Space-Round Tradeoffs for MapReduce Computations

A. Pietracaprina, G. Pucci, M. Riondato, E. Upfal
F. Silvestri

ICS 2012
MapReduce

- Introduced in [Dean & Ghemawat, OSDI 2004]
- Programming paradigm for large data sets
- Typically used on clusters of commodity computers
- Widely used in many scenarios: log processing, data-mining, scientific computations,...
MapReduce (2)

- **Eases** programmer tasks
 - The runtime system manages low-level details
 - Focus on the **problem**, not on the platform

- **Inspired by** functional programming

- **Algorithm is a** sequence of rounds
 - Map/Reduce functions
A MapReduce round

Mapper

Reducer key k_1

Reducer key k_2

Reducer key k_3

Shuffling
Previous work

● Modeling efforts
 – [Feldman et al, SODA 2008]
 – [Karloff et al, SODA 2010]
 – [Goodrich et al, ISAAC 2011]

● Algorithms
 – Graph problems, e.g. [Suri et al, WWW 2011][Lattanzi et al, SPAA 2011]
 – Clustering, e.g. [Ene et al, KDD 2011]
Our results

1. **Computational model** for MapReduce
 - Overcomes some limitations of previous models
 - Two parameters describing the local and aggregate space constraints

2. **Algorithms for** sparse/dense **matrix multiplication**
 - Tradeoffs between performance and space parameters

3. **Applications** based on matrix multiplication
 - Matrix inversion and matching
The MR(m,M) model

- Based on [Karloff et al, SODA 2010]
- Clear separation between model and underlying infrastructure
- Maintains functional flavor
- No need to distinguish between mappers and reducers
- An MR algorithm is a sequence of rounds
An MR round

Reducer key k_1

Reducer key k_2

Reducer key k_3
Tradeoffs

- Complexity measure: number of rounds
 - Rationale: shuffling is the expensive operation

- Parameters m and M:
 - m: max reducer size (limits the number of pairs received by a reducer)
 - M: max amount of total space (max number of pairs in a round)
 - Allow for a flexible use of parallelism: e.g., M/m reducers of size m, or M reducers of size $O(1)$

- We aim at deriving tradeoffs between space and number of rounds
Matrix multiplication on MR

- Lower and upper bounds for
 - Dense-dense matrix multiplication
 - Spare-sparse matrix multiplication
 - three variants (D1, D2, R1)
 - Estimating density of product matrix
 - Sparse-dense matrix multiplication

- Optimal space-round tradeoffs in many cases
Notation

- A, B, C = AxB: matrices of size $\sqrt{n} \times \sqrt{n}$

- Divide into submatrices of size $\sqrt{m} \times \sqrt{m}$
 - Partition the $(n/m)^{3/2}$ multiplications into $(n/m)^{1/2}$ groups
 - Each submatrix appears once in each group

- \bar{n}: number of nonzero entries in A and B
- \bar{o}: number of nonzero entries in C (not known!)
Dense-dense case

- Each group requires space $3n$
- In each round: compute multiplications within $M/3n$ groups
- Number of rounds

$$O\left(\frac{n^{3/2}}{M \sqrt{m}} + \log_m n\right)$$

- Constant number of rounds if $m=\text{poly}(n)$ and

$$M = \Omega\left(\frac{n^{3/2}}{\sqrt{m}}\right)$$
Sparse-sparse: Deterministic D1

- **Column-row product**: compute all nonzero products between the i-th column of A and i-th row of B (nonzero products could be $< n$)
- Compute the \sqrt{n} column-row products into phases
- In each phase:
 - number of column-row products in the phase computed via prefix-sum
 - no more than M nonzero products
Sparse-sparse: Deterministic D1 (2)

- Number of rounds

\[O\left(\frac{\tilde{n} \min(\tilde{n}, \sqrt{n})}{M} \log_m n \right) \]

- Constant number of rounds if \(m = \text{poly}(n) \) and \(M \) sufficiently large

- Extends to the sparse-dense case

- Inefficient use of reducer space \(m \)
Sparse-sparse: Deterministic D2

- Clever implementation of dense-dense algorithm leveraging on the sparsity
- Number of groups in each phase computed through a prefix sum based on the space requirements of involved submatrices
- Number of rounds
 \[O\left(\frac{(\bar{n} + \bar{o}) \sqrt{n}}{M \sqrt{m} \log_m n} \right) \]
- Constant round complexity if \(m = \text{poly}(n), \ M \) sufficiently large
Sparse-sparse: Randomized R3

- D2 can be improved if \bar{o} is known
 - Avoid prefix sums by processing $M/(\bar{n}+\bar{o})$ groups per phase

- An approximation to \bar{o} is given by a randomized algorithm

- Number of rounds $O\left(\frac{(\bar{n}+\bar{o})\sqrt{n}}{M\sqrt{m}} + \log_m n\right)$
Density of product matrix

- We use streaming sketches [Bar-Yossef, RANDOM 2002]
 - Data-structure for computing number of distinct values in a stream with small space

- Size of output matrix:
 - For each nonzero product, assign to pair \((a_{ik}, b_{kj})\) the value \((i,j)\)
 - Number of nonzero entries in \(C\) = number of distinct values (using sketches)
Lower bounds

- Only semiring operations (no Strassen)
- Matrices of size $\sqrt{n} \times \sqrt{n}$
- \overline{n} nonzero entries per matrix
- Number of rounds (based on [Hong & Kung, STOC 81])
 \[
 \Omega \left(\frac{\overline{n} \min(\overline{n}, \sqrt{n})}{M \sqrt{m}} + \log_m n \right)
 \]
- Constant rounds \rightarrow data replication
Applications

- We use dense-dense matrix multiplication for:
 - Inverse of a triangular matrix in constant rounds
 - Inverse of a general matrix in $O(\log n)$ rounds
 - Approximate inverse of a general matrix in $O(\log n)$ rounds (and less space)
 - Perfect matching in $O(\log n)$ rounds
Conclusion

- Our results provide evidence that nontrivial tradeoffs can be exercised between space requirement and performance

- Future work:
 - Tradeoffs for other problems, e.g. graphs, data-mining
 - Experimental evaluation of the model and algorithms
Thank you!