
Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

A not so short introduction to Python: part II

Luca Schenato

Research Institute for Hydrogeological Protection
Italian National Research Council
(CNR-IRPI)

03/25/2011



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

1 Lists

2 Tuples

3 Dictionaries

4 Control Flows

5 Credit



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

1 Lists

2 Tuples

3 Dictionaries

4 Control Flows

5 Credit



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Lists

What is a list
It is a mutable container of iterable items.

Lists are the more versatile compound data types of Python,
used to group together other values, not all of the same type.
They are written as a list of comma-separated values (items)
between square brackets.

>>> a = [’spam ’, ’eggs ’, 100 , 1234]
>>> a
[’spam ’, ’eggs ’, 100 , 1234]

Like string indices, list indices start at 0, and lists can be sliced,
concatenated and so on:

>>> len(a)
4
>>> a[0]
’spam ’
>>> a[ -2]
100



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Lists

Return type of slice operations on lists are lists theirselves:

>>> a[:2] + [’bacon ’, 2*2]
[’spam ’, ’eggs ’, ’bacon ’, 4]
>>> 3*a[:3] + [’Boo!’]
[’spam ’, ’eggs ’, 100 , ’spam ’, ’eggs ’, 100 , ’spam ’,

’eggs ’, 100 , ’Boo!’]
>>> a[:]
[’spam ’, ’eggs ’, 100 , 1234]

Unlike strings, which are immutable, it is possible to change
individual elements of a list:

>>> a
[’spam ’, ’eggs ’, 100 , 1234]
>>> a[2] = a[2] + 23
>>> a
[’spam ’, ’eggs ’, 123 , 1234]



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Lists

Assignment to slices is also possible, and this can even change
the size of the list or clear it entirely:

>>> # Replace some items :
... a [0:2] = [1, 12]
>>> a
[1, 12, 123 , 1234]
>>> # Remove some :
... a [0:2] = []
>>> a
[123 , 1234]
>>> # Insert some :
... a [1:1] = [’bletch ’, ’xyzzy ’]
>>> a
[123 , ’bletch ’, ’xyzzy ’, 1234]
>>> # Insert (a copy of) itself at the beginning
>>> a[:0] = a
>>> a
[123 , ’bletch ’, ’xyzzy ’, 1234 , 123 , ’bletch ’, ’xyzzy ’,

1234]
>>> # Clear the list : replace all items with an empty

list
>>> a[:] = []
>>> a
[]



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Lists

Concatenation of two or more lists can be done with the
operator + :

>>> list1 = [’a’,’b’,’c’]
>>> list2 = [’d’,’e’,’f’]
>>> list3 = [’g’,’h’,’i’]
>>> list_tot = list1 + list2 + list3
>>> list_tot
[’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’]

Iterative concatenation is also possible with the operator * :

>>> list1 = [’a’,’b’,’c’]
>>> list_tot = list1 * 3
>>> list_tot
[’a’,’b’,’c’,’a’,’b’,’c’,’a’,’b’,’c’]



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Lists

Another way to add an element at the end of a list is with the
method append() :

>>> list1 = [1 ,2]
>>> list1 . append (3)
>>> list1
[1 ,2 ,3]

Lists can be sorted with sort() and reverse() :

>>> list1 = [’f’,’b’,’r’,’k’]
>>> list1 .sort ()
>>> list1
[’b’,’f’,’k’,’r’]
>>> list1 . reverse ()
>>> list1
[’r’,’k’,’f’,’b’]

. . . try to sort non-homogeous lists . . .



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Lists

The index of an element can be retrieved with the index()

method:
>>> list1 = [’f’,’b’,’r’,’k’]
>>> list1 . index (’r’)
2

. . . try to look for a non-existing element . . .
To delete a single element you can also use the statement del

>>> list1 = [’r’,’k’,’f’,’b’]
>>> del list1 [2]
>>> list1
[’r’,’k’,’b’]



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

List methods

The list data type has some more methods. Here are all of the
methods of list objects:
list.append(x) Add an item to the end of the list; equivalent

to a[len(a):] = [x] .
list.extend(L) Extend the list by appending all the items in

the given list; equivalent to a[len(a):] = L.
list.insert(i, x) Insert an item at a given position. The first

argument is the index of the element before
which to insert, so a.insert(0, x) inserts at the
front of the list, and a.insert(len(a), x) is
equivalent to a.append(x) .



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

List methods

list.remove(x) Remove the first item from the list whose
value is x. It is an error if there is no such item.

list.pop([i]) Remove the item at the given position in the
list, and return it. If no index is specified,
a.pop() removes and returns the last item in the
list. (The square brackets around the i in the
method signature denote that the parameter is
optional, not that you should type square brackets
at that position. You will see this notation
frequently in the Python Library Reference.)



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

List methods

list.index(x) Return the index in the list of the first item
whose value is x. It is an error if there is no such
item.

list.count(x) Return the number of times x appears in the
list.

list.sort() Sort the items of the list, in place.
list.reverse() Reverse the elements of the list, in place.



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

1 Lists

2 Tuples

3 Dictionaries

4 Control Flows

5 Credit



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Tuples

What is a tuple
It is a non-mutable container of iterable items, this means that
cannot be dynamically changed once created (but can be
redefined).

They are used when the content have not to be changed. They
are very similar to lists, with the only difference that they are
enclosed by round bracket.

>>> t1 = (1, ’a’)
>>> t2 = (2, ’b’)
>>> print t1 [0]
1
>>> print t1 *2
(1, ’a’, 1, ’a’)
>>> len(t1)
2
>>> t3 = t1 + t2
>>> print t3 [1:3]
(’a’, 2)



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Tuples: constructor

Tuples can be created by placing a comma-separated list of
elememt pairs within round braces or by the tuple constructor.

class tuple([iterable])
Return a tuple whose items are the same and in the same order
as iterable’s items. iterable may be a sequence, a container
that supports iteration, or an iterator object. If iterable is
already a tuple, it is returned unchanged. For instance,
tuple(’abc’) returns (’a’, ’b’, ’c’) and tuple([1, 2, 3])

returns (1, 2, 3) . If no argument is given, returns a new
empty tuple, () .

Tuples support the same operators of the list, apart those that
would modify them.



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Tuples: the zip function

zip([iterable, ...]) returns a list of tuples, where the i-th
tuple contains the i-th element from each of the argument
sequences or iterables. The returned list is truncated in length
to the length of the shortest argument sequence. When there
are multiple arguments which are all of the same length. With
no arguments, it returns an empty list. The left-to-right
evaluation order of the iterables is guaranteed. This makes
possible an idiom for clustering a data series into n-length
groups using zip(*[iter(s)]*n) . zip() in conjunction with the
* operator can be used to unzip a list:

>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> zipped = zip(x, y)
>>> zipped
[(1 , 4) , (2, 5) , (3, 6)]
>>> x2 , y2 = zip (* zipped )
>>> x == list(x2) and y == list(y2)
True



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

1 Lists

2 Tuples

3 Dictionaries

4 Control Flows

5 Credit



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Dictionaries

What is a dictionary
A dictionary is an unsorted collection of elements: it is an
associative array, where arbitrary unique-defined keys are
mapped to values.

A value is identified by a key (usually a string) instead of a
numerical index, like in list. Each element of a dictionary is a
couple (key : value), in which the key is necessary to retrieve
the value (like in a “vocabulary”). Similarly to what happens
for lists, non-homogeous element dictionaries are allowed.



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Dictionaries

A (university) student’s record book can be represented as a
dictionary:

>>> diz1 = {’Analisi 1’ : 25,’Analisi 2’ : 23,’Metodi e
Modelli matematici ’ : 12}

>>> diz1
{’Metodi e Modelli matematici ’: 12, ’Analisi 2’: 23,

’Analisi 1’: 25}
>>> len(diz1)
3

The empty dictionary is represented by {} :

>>> diz2 = {}
>>> len(diz2)
0



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Dictionaries

Another useful fuction is key in d that returns true [false] if
key x does [not] exist:

>>> ’Analisi 2’ in diz1
True
>>> diz1. has_key (’Analisi 2’) # DEPRECATED
True
>>> ’Geometria ’ in diz1
False

Insertion can be easily achieved:

>>> diz1[’Geometria ’] = 18
>>> diz1
{’Geometria ’: 18, ’Metodi e Modelli matematici ’: 12,

’Analisi 2’: 23, ’Analisi 1’: 25}



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Dictionaries

This is one of the most powerful build-in type of Python: it is
usable, efficient and flexible and can be very useful for DBMS,
especially if combined with lists:

>>> db =[]
>>> surnames = {’0001 ’:’Goose ’, ’0002 ’:’Mouse ’,

’0003 ’:’Duck ’}
>>> names = {’0001 ’:’Goofy ’, ’0002 ’:’Mickey ’,

’0003 ’:’Donald ’}
>>> marks = {’0001 ’:’A’, ’0002 ’:’B--’, ’0003 ’:’A+’}
>>> db. append ( names )
>>> db. append ( surnames )
>> db. append ( marks )
>>> db
[{ ’0001 ’: ’A’, ’0002 ’: ’B--’, ’0003 ’: ’A+’}, {’0001 ’:

’Goofy ’, ’0002 ’: ’Mickey ’, ’0003 ’: ’Donald ’},
{’0001 ’: ’Goose ’, ’0002 ’: ’Mouse ’, ’0003 ’: ’Duck ’}]

This list is made of 3 elements, each of which is a dictionary.
Note that, internally, the dictionary are implemented as
hash-table!!!.



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Dictionaries

Note how easy is to build the table of scores:

>>> tabscore = {}
>>> for matricola in db [1]. keys ():
... tabscore [db [1][ matricola ] + ’ ’ +

db [2][ matricola ]]= db [0][ matricola ]
... print db [1][ matricola ] + ’ ’ +

db [2][ matricola ]+ ’ score is ’+ db [0][ matricola ]
...
Goofy Goose score is A
Mickey Mouse score is B--
Donald Duck score is A+
>>> tabscore
{’Goofy Goose ’: ’A’, ’Mickey Mouse ’: ’B--’, ’Donald

Duck ’: ’A+’}



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Dictionaries: constructor

Dictionaries can be created by placing a comma-separated list
of key: value pairs within braces or by the dict constructor.

class dict([arg])
Return a new dictionary initialized from an optional positional
argument or from a set of keyword arguments. If no arguments
are given, return a new empty dictionary. If the positional
argument arg is a mapping object, return a dictionary mapping
the same keys to the same values as does the mapping object.
Otherwise the positional argument must be a sequence, a
container that supports iteration, or an iterator object.



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Dictionary: constructor

The elements of the argument must each also be of one of
those kinds, and each must in turn contain exactly two objects.
The first is used as a key in the new dictionary, and the second
as the key’s value. If a given key is seen more than once, the
last value associated with it is retained in the new dictionary.
Example:

dict(ciro=1, luca=2)

dict(’ciro’: 1, ’luca’: 2)

dict(zip((’ciro’, ’luca’), (1, 2))) (see later on)
dict([[’luca’, 2], [’ciro’, 1]])

these all return a dictionary equal to "ciro": 1, "luca": 2.
The first example only works for keys that are valid Python
identifiers; the others work with any valid keys.



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Dictionary: operators

These are the operations that dictionaries support:
len(d) Return the number of items in the dictionary d.
d[key] Return the item of d with key key. Raises a

KeyError if key is not in the map.
d[key] = value Set d[key] to value.
del d[key] Remove d[key] from d. Raises a KeyError if key

is not in the map.
key in d Return True if d has a key key, else False.

key not in d Equivalent to not key in d.
iter(d) Return an iterator over the keys of the dictionary.

This is a shortcut for iterkeys().
clear() Remove all items from the dictionary.
copy() Return a shallow copy of the dictionary.



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Dictionary: operators

fromkeys(seq[, value]) Create a new dictionary with keys
from seq and values set to value.

get(key[, default]) Return the value for key if key is in the
dictionary, else default. If default is not given, it
defaults to None, so that this method never raises
a KeyError .

has_key(key) Test for the presence of key in the dictionary.
has_key() is deprecated in favor of key in d .

items() Return a copy of the dictionary’s list of (key,
value) pairs.



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Dictionary: operators

iteritems() Return an iterator over the dictionary’s (key,
value) pairs.

iterkeys() Return an iterator over the dictionary’s keys.
Using iterkeys() while adding or deleting entries
in the dictionary may raise a RuntimeError or fail
to iterate over all entries.

itervalues() Return an iterator over the dictionary’s values.
Using itervalues() while adding or deleting
entries in the dictionary may raise a
RuntimeError or fail to iterate over all entries.

keys() Return a copy of the dictionary’s list of keys.



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Dictionary: operators

pop(key[, default]) If key is in the dictionary, remove it and
return its value, else return default. If default is
not given and key is not in the dictionary, a
KeyError is raised.

popitem() Remove and return an arbitrary (key, value) pair
from the dictionary. popitem() is useful to
destructively iterate over a dictionary, as often
used in set algorithms. If the dictionary is empty,
calling popitem() raises a KeyError .

setdefault(key[, default]) If key is in the dictionary, return
its value. If not, insert key with a value of default
and return default. default defaults to None.



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Dictionary: operators

update([other]) Update the dictionary with the key/value
pairs from other, overwriting existing keys.
Return None. update() accepts either another
dictionary object or an iterable of key/value pairs
(as tuples or other iterables of length two). If
keyword arguments are specified, the dictionary is
then updated with those key/value pairs:
d.update(red=1, blue=2) .

values() Return a copy of the dictionary’s list of values.
viewitems() Return a new view of the dictionary’s items ((key,

value) pairs).
viewkeys() Return a new view of the dictionary’s keys.

viewvalues() Return a new view of the dictionary’s values.



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

1 Lists

2 Tuples

3 Dictionaries

4 Control Flows

5 Credit



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Control Flows

What is a control flow
Within an imperative programming language, a control flow
statement is a statement whose execution results in a choice
being made as to which of two or more paths should be
followed (CC go to Wikipedia©).

In particular, Python knows the usual control flow statements
known from other languages, with some twists plus others.



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

if statement

Perhaps the most well-known statement type is the if
statement. For example:

>>> x = int( input (" Please enter an integer : "))
Please enter an integer : 42
>>> if x < 0:
... x = 0
... print ’Negative changed to zero ’
... elif x == 0:
... print ’Zero ’
... elif x == 1:
... print ’Single ’
... else :
... print ’More ’
...
More

There can be zero or more elif parts, and the else part is
optional.



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

for statement

The for statement in Python is different from what you may be
used to in C or in Pascal. Rather than always iterating over an
arithmetic progression of numbers (like in Pascal), or giving the
user the ability to define both the iteration step and halting
condition (as C), Python’s for statement iterates over the items
of any sequence (a list or a string), in the order that they
appear in the sequence. For example:

>>> # Measure some strings :
... a = [’pippo ’, ’pluto ’, ’paperino ’]
>>> for x in a:
... print x, len(x)
...
pippo 5
pluto 5
paperino 8



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

for statement

It is not recommended to modify the mutable sequence being
iterated within the loop. If you need to modify the list you are
iterating over (for example, to duplicate selected items) you
must iterate over a copy. The slice notation makes this
particularly convenient:

>>> for x in a[:]: # make a slice copy of the entire list
... if len(x) > 6: a. insert (0, x)
...
>>> a
[’pippo ’, ’pluto ’, ’paperino ’, ’paperino ’]

Try to execute the code above over the original list. . .



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

while statement

The while loop executes as long as the condition remains true.
In Python, like in C, any non-zero integer value is true; zero is
false. The condition may also be a string or list value (any
iterable type); anything with a non-zero length is true, empty
sequences are false.

>>> # Fibonacci series :
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while b < 10:
... print b
... a, b = b, a+b
...
1
1
2
3
5
8



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

A useful function: range()

If you do need to iterate over a sequence of numbers, the
built-in function range() comes in handy. It generates lists
containing arithmetic progressions:

>>> range (10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list;
range(10) generates a list of 10 values, the legal indices for
items of a sequence of length 10. It is possible to let the range
start at another number, or to specify a different increment
(even negative; sometimes this is called the âĂŸstepâĂŹ):

>>> range (5, 10)
[5, 6, 7, 8, 9]
>>> range (0, 10, 3)
[0, 3, 6, 9]
>>> range (-10, -100, -30)
[-10, -40, -70]



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

A useful function: range()

To iterate over the indices of a sequence, you can combine
range() and len() as follows:

>>> a = [’Python ’, ’is ’, ’a’, ’cool ’, ’tool ’]
>>> for i in range (len(a)):
... print i, a[i]
...
0 Python
1 is
2 a
3 cool
4 tool



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

break and continue Statements, and else Clauses
on Loops

break and continue
The break statement, like in C, breaks out of the smallest
enclosing for or while loop. The continue statement, also
borrowed from C, continues with the next iteration of the loop.

else on loops
Loop statements may have an else clause; it is executed when
the loop terminates through exhaustion of the list (with for) or
when the condition becomes false (with while), but not when
the loop is terminated by a break statement.



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

break and continue Statements, and else Clauses
on Loops

An example:

>>> for n in range (2, 10):
... for x in range (2, n):
... if n % x == 0:
... print n, ’equals ’, x, ’*’, n/x
... break
... else :
... # loop fell through without finding a factor
... print n, ’is a prime number ’
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3



Python

L. Schenato

Outline

Lists

Tuples

Dictionaries

Control Flows

Credit

Credit

Credit goes to www.python.org and herein contents.


	Lists
	Tuples
	Dictionaries
	Control Flows
	Credit

