
On the Limits of Cache-Oblivious Matrix
Transposition ?

Francesco Silvestri

Dipartimento di Ingegneria dell’Informazione, Università di Padova
Via Gradenigo 6/B, I-35131 Padova, Italy
francesco.silvestri@dei.unipd.it

Abstract Intuitively, a cache-oblivious algorithm implements an adap-
tive strategy which runs efficiently on any memory hierarchy without
requiring previous knowledge of the parameters of the hierarchy. For this
reason, cache-obliviousness is an attractive feature of an algorithm meant
for a global computing environment, where software may be run on a va-
riety of different platforms for load management purposes. In this paper
we present a negative result on cache-obliviousness, namely, we show
that an optimal cache-oblivious algorithm for the fundamental primitive
of matrix transposition cannot exist without the tall cache assumption,
which forces the (unknown) parameters of the memory hierarchy to sat-
isfy a certain technical relation. Our contribution specializes the result
of Brodal and Fagerberg for general permutations to matrix transpo-
sition, and provides further evidence that the tall cache assumption is
often necessary to attain optimality in the context of cache-oblivious
algorithms.

1 Introduction

A global computer infrastructure may be employed to provide dependable and
cost-effective access to a number of platforms of varying computational capabil-
ities, irrespective of their physical location or access point. This is, for example,
the case of grid environments which enable sharing, selection, and aggregation
of a variety of geographically distributed resources. In such a scenario, many
different platforms can be available to run applications. For load management
reasons, the actual platform(s) onto which an application is ultimately run, may
be not known at the time when the application is designed. Hence, it is useful to
design applications which adapt automatically to the actual platform they run
on.

A typical modern platform features a hierarchical cascade of memories whose
capacities and access times increase as they grow farther from the CPU. In order
to amortize the larger cost incurred when referencing data in distant levels of the
hierarchy, blocks of contiguous data are replicated across the faster levels, either

? This work was supported in part by the EU/IST Project “AEOLUS”, and by MIUR
of Italy under project “ALGONEXT”.

automatically by the hardware (e.g., in the case of RAM-cache interaction) or by
software (e.g., in the case of disk-RAM interaction). The rationale behind such
a hierarchical organization is that the memory access costs of a computation
can be reduced when the same data are frequently reused within a short time
interval, and data stored at consecutive addresses are involved in consecutive
operations, two properties known as temporal and spatial locality of reference,
respectively.

Many models have been proposed to explicitly account for the hierarchical
nature of the memory system. A two-level memory organization, intended to
represent a disk-RAM hierarchy, is featured by the External Memory (EM) model
of Aggarwal and Vitter [1], which has been extensively used in the literature to
develop efficient algorithms that deal with large data sets, whose performance is
mainly affected by the number of disk accesses (see [2] for an extensive survey on
external memory algorithms). In this model, operations can only be performed
on data residing in RAM, and data are transfered between the RAM and the disk
in blocks of fixed size, under the explicit control of the program which decides
where the blocks loaded from disk are placed in RAM and chooses the eviction
policy.

Another popular model featuring a two-level memory organization, intended
to represent a RAM-cache hierarchy, is the Ideal Cache (IC) model, introduced in
[3]. As in the EM model, in the IC operations can only be performed on data re-
siding in the fast level, the cache, and data are moved in fixed-size blocks (cache
lines) between the RAM and the cache. However, unlike the EM model, block
transfers are performed automatically by the hardware whenever an operand is
referenced which is not in cache, and an optimal eviction policy is assumed. Algo-
rithm design on the IC aims at minimizing the number of RAM-cache transfers,
called misses, and the number of operations performed. The model has received
considerable attention in the literature as the base for the design of so called
cache-oblivious algorithms, which run efficiently without knowledge of the cache
parameters, namely the cache size and the cache line size. Most importantly,
cache-oblivious algorithms attaining an optimal number of misses on the IC can
be shown, under certain circumstances, to attain optimal number of misses at
all levels of any multi-level cache hierarchy [3].

For these reasons, efficient cache-oblivious algorithms are attractive in a
global computing environment since they run efficiently on platforms featur-
ing different memory hierarchies without requiring previous knowledge of the
hierarchy parameters. A number of optimal cache-oblivious algorithms [3,4] and
data structures [5] have been proposed in literature for important problems, e.g.
sorting, matrix transposition and searching.

In several cases, optimality of cache-oblivious algorithms is attained under
the so-called tall cache assumption which requires that the cache size in words be
at least the square of the cache line size in words. In [3] the authors raised the
natural question of whether there is a gap in asymptotic complexity between
cache-oblivious algorithms and algorithms which know the parameters of the
memory hierarchy. Only few works in the literature have investigated this issue.

Recently, Brodal and Fagerberg [6] have proved that an optimal cache-oblivious
algorithm for sorting cannot exist without the tall cache assumption, and that
an optimal cache-oblivious algorithm for general permutations does not exist
regardless of the tall cache assumption. Impossibility results of a similar flavor
have been proved by Bilardi and Peserico [7] in the context of DAG computations
on a model of memory hierarchy which does not account for the spatial locality
of reference, namely the HMM [8].

In this work, we specialize the results of [6] by showing that an optimal cache-
oblivious algorithm for matrix transposition cannot exist without the tall cache
assumption. To this purpose we follow a similar approach as the one employed
in [6]. Specifically, let A be a cache-oblivious algorithm for matrix transposition
and consider the two sequences of misses generated by the executions of A on two
different ICs, where one model satisfies the tall cache assumption while the other
does not. We simulate these two executions on the EM model and obtain a new
EM algorithm for the matrix transposition problem. By adapting the argument
used in [1] to bound from below the number of disk accesses of transposition in
the EM model, we conclude that A cannot be optimal in both ICs.

The rest of the paper is organized as follows. In Section 2 we give a formal
definition of the IC and EM models, and of the matrix transposition problem.
Next, Section 3 describes the simulation technique while Section 4 applies this
technique to prove the limits of cache-oblivious transposition. Section 5 concludes
with some final remarks.

2 Preliminaries

2.1 The models

Two models of memory hierarchy are used in this work. The first one is the Ideal
Cache IC(M,B), introduced by Frigo et al. in [3], which consists of an arbitrarily
large main memory and a (data) cache of M words. The memory is split into
blocks of B adjacent words called B-blocks, or simply blocks if B is clear from
the context. The cache is fully associative and organized into M/B lines of B
words: each line is empty or contains a B-block of the memory. The processor
can only reference words that reside in cache: if a referenced word belongs to
a block in a cache line, a cache hit occurs; otherwise there is a cache miss and
the block has to be fetched into a line, replacing the line’s previous content. The
model adopts an optimal off-line replacement policy, i.e. it replaces the block
whose next access is furthest in the future. We denote as work complexity the
running time of an algorithm in the conventional RAM model, and as cache
(miss) complexity the number of misses.

The concept of cache-oblivious algorithm is also introduced in [3], as an
algorithm whose specifications are independent of cache parameters (M and B);
it is easy to see that a cache-oblivious algorithm is formulated as a traditional
RAM algorithm. We restrict our attention to optimal cache-oblivious algorithms,
which reach the best cache complexity when executed on each IC model. Most of

the cache-oblivious algorithms proposed in literature are optimal only under the
tall cache assumption, i.e. M ≥ B2. On the contrary, we denote a cache where
M < B2 as short cache.

The second model is the External Memory EM(M,B) of Aggarwal and Vitter
[1]; it features two levels of memory: a (fast) RAM memory of M words and a
(slow) disk of unbounded size. As the memory in the IC, the disk storage is
partitioned into blocks of B adjacent words called B-blocks, or simply blocks if
B is clear from the context. The processor can only reference words that reside
in memory. The movements between the memory and the disk are performed
as follows: an input operation moves a B-block of the disk into B words of the
memory, and an output operation moves B words of the memory into a B-
block of the disk. The input/output operations (I/Os) are directly controlled by
the algorithm through fetch and eviction operations, which is the main difference
between IC and EM. We denote as I/O complexity of an algorithm the number of
I/Os performed by the algorithm. We require an algorithm to store its output in
the slow memory at the end of its execution; this will increase the I/O complexity
of O (M/B) I/Os, which is negligible when the input size is sufficiently large. It
is easy to see that there is a relation between an I/O and a miss: a miss requires
the fetching of a B-block from memory and the eviction of a B-block from cache
if there is no empty line; hence a miss is equivalent to at most two I/Os in the
EM, and for these reasons we will intentionally mix the two terms.

2.2 The matrix transposition problem

Let G be a p × q matrix and H = GT its transpose; specifically, H is a q × p
matrix where H(j, i) = G(i, j), 0 ≤ i < p and 0 ≤ j < q. Without loss of
generality, we suppose the size of each entry be one machine word; therefore the
overall sizes of G and H are N = pq words each. Since we are only interested to
the limits of cache-oblivious matrix transposition, we may safely assume that p
and q are much greater than M .

Lemma 1. Any algorithm for matrix transposition requires at least1

Ω

(
N log M

B log(1 + M/B)

)
I/Os (resp., misses) on EM(M,B) (resp., IC(M,B)) if min{p, q} ≥ M .

Proof. (Sketch) The proof is presented in [1] and the same argument carries
through on the IC(M,B) model.

In [1] an optimal algorithm for matrix transposition is described which is para-
metric in B and M . Moreover, in [3] a cache-oblivious algorithm is presented, but
its optimality is guaranteed only under the tall cache assumption. The interest-
ing question arises of whether there exists an optimal cache-oblivious algorithm
without the tall cache assumption, i.e. for each value of M and B. In the following
sections, we will prove that such an algorithm does not exist.
1 We use the following notation: log for base 2 logarithms and ln for natural logarithms.

3 The simulation technique

In this section we describe a technique for obtaining an EM algorithm from
two executions of a cache-oblivious algorithm on two different IC models. The
technique is presented in a general form and is a formalization of the ad-hoc one
employed in [6] for proving the impossibility result for general permutations.

More precisely, consider two models C1=IC(M,B1) and C2 = IC(M,B2) where
B1 < B2. Let A be a cache-oblivious algorithm for an arbitrary problem and let
t1 and t2 be its cache complexities on the two models, respectively. We define
an algorithm A′ for EM(2M,B2) which emulates in parallel the executions of A
on both C1 and C2 and solves the same problem of A.

Let us regard the RAM in EM(2M,B2) as partitioned into two contiguous
portions of size M each, which we refer to as M1 and M2, respectively. In turn,
portion M1 is subdivided into blocks of B1 words (which we call B1-rows), and
portion M2 is subdivided into blocks of B2 words (which we call B2-rows), so
that we can establish a one-to-one mapping between the cache lines of C1 and
the B1-rows of M1, and a one-to-one mapping between the cache lines of C2 and
the B2-rows of M2. Algorithm A′ is organized so that its I/Os occur exclusively
between disk and M2 and coincide (except for some slight reordering) with the
movements of cache lines between RAM and cache performed by A in C2; on
the other hand, all operations prescribed by A are executed by A′ on data in
M1

2. The movements of cache lines between RAM and cache performed by A
in C1 will be emulated by movements of B1-rows between M1 and M2. (For
convenience, we assume that B2 is a multiple of B1.)

Let us now see in detail how the execution of A′ on EM(2M,B2) develops.
Initially all words in both M1 and M2 are empty, that is, filled with NIL values,
and the EM disk contains the same data of C2 memory (or C1 indistinguishably)
with the same layout (a one-to-one relation between B2-blocks of C2 and B2-
blocks of the disk can be simply realized). Let αi be the ith operation of A,
i = 1 . . . h. The execution of A on Ci, 1 ≤ i ≤ 2, can be seen as a sequence Li of
operations interleaved with I/Os. Since operations in L1 and L2 are the same,
we build a new sequence L=Γ 2

1 Γ 1
1 α1 . . . Γ 2

j Γ 1
j αj . . . Γ 2

hΓ 1
hαhΓ 2

h+1Γ
1
h+1. Each Γ i

j ,
1 ≤ j ≤ h + 1 and 1 ≤ i ≤ 2, is defined as follows:

– Γ i
1 is the sequence of I/Os that precedes α1 in Li.

– Γ i
j , 1 < j ≤ h, is the sequence of I/Os which are enclosed between αj−1 and

αj in Li.
– Γ i

h+1 is the sequence of I/Os performed after αh in Li.

Note that a Γ i
j can be empty. The length of L, denoted as |L|, is the sum of the

number h of operations and the size of all Γ i
j with 1 ≤ j ≤ h and 1 ≤ i ≤ 2. Let

A′ be divided into |L| phases. The behaviour of the jth phase is determined by
the jth element lj of L:

2 Note that the operations of A do not include I/Os since block movements are au-
tomatically controlled by the machine. Moreover, A’s operations are the same no
matter whether execution is on C1 or C2.

– lj is an operation: A′ executes the same operation on M1.
– lj is an input of a B2-block (i.e. an input of L2): A′ fetches the same B2-

block from the disk and moves it into the B2-row of M2 associated with the
line used in C2.

– lj is an input of a B1-block (i.e. an input of L1): let x be such B1-block and
x′ be the B2-block containing x. Since there is no prefetch in the IC model,
the following operation of A requires an element in x; thus x′ must be in
C2 cache too. For this reason, we can assume that x′ was, or has just been,
fetched into a B2-row of M2. A′ copies the block x in the right B1-row of
M1 and replaces the copy of x in M2 with B1 NIL values.

– lj is an output of a B2-block (i.e. an output of L2): A′ moves the respective
B2-row of M2 to the disk, replacing it with B2 NIL values.

– lj is an output of a B1-block (i.e. an output of L1): let x be such B1-block
and x′ be the B2-block containing x. If x′ is still in M2, then A′ copies
x from M1 into x′ and replaces x’s row with B1 NIL values. The second
possibility (i.e. x′ is not in M2) can be avoided since no operations are
executed between the evictions of x′ and x. If some operations had been
executed, both blocks x and x′ must be kept in cache (and so in M1 and
M2). Therefore, we can suppose x was removed just prior to the eviction of
x′; exactly, x is moved into x′, x’s row is filled with B1 NIL values, and x′ is
evicted from M2 (see previous point).

It is easy to see that every operation of A can be executed by A′ onM1, since
there is a one to one relation between cache lines and matrix rows (excluding
the B1-blocks whose evictions from cache were anticipated, see fifth point). M2

is a “semimirror” of C2, in the sense that it contains the same B2-blocks of C2

while A is being executed, except for those sub B1-blocks which are also in M1.
By rules 2 and 4, the I/O complexity of A′ is Θ (t2).

Let K = t1B1/t2; it is easy to see that K ≤ B2. Indeed, if K was greater
than B2, an algorithm for C1 which requires t2B2/B1 < t1 IOs would be built
from the execution of A on C2; but this is a contradiction since t1 is optimal.

A′ can be changed so that there are at most K words exchanged between
M1 and a B2-block in M2 before this block is removed from cache. It is suffi-
cient to insert a dummy eviction/insertion of the B2-block: in this way the I/O
complexity is increased by a constant factor: T = Θ (t2) + 2t1B1/K = Θ (t2).

We define the working set W (t) after t I/Os as the content of M1 plus the
words in the B2-blocks of M2 that will be used by A′ (moved to M1) before
the large blocks are evicted. When A′ fetches a B2-block from the disk, we can
suppose that at most K elements, which will be moved between M1 and the
block, are immediately included in the working set.

4 Matrix transposition

In this section we prove that an optimal cache-oblivious algorithm for the matrix
transposition problem does not exist without the tall cache assumption.

Let A be a cache-oblivious algorithm for matrix transposition and assume,
for the sake of contradiction, that it attains optimal cache complexity with-
out requiring the tall cache assumption. In particular, consider two models
C1=IC(M,B1) and C2 = IC(M,B2) where B1 < B2 and let t1 and t2 be the
cache complexities of A on the two models, respectively. We will show that B1

and B2 can be suitably chosen so that the tall cache assumption holds for C1

but not for C2, and that t1 and t2 cannot be both optimal, thus reaching a
contradiction. To achieve this goal, we apply the simulation technique described
in the previous section to A, and we obtain an algorithm A′ for EM(2M,B2)
which solves the matrix transposition problem. We then apply an adaptation of
the lower bound argument by [1] to A′, and we prove the impossibility of the
simultaneous optimality of A on the two IC models.

More precisely, let the ith target group ti, 1 ≤ i ≤ N/B2, be the records that
will ultimately be in the ith B2-block of the output matrix H (remember that H
must be in the disk at the end of A′). We define the following convex function:

f(x) =
{

x log x if x > 0;
0 if x = 0.

Let y be a B2-block of the disk or a B2-row of M2; the togetherness rating of y
after t I/Os is defined as:

Cy(t) =
N/B2∑
i=1

f(xi,y),

where xi,y denotes the number of elements in y belonging to the ith target group.
These elements are not included in the working set W (t) and are not NIL symbol.
We also define the togetherness rating for the working set W (t):

CW (t) =
N/B2∑
i=1

f(mi),

where mi is the number of elements in the working set W (t) which belong to
the ith target group and are not NIL symbol. The potential function of A′ after
t I/Os is defined as:

POT (t) = CW (t) +
∑

y∈disk

Cy(t) +
∑

y∈M2

Cy(t).

At the beginning of the algorithm, POT (0) = 0 since N > min{p, q} > B2; at
the end of A′, POT (T) = N log B2, where T is the I/O complexity of A′.

Note that the above potential function is slightly different from the one de-
fined in [1]: there, the potential function is given by the sum of disk and memory’s
togetherness ratings. We cannot use such definition because the real transposi-
tion is realized only in the working set (precisely in M1). Actually, if a block

of the disk is moved to M2 and then brought back to the disk without its ele-
ments have been exchanged with M1’s elements, the potential function does not
change.

We now analyze how an I/O made by A′ improves the potential function.
Suppose the tth I/O is an input and the B2-block x is fetched into a B2-row of
M2. Before the tth input, the intersection between the block x and the working
set W (t−1) is empty; after the input, at most K elements of x are inserted into
W (t− 1). We use the following notation:
– mi: number of elements in the working set W (t − 1) belonging to the ith

target group at time t− 1;
– xi: number of elements in block x belonging to the ith target group at time

t− 1;
– wi: number of elements in the (at most) K words, inserted in W (t − 1),

belonging to the ith target group.

The mi, xi and wi values are limited by the constraints below:
N/B2∑
i=1

mi ≤ 2M −K

N/B2∑
i=1

xi ≤ B2

N/B2∑
i=1

wi ≤ K.

The potential increases of ∇POT (t) compared to POT (t− 1):

∇POT (t) = POT (t)− POT (t− 1) = CW (t) + Cx(t)− CW (t− 1)− Cx(t− 1)

=
N/B2∑
i=1

f(mi + wi) + f(xi − wi)− f(mi)− f(xi).

Since f(xi−wi)+f(wi) = (xi−wi) log(xi−wi)+wi log wi ≤ (xi−wi+wi) log xi =
f(xi),

∇POT (t) ≤
N/B2∑
i=1

f(mi + wi)− f(mi)− f(wi)

≤
N/B2∑
i=1

(mi + wi) log(mi + wi)−mi log mi − wi log wi

≤
N/B2∑
i=1

mi log
mi + wi

mi
+ wi log

mi + wi

wi
.

By a convexity argument, the increase in potential function is maximized when
mi = (2M −K)/(N/B2) and wi = K/(N/B2), hence:

∇POT (t) ≤ (2M −K) log
2M −K + K

2M −K
+ K log

2M −K + K

K

≤ K log
(

1 +
K

2M −K

) 2M−K
K

+ K log
(

2M

K

)
≤ K

ln 2
+ K log

2M

K
∈ O

(
K log

M

K

)
.

Suppose now that the tth I/O is an output and the B2-block x is evicted
from a B2-row of M2. Before the tth output, the intersection between the block
x and the working set W (t− 1) contains at most K elements; after the output,
at most K elements are removed from W (t− 1). As above, we use the following
notation:

– mi: number of elements in the working set W (t − 1) belonging to the ith
target group at time t− 1;

– xi: number of elements in block x belonging to the ith target group at time
t− 1;

– wi: number of elements in the (at most) K words, removed from W (t− 1),
belonging to the ith target group.

The mi, xi and wi values are limited by the constraints below:

N/B2∑
i=1

mi ≤ 2M

N/B2∑
i=1

xi ≤ B2 −K

N/B2∑
i=1

wi ≤ K.

The potential increases of ∇POT (t) compared to POT (t− 1):

∇POT (t) = POT (t)− POT (t− 1) = CW (t) + Cx(t)− CW (t− 1)− Cx(t− 1)

=
N/B2∑
i=1

f(mi − wi) + f(xi + wi)− f(mi)− f(xi)

≤
N/B2∑
i=1

(xi + wi) log(xi + wi)− xi log xi − wi log wi,

since f(mi−wi)+f(wi) ≤ f(mi). The increase in potential function is maximized
when xi = (B2 −K)/(N/B2) and wi = K/(N/B2), hence:

∇POT (t) ≤ K

ln 2
+ K log

B2

K
∈ O

(
K log

B2

K

)
= O

(
K log

M

K

)
.

Let C1 and C2 be a tall and a short cache respectively, and let d, f, g be suitable
positive constants. Since the I/Os of A′ are T = Θ (t2) and t1 = Θ (N/B1),

T ∇POT ≥ POT (T) =⇒ dt2K log
M

K
≥ N log B2

dt2
t1B1

t2
log

Mt2
t1B1

≥ N log B2 =⇒ fN log
gMt2

N
≥ N log B2

gMt2
N

≥ B
1/f
2 =⇒ t2 ∈ Ω

(
N

B
1/f
2

M

)
.

If B2 = αM for a suitable constant 0 < α < 1, the above inequality becomes

t2 ∈ Ω

(
N

M1−1/f

)
∈ ω

(
N

log M

M

)
.

The miss complexity in C2 of an optimal algorithm for matrix transposition is
Θ
(
N log M

M

)
, thus t2 is not optimal. However, by the initial hypothesis on A, we

can deduce that t2 is optimal and so we have a contradiction. We can conclude
that a cache-oblivious algorithm for matrix transposition does not exist without
the tall cache assumption.

5 Conclusions

In this work we have presented a simulation technique to yield an EM algorithm
from two executions of the same cache-oblivious algorithm on different instanti-
ations of the IC model. Our technique can be envisaged as a formalization and a
generalization of the ad-hoc approach employed in [6] to prove negative results
on cache-oblivious permuting. Successively, we have applied the simulation tech-
nique to matrix transposition. By further using an adaptation of the potential
function employed in [1] to bound the I/O complexity of matrix transposition
on EM, we were able to conclude that an optimal cache-oblivious algorithm for
matrix transposition cannot exist without the tall cache assumption.

Apart from the result presented in this paper, to the best of the author’s
knowledge the only other impossibility results in the literature on optimal cache-
obliviousness concern sorting and general permuting [6]. An interesting avenue
for further research would be to address other fundamental problems, such as
matrix multiplication, the Discrete Fourier Transform, or the realization of ra-
tional permutations, to expose any limitation intrinsic in their cache-oblivious
realization. Moreover, a more profound understanding is still required of why the
tall cache assumption is so crucial to obtain optimal cache-oblivious algorithms.

Acknowledgments

This paper benefited from useful discussions with Andrea Pietracaprina, Geppino
Pucci and Gianfranco Bilardi.

References

1. Aggarwal, A., Vitter, J.: The input/output complexity of sorting and related prob-
lems. Communications of the ACM 31(9) (1988) 1116–1127

2. Vitter, J.S.: External memory algorithms and data structures. ACM Comput. Surv.
33(2) (2001) 209–271

3. Frigo, M., Leiserson, C., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms.
In: Proc. of 40th IEEE Symp. on Foundations of Computer Science. (1999) 285–298

4. Demaine, E.D.: Cache-oblivious algorithms and data structures. In: Lecture Notes
from the EEF Summer School on Massive Data Sets. Lecture Notes in Computer
Science, BRICS, University of Aarhus, Denmark (2002) to appear

5. Arge, L., Brodal, G.S., Fagerberg, R.: Cache-oblivious data structures. In Mehta,
D., Sahni, S., eds.: Handbook of Data Structures and Applications. CRC Press
(2005) 27

6. Brodal, G.S., Fagerberg, R.: On the limits of cache-obliviousness. In: Proc. of the
35th ACM Symp. on Theory of Computing. (2003) 307–315

7. Bilardi, G., Peserico, E.: A characterization of temporal locality and its portabili-
ty across memory hierarchies. In: Proc. of 28th Int. Colloquium on Automata,
Languages and Programming. LNCS 2076 (2001) 128–139

8. Aggarwal, A., Alpern, B., Chandra, A., Snir, M.: A model for hierarchical memory.
In: Proc. of the 19th ACM Symp. on Theory of Computing. (1987) 305–314

