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Motivation

I Massive data sets almost always need to be processed on parallel

machines

I Revival of parallel computing in the big-data era

I Communication among processors is the major bottleneck

I Time and energy for transferring data are significantly higher than

that for performing arithmetic operations

I General quest for lower bounds for complexity of communications

I Allow to evaluate the distance from optimality

I In general, obtained under restrictive assumptions
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Assumptions

I Good assumptions: without them, game rules completely change

I E.g.: matrix multiplication with semiring: Θ (n3) operations

I E.g.: matrix multiplication with ring: Ω (n2) operations

I From an upper bound point of view: breaking hypotheses may allow

to beat lower bounds

I Bad assumptions: the proof significantly simplifies

I Input power of two

I Property of the input (evenly distribution, . . . )

I From a lower bound point of view: hypotheses limit the applicability

of the bound

I It is not easy to distinguish between good and bad assumptions!
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The model

I We seek lower bounds to the communication complexity on the BSP

model

I The BSP model [Valiant, Comm. ACM ’90]:

I p processing elements, each with unbounded local memory

I Superstep-style program execution

I Cost of communications

I hs(n, p): max number of messages sent or received by any processor

in superstep s

I Communication complexity: H(n, p) =
∑

s hs(n, p)

I No latency cost
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Our results

I We revisit assumptions of previous lower bounds to the

communication complexity of several key computational problems

I Matrix multiplication, stencil computations, sorting, FFT

I We prove new lower bounds with weaker assumptions

I Lower bounds have the same functional form

I but have a wider applicability
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Are we Happy with Existing Lower Bounds?

Existing lower bounds are derived under some of the following
hypotheses:

1. Inputs initially reside outside processors’ local memories
I More in the spirit of shared-memory models: in distributed-memory

machines, inputs initially reside in local memories
I “Hack” to obtain an easy Ω (n/p) lower bound

2. Inputs are initially evenly distributed among the p processors
I Initial distribution of inputs is usually not fixed

3. Computational load is evenly distributed among the p processors
I Assumes (but does not prove) that optimal solutions balance

computation

4. Processors’ local memories are bounded
I The local memory can be very large (disks are chip)
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Our Approach

I Our main hypothesis: no processor performs more than a constant
fraction of the total required work

I Formally:
I W0 = total required work
I W = maximum amount of work performed by any processor

W 6 εW0, for some constant ε ∈ (0, 1)

Rationale:

Consider all possible parallel algorithms, excluding (nearly) sequential
ones (in which case the bottleneck is computation rather than
communication)
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Our Approach (2)

I Some lower bounds also require
I Limited input replication or no recomputation
I These assumptions also required in previous lower bounds!

I We do not require
I Load balance
I Specific distribution of inputs or outputs
I Bounded memories
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Matrix Multiplication

I Standard (i.e., O
(
n3
)
) multiplication of two n × n matrices

I Several Ω
(
n2/p2/3

)
bounds under hypothesis 1), 2), 3), or 4)

Theorem

If W 6 max{n3/p, n3/113}, and the input matrices are not initially
replicated, then

H(n, p) = Ω
(
W 2/3

)
.

I Good news:
I Apply for W 6 εn3, with ε ∈ (0, 1)
I Support small input replication

I Minimum bound when W = n3/p
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Proof for Matrix Multiplication

I Consider the processor performing work W .

I If this processor initially holds few input values, then it must receive
many input from other processors since it computes at least n3/p
multiplicative terms

Holds few input: I 6 W 2/3/5
Receive many input: H > W 2/3 − I = Ω

(
W 2/3

)
I Otherwise, if it initially holds many inputs, then it has to send many

of them to the other processors since it cannot perform too much
work on its own

Holds many input: I >W 2/3/5
Send many input: H > I −W /n > Ω

(
W 2/3

)
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Stencil Computations

I Computation of d-dimensional grid-like structures

n

T
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Stencil Computations

I Tight Ω (n) lower bound already known for d = 2; for d > 3, tight
bound known only under hypothesis 3)

Theorem

If W 6 εnd , for an arbitrary constant ε ∈ (0, 1), and recomputation is
disallowed, then

Hd(n, p) = Ω

(
nd−1

p(d−2)/(d−1)

)
.
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Proof for Stencil Computations (d = 2)

I Highlight a sequence of squares

I Each square communicates
messages proportional to the
perimeter

I Sum of square sizes is almost
the length of the main diagonal

I Communication minimized
when all squares have size n/p

I Main issues:
I d dimensions
I Squares may have very

different sizes if work is
unbalanced
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Sorting

I Comparison-based sorting of n elements

I Tight Ω (n log n/(p log(n/p)) lower bounds under hypothesis 1) or
2)

Theorem

If W 6 ε(n log n) for an arbitrary constant ε ∈ (0, 1), the inputs are not
initially replicated, and the p processors store only a constant number of
copies of any key at any time instant, then

H(n, p) = Ω

(
n log n

p log(n/p)

)
.
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Proof for Sorting

I Based on counting arguments on the number of permutations
distinguished by the algorithm in superstep

I Assume each processor contains S inputs

I Communication complexity:

H(n, p) = Ω

(
n log(n/S)

p log(n/p)
+ S

)
.

I Communication complexity minimized when S = N/p
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Fast Fourier Transform

I Computation of the n log n-nodes FFT DAG

I Tight Ω (n log n/(p log(n/p)) lower bounds under hypothesis 1) or
2)

Theorem

If W 6 ε(n log n) for an arbitrary constant ε ∈ (0, 1), recomputation is
disallowed, and the inputs are not initially replicated, then

H(n, p) = Ω

(
n log n

p log(n/p)

)
.
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Proof for Fast Fourier Transform

I W maximum number of FFT nodes evaluated by a processor

I When W > (n log n)/p, we prove a Ω
(

W
logW

)
lower bound

(bandwidth argument)

I Otherwise, we exploit the lower bound Ω
(

n log(n/U)
plog(n/p)

)
where U 6 W

is the maximum number of output nodes evaluated by a processor.
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Our Contribution & Open Problems

Our Contribution

I Proposed new approach in communication lower bounds for
distributed-memory computations

I New tight lower bounds of wider applicability

Open Problems

I Further relax hypotheses under which lower bounds are proved
(replication/recomputation?)

I Application to other models of computation

I Unified theory of lower bound techniques for communication
complexity
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