
Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

A not so short introduction to Python: part III

Luca Schenato

Research Institute for Hydrogeological Protection
Italian National Research Council
(CNR-IRPI)

03/31/2011

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

1 Files

2 Functions

3 Modules

4 Errors and Exceptions

5 Credit

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

1 Files

2 Functions

3 Modules

4 Errors and Exceptions

5 Credit

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Working with files: basics

File management is natively implemented in Python: this
allows for a very fast and easy file management.
Common operations on text and binary files, like opening and
closing, reading and writing sequences of bits, . . . , can be
performed with the following built-in functions:

Operation Description

fileout = open(’file.txt’,’w’)
open file.txt returning
the file object fileout
with write permission

filein = open(’dati’,’r’)
open of dati
with read permission

s = filein.read()
read entire filein
into the string s

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Working with files: basics

Operation Description

s = filein.read(N)
read N bytes from filein
into the string s

s = filein.readline()

read on one line from
filein into the string s
(only text files)

ls = filein.readlines()

read entire filein
into the list of strings ls
(only text files)

fileout.write(s)
write s into
entire fileout

fileout.writelines(ls)
write the list of
string ls into fileout

fileout.close() close fileout

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Working with files: basics

Operation Description

filein.tell()

returns an integer giving the
file object’s current
position in the file,
measured in bytes from
the beginning of the file.

filein.seek(offset, fromwhat)

point to the byte at
offset bytes with respect
to the byte at
position fromwhat
(0[beginning of file],
1[current position]
or 2[end of file])

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Working with files: basics

Hint
It is good practice to use the with keyword when dealing with
file objects. This has the advantage that the file is properly
closed after its suite finishes, even if an exception is raised on
the way. It is also much shorter than writing equivalent
try-finally blocks.

>>> with open(’/tmp/ workfile ’, ’r’) as f:
... read_data = f.read ()
>>> f. closed
True

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Working with files: the pickle module

read() method only returns strings: to deal with numbers,
retrurning strings have to be passed to casting functions, like
int() .
However, when you want to save more complex data types like
lists, dictionaries, or class instances, things could get a lot more
complicated, but not in Python. Python provides a standard
module called pickle.

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Working with files:the pickle module

Pickling and unpickling
The pyckle module can take almost any Python object, and
convert it to a string representation; this process is called
pickling. Reconstructing the object from the string
representation is called unpickling.

Operation Description
pickle.dump(x, f) pickle the object x into file f
x = pickle.load(f) unpickle the object x from file f

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

1 Files

2 Functions

3 Modules

4 Errors and Exceptions

5 Credit

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Functions

What are they?
Functions are essentially groups of instructions and statements,
with optional input arguments (i.e. parameters) and optional
output arguments.

Functions are useful because:
allow for multiple usage of the same code;
allow for a clear arrangement of the code and make the
programming easier.

The syntax follows:

def function_name ([list of parameters , divide by comma]):
body
return output_parameters # optional

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Functions

Once defined, a function can be invoked easily, by digiting its
name, followed by the list of the optional parameters.
As an example, look at the following function definitions:.

>>> # Fibonacci numbers module
... def fib(n): # write Fibonacci series up to n
>>> a, b = 0, 1
>>> while b < n:
>>> print b
>>> a, b = b, a+b
...
>>> def fib2(n): # return Fibonacci series up to n
>>> result = []
>>> a, b = 0, 1
>>> while b < n:
>>> result . append (b)
>>> a, b = b, a+b
>>> return result
...

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Functions

To call them, just invoke function name

>>> fib (1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fib2 (100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

Variables passing
Please note that in Python, the variables are passed by value,
never by reference: therefore, any changes to the parameter
that take place inside the function have no affect on the
original data stored in the variable. (This is rigorously true only
for non mutable variables.)

Variables are first searched in the local namespace (inside the
scope of the function) and if not found they are searched in the
global namespace.

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Functions

Look at the following examples:

>>> x = 10
>>> y = 20
>>> def f1 ():
... x = 0
... print x
... print y
...
>>> x
10
>>> y
20
>>> f1 ()
0
20
>>> x
10
>>> y
20

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Functions

Look at the following examples:

>>> x = [1 ,2 ,3]
>>> def f2(x):
... x. append (4)
...
>>> x
[1, 2, 3]
>>> f2(x)
>>> x
[1, 2, 3, 4]
>>> def f3(y):
... x = [4 ,5 ,6]
... x. append (y)
... return x
...
>>> f3 (6)
[4, 5, 6, 6]
>>> x
[1, 2, 3, 4]

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Functions

Optional parameters can be defined in Python’s function, as
well: they assume a given value, if not specified otherwise:

>>> def f4(a,b = 1):
... print a, b
...
>>> x = 1000
>>> y = 2000
>>> f4(x)
1000 1
>>> f4(x,y)
1000 2000

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

1 Files

2 Functions

3 Modules

4 Errors and Exceptions

5 Credit

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Modules vs. scripts

When you quit the Python interpreter and enter it again, the
definitions you have made (functions and variables) are lost.

A script
A way to have your code at disposal whenever you want is by
writing the input for the interpreter into a file and running it
with that file as input instead. This is known as creating a
script.

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Modules vs. scripts

As your program gets longer, you may want to split it into
several files for easier maintenance. You may also want to use
a handy function that you’ve written in several programs
without copying its definition into each program.

A module
To support this, Python has a way to put definitions in a file
and use them in a script or in an interactive instance of the
interpreter. Such a file is called a module.

Definitions from a module can be imported into other modules
or into the main module (the collection of variables that you
have access to in a script executed at the top level and in
calculator mode).

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Modules

A module is a file containing Python definitions and
statements. The file name is the module name with the suffix
.py appended. Within a module, the module’s name (as a
string) is available as the value of the global variable __name__ .

As an exaple, put the following statements in a file and call it
fibo.py:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while b < n:

print b
a, b = b, a+b

def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while b < n:

result . append (b)
a, b = b, a+b

return result

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Modules

This module can be imported with the following command:

>>> import fibo

This does not enter the names of the functions defined in fibo
directly in the current symbol table; it only enters the module
name fibo there. Using the module name you can access the
functions:

>>> fibo.fib (1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2 (100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo. __name__
’fibo ’

If you intend to use a function often you can assign it to a local
name:

>>> fib = fibo.fib
>>> fib (500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Modules

A variant of import allows for loading names from a module
directly into the importing module’s symbol table:

>>> from fibo import fib , fib2
>>> fib (500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the
imports are taken in the local symbol table (so in the example,
fibo is not defined).

There is even a variant to import all names that a module
defines:

>>> from fibo import *
>>> fib (500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an
underscore (_).

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Modules

Calling a module in a particular path

>>> import sys
>>> sys.path. append (’particular path ’)
>>> import modulename

Very Important!!!
For efficiency reasons, each module is only imported once per
interpreter session. Therefore, if you change your modules, you
must restart the interpreter – or, if it’s just one module you
want to test interactively, use reload() , e.g.
reload(modulename) .

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Modules as scripts

When you run a Python module with
python fibo.py <arguments> : in this case the code in the
module will be executed, just as if you imported it, but with
the __name__ set to "__main__" . This allows for an easy
workaround to use the module as a script to launch a function
of the module itself; try to add the following code at the end of
the file fibo.py:

if __name__ == " __main__ ":
import sys
fib(int(sys.argv [1]))

By this, you can make the file usable as a script as well as an
importable module, because the code that parses the command
line only runs if the module is executed as the “main” file:

$ python fibo.py 50
1 1 2 3 5 8 13 21 34

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Modules and namepace

Each module has its own set of names (variables and
functions): this is known as namespace. By the import we can
import the names between different namespaces. By the
command dir() the list of names inside the namespace is
shown:

>>> dir ()
[’__builtins__ ’, ’__doc__ ’, ’__name__ ’]

those are the names loaded by the default namespace. When
some modules are imported additional names are loaded:

>>> from fibo import *
>>> dir ()
[’__builtins__ ’, ’__doc__ ’, ’__name__ ’, ’fib ’, ’fib2 ’]

. . . namespaces apply also to function. . . try to print dir()

inside the scope of a function.

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

1 Files

2 Functions

3 Modules

4 Errors and Exceptions

5 Credit

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Errors and Exceptions

We can divide errors in two main classes
syntax errors;
exceptions.

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Syntax Errors

Syntax errors, aka parsing errors, are the most common kind of
complaint you get while you are still learning Python (and even
after):

>>> while True print ’Hello world ’
File "<stdin >", line 1, in ?

while True print ’Hello world ’
^

SyntaxError : invalid syntax

The parser repeats the offending line and displays a little
“arrow” pointing at the earliest point in the line where the error
was detected. File name and line number are printed so you
know where to look in case the input came from a script.

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Exceptions

Even if a statement or expression is syntactically correct, it may
cause an error when an attempt is made to execute it. Errors
detected during execution are called exceptions and are not
unconditionally fatal, but most of them are not handled by
programs. Here is an example:

>>> 10 * (1/0)
Traceback (most recent call last):

File "<stdin >", line 1, in ?
ZeroDivisionError : integer division or modulo by zero

The last line of the error message indicates what happened.
Exceptions come in different types, and the type is printed as
part of the message.

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Handling Exceptions

It is possible to handle exceptions with the following control flow:

try:
codes to be controlled
except [exception1 to be handled]:
codes to be executed in case of error
except [exception2 to be handled]:
codes to be executed in case of error
[else :]
codes to be executed in case of non error
[finally :]
codes to be executed in any case , even if other

exceptions are raised

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Handling Exceptions

Here is an example:

>>> def divide (x, y):
... try:
... result = x / y
... except ZeroDivisionError :
... print " division by zero!"
... else :
... print " result is", result
... finally :
... print " executing finally clause "
...
>>> divide (2, 1)
result is 2
executing finally clause
>>> divide (2, 0)
division by zero!
executing finally clause
>>> divide ("2", "1")
executing finally clause
Traceback (most recent call last):

File "<stdin >", line 1, in ?
File "<stdin >", line 3, in divide

TypeError : unsupported operand type(s) for /: ’str ’ and
’str ’

Python

L. Schenato

Outline

Files

Functions

Modules

Errors and
Exceptions

Credit

Credit

Credit goes to www.python.org and herein contents.

	Files
	Functions
	Modules
	Errors and Exceptions
	Credit

