable 
device includes at least one Graphics Processing Unit (GPU), 
mainly used as a support for the CPU to accelerate graphics 
rendering. Due to their highly parallel structure, GPUs are 
more effective than general-purpose CPUs when large blocks 
of data need to be processed in parallel, and have recently 
become popular for high performance computing. For instance 
TITAN, one of the most powerful of current supercomputers, 
is built using 18,000 GPUs. 

We have already demonstrated in [3][4] that radiation-
induced errors, including those generated from the terrestrial 
neutron radiation environment, are one of the major issues for 
the newest GPU cores reliability. However, only few papers 
describe possible radiation test methods for extreme parallel
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systems and fewer analyze the behavior of parallel algorithms 
in radiation environments. 

In this paper we deeply investigate the behavior of a parallel 
version of the FFT algorithm executed on a GPU irradiated 
with neutrons. The results of extensive radiation test 
campaigns attest that the FFT algorithm experiences a very 
high error rate and in the majority of the cases the FFT output 
is affected by multiple errors. As demonstrated with algorithm 
and architectural analyzes, multiple errors occur mainly 
because the FFT computation requires sequential iterations: 
hence, a thread output may depend on previously executed 
threads. If in a given iteration a thread is corrupted by 
radiation, the error is likely to spread over the following 
iterations leading to multiple output errors. 

We experimentally prove that the Error Correction Code 
(ECC) available in the latest GPUs is not sufficient to ensure 
by itself a high reliability. In this work we propose two 
dedicated software-based hardening strategies for the FFT 
algorithm executed on a GPU, both based on the Algorithm 
Based Fault Tolerance (ABFT) philosophy [5]. The first 
hardening strategy we design takes advantage of the FFT 
properties demonstrated in [6], and applies them in the GPU 
algorithm to detect faulty executions. We then extend the 
proposed ABFT approach to achieve prompt error detection 
and prevent errors propagation. Finally, the computational 
overhead of the proposed hardening technique is evaluated 
and their efficiency is proved through fault-injection.  

II. EXPERIMENTAL METHODOLOGY AND TESTED DEVICES 

A. Neutron Beam 
Radiation experiments were performed at ISIS facility in 

the Rutherford Appleton Laboratories (RAL) in Didcot, UK 
[7]. The available neutron flux was of about 5.5x104 n/(cm2·s). 
The beam was focused on a spot with a diameter of 2 cm plus 
1 cm of penumbra, which was enough to fully and 
homogenously irradiate the GPU chip without directly 
affecting nearby board power control circuitry and DDR 
memories. Nevertheless, even if the beam is collimated, 
scattering neutron may still wander from the beam spot, thus 
we periodically check it during experiments to ensure that the 
DDR content was consistent during our experience, and no 
error has been observed. It is worth noting that input and 
output data were stored in the DDR, and no cache memory 
was employed, so the errors reported in the following sections 
were only caused by the corruption of the GPU core logic 
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resources or internal flip-flops. Irradiation was performed at 
room temperature with normal incidence and nominal 
voltages. 

B. Tested Devices 
We tested commercial-off-the-shelves Tesla C2050 GPUs 

designed by NVIDIA and manufactured in a 40nm technology 
node. The C2050 includes 14 Streaming Multiprocessors 
(SMs), each of which is divided in 32 CUDA cores [8]. In the 
C2050 GPU 14 blocks of threads can be executed in parallel 
with a maximum of 32 threads in each block for a total of 448 
threads. If more threads or blocks are instantiated, their 
execution will be delayed until they can be scheduled. 

NVIDIA provides the newest GPUs, like the C2050 family, 
with an internal Error Correction Code (ECC) able to correct 
single errors and detect double errors, mechanism that can be 
activated by the user. The ECC was disabled to evaluate the 
FFT sensitivity to neutrons. A discussion on the efficiency and 
drawbacks of the NVIDIA ECC mechanism takes place in the 
following section.  

It is worth noting that the delayed blocks input vectors as 
well as the results of computation are stored in the GPU board 
DDR, which were not irradiated. On a realistic application, the 
higher number of blocks may extend the exposure time of 
input or output data, increasing the probability of having them 
corrupted by neutrons. However, DDR sensitivity has been 
proved to decrease with the shrinking of technology nodes [9], 
and modern DDR chips are provided with efficient ECC that 
increase of several orders of magnitudes the device reliability 
[10]. It is then reasonable to consider negligible, even on a real 
application, the probability for GPU input or output vectors to 
be corrupted. 

C. Tested Fast Fourier Transform Code 
We tested under radiation a benchmark that implements 

512x512 1D-FFTs of 64-points each. The FFT input is 
composed of a 64x512x512 double precision floating-point 
matrix for the real part and a 64x512x512 matrix for the 
imaginary part. We choose to test relatively small FFTs (64-
points) to limit the number of iterations and ease the study of 
errors propagation, while having 512x512 1D-FFTs eases the 
gathering of a statistically significant amount of errors. 

A thread acts like a butterfly module [6] updating the values 
of two floating-point elements in the complex matrix using the 
values of two elements computed in the previous iteration as 
inputs (see Fig. 1). The implemented algorithm is based on the 

FT kernel of the NAS Parallel Benchmarks [11] implemented 
in C and ported to the GPU architecture using CUDA. As 
represented in Fig. 2, each 64-points 1D FFT kernel is 
composed of 6 sequential iterations (log264=6) of a variant of 
the Stockham FFT algorithm [12]. 

For all iterations, the GPU instantiates 512x512 parallel 
threads, grouped in blocks of 512 threads each. A thread is in 
charge of evaluating the intermediate FFT values on the 
assigned complex vector of size 64.  

III. EXPERIMENTAL RESULTS AND DISCUSSION 
Table I reports the experimentally measured cross sections 

and the FIT for the tested FFT code. The FFT algorithm gives 
complex double precision floating point data as an output, 
which is then divided in real and imaginary parts. An 
execution is considered as faulty if at least one difference with 
respect to the expected value is detected in the real, imaginary, 
or both, part of the output. The cross section is obtained 
dividing the number of faulty executions per unit time by the 
flux. Reported values confirm that GPUs are extremely prone 
to be corrupted by neutrons. 

Table II shows the percentage of faulty executions of the 
FFT algorithm in which the real or imaginary part was 
detected as corrupted as well as the cross section and FIT of 
just the real and imaginary part. Some executions experienced 
errors just in the imaginary part or just in the real part even if 
the implemented algorithm is symmetric for the real and 
imaginary parts. These errors are caused by the corruption of 
internal registers used by the thread for storing the 
intermediate values of the complex number. As stated in the 
second column of Table II, in less than 5% of the executions 
considered as faulty no error was detected in the real part. This 
means that in those executions the FFT experienced an error 
just in the imaginary part. The same considerations apply to 
errors in the imaginary part only, which are less than 4% of 
the overall faulty executions. 

The FFT algorithm is composed of threads that are not 
independent, since a thread uses the output of previously 
executed threads to update the real and imaginary part of two 
complex elements (see Fig. 1). It is then very likely that a 
radiation-induced event affecting a thread in the early stages 
of the FFT execution will spread, affecting various bits of the 

 

 
 
Fig. 2: In each iteration a thread updates two-by-two all the 64 values of 
the FFT using the basic butterfly module. 6 iterations are necessary to 
complete execution. If an operation in one iteration is corrupted by 
radiation, two (or more) values will be wrongly updated, and the number 
of errors will double in the following iteration.  

 
Fig. 1: A basic butterfly module used to update two-by-two all the 64 
elements composing the FFT 
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output (see Fig. 2). 
As a thread is in charge of updating two complex values, a 

radiation induced error that prevents the thread from 
completing its execution or corrupts the thread input data 
produces at least two output errors. Nevertheless, a single 
error in a thread can be generated by the corruption of the 
internal register that stores the value of just one of the two 
elements to update, or disturbing just one of the operations 
needed to calculate the FFT. The thread can then complete its 
execution, allowing the correct calculation of the second 
complex number. Single output errors occur in the FFT only if 
such a single thread error occurs in the last iteration. As stated 
in Table III, this occurred in just 1.63% of the faulty 
executions for the real and in 4% of the faulty executions for 
the imaginary part. 

The importance of the occurrences of multiple errors in 
realistic applications is highlighted in the last row of Table III, 
in which the FIT values of FFT executions affected by single 
or multiple errors in the real and imaginary parts are reported.  

The experimentally observed multiple errors distributions 
are shown in Fig. 3. It is worth noting that in most of the cases 
64 or less output values were found corrupted, and those 
locations belong to the same 64-point FFT. These errors 
patterns are caused by error propagation from one iteration to 
the following ones in the same 64-points FFT, as represented 
in Fig. 2. As said, the amount of errors is likely to double at 
each iteration, thus it is  very unlikely to have an odd number 
of errors in the output, and this is in agreement with 
experimental data (see Fig. 3). 

The worst case for a 64-points FFT occurs when radiation 
affects a thread in its first iteration. If a single error is 
produced in one thread in the first iteration, at each of the 
following 5 iterations (there are 6 iterations in total) the 
number of errors is doubled, and 25=32 errors appear in the 
output. A double thread error is produced when radiation 
prevents the thread from completing its execution generating a 
functional interruption or corrupting the thread input. In this 
situation 64 output errors are to be expected in the FFT. It is 
improbable to have between 32 and 64 errors in the output 
vector. In fact, as it is very unlikely to have two neutrons 
corrupting the GPU in a FFT execution, the only way of 

having more than 32 errors is to have a thread in the first 
iteration to generate two errors that spread to 64 errors in the 
output. 

Finally, only few executions experienced more than 64 
errors in the output. This rare situation occurs when radiation 
leads a SM to experience a functional interruption preventing 
a whole warp of 32 threads or even a whole block of 512 
threads from completing their execution, possibly affecting 
more than one 64-points FFT outputs. Those errors will then 
spread and a huge amount of errors are expected at the output. 

IV. HARDENING STRATEGIES FOR N-POINT FFTS 

A. NVDIA Error Correction Code 
NVIDIA latest GPUs, including the irradiated C2050s, are 

provided with an ECC mechanism that can be activated or 
deactivated by the user. The ECC is applied to the cache and 
to the internal memory of the SM, and it is able to correct 
single error and detect double errors [13]. 

When the ECC is turned ON the 12.5% of the device 
memory becomes unavailable to the user and, as reported in 
Tab. IV, the execution time of the 512x512 64-points FFTs is 
increased of about 50%. Depending on the algorithm and 
device, typically the ECC reduces the GPU performances in 

TABLE I 
512X512 64-POINTS FFTS CROSS SECTION AND FIT AT NYC 

 
 Cross section FIT 
FFT 3.69�10-6cm2 5.17�105 

 
TABLE II 

REAL AND IMAGINARY PART PERCENTAGE, CROSS SECTION, AND FIT 
 

 Percentage Cross section FIT 
FFT Real 94.96% 3.50�10-6cm2 4.90�105 
FFT Imaginary 96.17% 3.55�10-6cm2 4.97�105 

 
TABLE III 

512X512 64-POINTS FFTS SINGLE AND MULTIPLE ERRORS 
 

 FFT Real FFT Imaginary 
 Single Multiple Single Multiple 
Percentage 1.61% 98.39% 4.00% 96.00% 
FIT 7.89�103 4.82�105 19.80�103 4.67�105 

 

 

 
Fig. 3: FFT real and imaginary multiple output errors FIT. Consequent distributions that were never experimentally observed are grouped in the 
picture (it is the case of 9 to 11 errors, 20 and 21 etc.). 
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the range of 20-30% [13]. The computational and area 
overhead introduced by the NVIDIA ECC are then far from 
being negligible and may compromise the GPU efficiency. 

Unfortunately, no detailed information about the 
implementation of the ECC is currently available. The analysis 
of the ECC efficiency and drawbacks is then limited to what 
was experimentally observed. 

When the ECC was enabled on the irradiated GPU the 
observed number of output errors was reduced by about one 
order of magnitude. In particular, no single output error 
occurred, while multiple errors patterns formed of 64 or more 
corrupted locations were still observed. This is mainly because 
SM functional interruptions and scheduler failures that prevent 
threads from completing execution are not detected by the 
ECC. 

B. Algorithm-Based Fault Tolerance for FFT 
In order to achieve higher error detection capabilities we 

design an ABFT technique for the FFT. The proposed 
hardening strategy derives from a clever fault-free N-points 
FFT network of N processors presented in [6], which is based 
on the superposition principle of linear systems and the 
circular shift property of the FFT. The basic idea is to detect 
errors induced in any processor or connection with the use of 
input coding and checksum comparison at the output. 

We implement the fault-free network in software in the 
GPU viewing each thread in the GPU as a processor in the 
network (i.e., a butterfly module). Each CUDA core in a GPU 
can be considered as an isolated unit such that a radiation-
induced event in one CUDA core only corrupts the thread 
assigned to it. Threads that follow the corrupted one or threads 
assigned to computing units near the faulty one will not be 
affected. This maintains the same set of premises of [6], and 
hence the same mathematical demonstration ensuring the 
correctness and efficacy of the approach can be applied. 

Only few code modifications are needed to implement the 
ABFT for FFT (see Fig. 4). The input sequence of N complex 
elements x(i) is encoded in the sequence, x’(i), defined by Eq.1 

 

(1) 𝑥" i = 	 		2 ∙ 𝑥 𝑖 + 𝑥 i + 1 					0 ≤ 𝑖 < 𝑁 − 1
2 ∙ 𝑥 𝑖 + 𝑥 0 					𝑖 = 𝑁 − 1  

 
The FFT is then evaluated using the coded values x’ as 

inputs and, when calculation is completed, the output X’ is 
decoded through Eq. 2 

 
2 													𝑋 𝑘 = 2

3456
78 ∙ 𝑋" 𝑘 						0 ≤ 𝑘 < 𝑁 

 
where wN

-k are the Nth roots of the unity. The N decoded 
results are then summed, generating a checksum. As formally 

demonstrated in [6] this encoding and decoding scheme gives 
each output a nontrivial weighted contribution to the 
checksum such that any error will cause a detectable error 
syndrome. After computation, the checksum is compared to 
N·x(0) and any mismatch will identify the FFT as faulty, and 
will require re-computation. 

Tab. V reports the execution time of the hardened version of 
the FFT, named ABFT-FFT, running on the GPU with ECC 
disabled. As it can be noticed, the overhead is comparable to 
the one introduced by the ECC. However, the memory 
overhead introduced in the ABFT-FFT is limited to 
checksums to compare: hence it is constant and definitely 
lower than the ECC one. 

In order to inject errors during the execution of the ABFT-
FFT we instantiate an additional thread in the code, 
independent from the ones composing the ABFT-FFT 
algorithm, which modifies the data stored in the output 
register of other threads using probabilities of injection that 
derive directly from the experimental results reported in the 
previous section. All the injected errors, including SM and 
threads functional interruptions, were detected using the 
designed hardening strategy and the re-computation of the 
FFT marked as faulty was performed. As reported in Table V, 
when errors occur, the execution time of the ABFT-FFT is 
actually not increased. This happens because the overhead of 
re-computing just one 1D-FFT is hidden by the execution of 
concurrent threads executing the remaining (512x512)-1 FFTs. 
The same happens when forcing errors in all threads in a given 
block, re-computing some 1D-FFTs. 

C. Extended Algorithm-Based Fault Tolerance for FFT 
As stated in previous sections, when an error occurs in one 

iteration, it is likely to spread to the following ones: therefore, 
a prompt detection of the error is crucial to prevent error 
propagation. The ABFT-FFT hardening strategy has the 
ability of detecting all the experimentally observed error 
patterns, but requires re-computation in order to provide the 
correct output, introducing a not negligible overhead. It is 
worth noting that bigger FFTs than the tested ones are 
typically executed on GPUs. In Tab. V the execution time of a 
single FFT of various dimensions are reported, for the un-
hardened version and for the proposed ABFT-FFT. As it can 
be noticed, in the event of errors the FFT re-computation 
drastically affects the ABFT-FFT performances. In the case of 

TABLE IV 
FFT EXECUTION TIMES 

 
 ECC OFF ECC ON Overhead 
512x512 64-points FFT 106 ms 159 ms 50% 

 
 

 
 

Fig. 4: FFT Hardening scheme. The 64 input complex elements are 
coded, then the 64-points FFT is performed with the classical algorithm, 
and output is decoded. Errors are detected comparing the checksum 
generated summing the output values with Nx0. 
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a single 4096-points FFT, if an error occurs the ABFT-FFT 
execution time is 2.5 times higher than the unhardened code 
one (last column of Tab. VI). 

To reduce the re-computation overhead we devised an 
extended ABFT-FFT strategy, named Ext ABFT-FFT. The 
basic idea is that the ABFT proposed in the previous sub-
section can be repeatedly applied to small portions of the 
computation, leading to prompt error detections and reduced 
re-computation costs. More in details, we can compute smaller 
FFTs diving the original problem into smaller sub-problems, 
using the well-known propriety that a N-point FFT can be 
decomposed into N1 FFTs on N2 points and N2 FFTs on N1 
points, where N1·N2=N. Then, we can still use the ABFT-
FFT strategy but calculating x’ (see Eq. 1) on the smaller FFTs 
that compose the sub-problems. Each sub-problem can be 
solved either recursively applying the Ext-ABFT application 
or using directly the ABFT-FFT. 

The main advantage of such a sub-problems division is that 
error can be detected on a sub-problem, and only the corrupted 
sub-problem needs to be re-computed in the event of an error. 
When all sub-problems have been correctly computed, the 
extended ABFT-FFT strategy is completed by computing the 
FFT using Eq. 2 and performing a final check. 

The Ext ABFT-FFT is then modular, as its formal 
correctness is independent on the size of the sub-problems. 
The smaller the sub-problems are, the more prompt errors 
detection will be and the lower the re-computation overhead 
will be. However, checksums have to be calculated for each 
sub-problem, so the higher the number of sub-problems, the 
higher the overhead for checksums will be. The user can select 
the best trade-off between the overhead required for re-
computation in a coarse-grained version and the overhead 
introduced in the checksum evaluations on a fine-grained 
version. 

It is worth noting that the Ext ABFT-FFT re-computes the 
whole FFT only if an error occurs while preparing the sub-
problem inputs or while computing Eq. 2, which is very 
unlikely to happen. In fact, there are only O(N) critical 

operations that can induce the whole re-computation. In 
contrast, in the standard ABFT-FFT all the O(NlogN) 
operations can induce the whole re-computation. 

V. CONCLUSIONS 
The FFT algorithm executed by GPUs is a powerful tool for 

many applications but, unfortunately, it is very prone to 
experience neutron-induced errors. The FFT characteristic 
thread and data dependency of the algorithm let the errors to 
spread, generating a huge amount of multiple output errors. 

To increase the reliability of GPUs, NVIDIA introduced an 
ECC, which reduces errors but also reduces both the memory 
availability and the performances of the device. An alternative 
to the ECC is the Algorithm-Based Fault Tolerance technique 
we implemented on the GPU, which is based on a known 
fault-free FFT network, that was demonstrated through fault-
simulation to be able to detect all the experimentally observed 
errors. We extended this strategy making it modular, so that 
the user can decide the best trade-off between checksum 
calculation and re-computation overheads. 
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TABLE V 
512X512 64-POINTS FFT AND ABFT-FFT EXECUTION TIMES 

 
 FFT ABFT overhead 
no error 106 ms 161ms 55% 
errors injected 106 ms 161ms 55% 

 
TABLE VI 

1-D FFT AND FFT-ABFT EXECUTION TIMES 
AS A FUNCTION OF FFT DIMENSION 

 
 64 256 1024 2048 4096 
FFT 0.15ms 0.67ms 3.14ms 6.76ms 14.53ms 
ABFT-no errors 0.24ms 0.99ms 4.27ms 8.85ms 19.41ms 
ABFT-errors 4.67ms 1.99ms 8.64ms 17.95ms 37.38ms 
 

 


