
Python

L. Schenato

Outline

Classes in
Python

Credit

[

A not so short introduction to Python: part IV

Luca Schenato

Research Institute for Hydrogeological Protection
Italian National Research Council
(CNR-IRPI)

04/21/2011

Python

L. Schenato

Outline

Classes in
Python

Credit

[
1 Classes in Python

2 Credit

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Programming approaches

Approaches to problem decomposition (i.e.
algorithm/programming language):
Procedural: programs are lists of instructions that tell the
computer what to do with the program’s input (C, Pascal, and
even Unix shells are procedural languages).
Declarative: you write a specification that describes the
problem to be solved, and the language implementation figures
out how to perform the computation efficiently. (SQL is the
declarative language you’re most likely to be familiar with; a
SQL query describes the data set you want to retrieve, and the
SQL engine decides whether to scan tables or use indexes,
which subclauses should be performed first, etc).

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Programming approaches

Object-Oriented: programs manipulate collections of objects.
Objects have internal state and support methods that query or
modify this internal state in some way. (Smalltalk and Java are
object-oriented languages. C++ and Python are languages
that support object-oriented programming, but don’t force the
use of object-oriented features).
Functional: problems are decomposed into a set of functions.
Ideally, functions only take inputs and produce outputs, and
don’t have any internal state that affects the output produced
for a given input. (Well-known functional languages include the
ML family – Standard ML, OCaml, and other variants – and
Haskell).

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Are you a “Use and throw” programmer?

Pure Functional programming, that means without any “side
effects”, could be cumbersome. On the contrary a smoothed
functional programming can be the right choice for you if you
are an occasional programmer. If you are more than an
occasional programmer, even functional programming lacks
about the following aspects:

due to the strict relationship between functions and data,
at some point, any modification to your software can
originate a domino effect on other modules/function,
requiring a strong debug effort;
your software has to be considered “Use and throw”: you
better start writing a new piece of code, rather than adapt
an existing one.

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Why being OO and not just Functional
programmer?

OO programming is an alternative way of decomposing your
algorithm: accordingly, elementary unit of decomposition is any
longer the function (i.e. operation), but the object (i.e. model
of a real entity). This approach introduces a revolutionary
programming concept: the algorithm is a set of interacting
objects, each with its own data structure and allowed functions
on that structure. Each object encapsulate the data
preserving its integrity from external framework modifications.
At the same time, the object can be “queried” by anyone that
know its data structure and functions, without any knowledge
about the internal implemetation.

Python

L. Schenato

Outline

Classes in
Python

Credit

[

OOP: a real world example

A building

Its own characteristics are: dimensions, number of room,
destination, occupancy . . .
Its peculiar methods (i.e. operation to be applied to): cleaning,
painting, going inside, going outside . . .

OOP is shared programming
OOP is intrinsically group progamming: each programmer can
implement an object that interact with other objects by others
programmers, without knowing how they are implemented
internally.

Python

L. Schenato

Outline

Classes in
Python

Credit

[

OOP: basics

Object and class
An object is defined by a class to which it belongs. A class
specifies the general characteristics of the object, by declaring:

the variables encapsulted within the object, called fields
(also called data members or member variables);
the encapsulated functions, called methods, that allow to
operate only onto the fields of the same object.

Python

L. Schenato

Outline

Classes in
Python

Credit

[

OOP: how to approach a problem

Let’s try and build a database of single persons.

Class “person”

Fields of the class:
name

surname
address
phone

marriage status

!
!
!

Methods of the class:

change address
change phone
change status

Once the class is defined, we are allowed to defined as many
objects as we want belonging to that class. This objects are
called instances of the class. Examples are:
(Luca Schenato
(Elvis Presley
. . .

Python

L. Schenato

Outline

Classes in
Python

Credit

[

OOP: how to approach a problem

By defining a class you can also implement the so-called
encapsulation: this term is used to refer to one of two related
but distinct notions, and sometimes to the combination1

thereof:
A language mechanism for restricting access to some of
the object’s components (i.e. information restriction).
A language construct that facilitates the bundling of data
with the methods (or other functions) operating on that
data (i.e. not explosing internal implementation).

As an example, if you want to change the address of a person
of the class “person”, you should’t assign the new address to
that person instance but you should be forced to used the
associated method. As well, if you want to define an instance
of person you shouldn’t be able to access directly to its fields.

1Wikipedia

Python

L. Schenato

Outline

Classes in
Python

Credit

[

OOP: Information hiding and class hierarchy and
inheritance

Information hiding
Methods and fields of a class object can be public or private:
the first ones define the public interface of the class, the others
the private interface. By masquerading an encapsulated field
and/or method, you make them not visible outside the scope of
the object itself.

Hierarchy and Inheritance
A class can be defined starting from the definition of an
existing class (called parent) and implementing a more specific
object definition (single hierarchy) or a combination of object
definitions (multiple hierarchy). Please note that parent
methods can be overloaded in children object (polymorfism).

Python

L. Schenato

Outline

Classes in
Python

Credit

[
1 Classes in Python

2 Credit

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Class Definition

The syntax follows:

class class_name [(parent_class ,...)]:
field1
field2
method1
method2

Fields are assigned as variables, possibly at the moment of
object definition. Methods of a class are defined as functions
with the only difference that the first parameter of each
method is the object itself self , so that the interpreter is
aware about the calling object.

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Class person

Back to our example:

class person :
name = ’’
surname = ’’
address = ’’
phone = ’’
status = ’’
def change_address (self ,s):

self. address = s
def change_phone (self ,s):

self. phone = s
def change_status (self ,s):

self. status = s
def display (self):

print self.name , self.surname , self.address ,
self. status

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Class student

And this is how inheritance work:
class student (person): # inheritance

institute = ’’
year = 0
def change_institute (self ,s):

self. institute = s
def got_graduated (self):

if self.year == 5:
print ’You get graduated ’

else :
self.year = self.year + 1

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Object definition

The object definition syntax is similar to the function calling
syntax, whereas fields and method are called by “point”-like
syntax:

>>> p1 = person () # parenthesis are mandatory
>>> p1.name = ’Luca ’
>>> p1. surname = ’Schenato ’
>>> p1. change_address (’Corso Stati Uniti , 4\ nPadova ’)
>>> p1. display ()
Luca Schenato Corso Stati Uniti , 4
Padova

Inheritance works like this:
>>> s1 = student ()
>>> s1.name = ’Orazio ’
>>> s1. surname = ’The Cat ’
>>> s1. change_address (’Catlandia ’)
>>> s1. change_institute (’Mousekeepers Inst.’)
>>> s1. display ()
Orazio The Cat Catlandia

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Polimorfism

let’s try to overload the display method:

class student (person): # inheritance
institute = ’’
year = 0
def change_institute (self ,s):

self. institute = s
def got_graduated (self):

if self.year == 5:
print ’You get graduated ’

else :
self.year = self.year + 1

def display (self):
print self.name , self.surname , self.address ,

self. status
print ’Institute : ’ + self. institute + ’ year ’ +

str(self.year)

Now, if you ask for displaying information about Orazio The
Cat, you will have:

>>> s1. display ()
Orazio The Cat Catlandia
Institute : Mousekeepers Inst. year 0

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Object initialization

It is recommended to get fields initialized at the definition of
the object itself. In order to do so, you can use the build
function __init__() : this method is called whenever the object
is declared, and it does assign the fields to the passed values.
Example:

class person :
name = ’’ # not necessary anymore
surname = ’’ # not necessary anymore

address = ’’
phone = ’’
status = ’’
def __init__ (self ,n,s):

self.name = n
self. surname = s

def change_address (self ,s):
self. address = s

def change_phone (self ,s):
self. phone = s

def change_status (self ,s):
self. status = s

def display (self):
print self.name , self.surname , self.address ,

self. status

and by calling:

>>> p1 = person (’Luca ’,’Schenato ’)
>>> p1. display ()
Luca Schenato

Python

L. Schenato

Outline

Classes in
Python

Credit

[

What about information hiding/restriction?

You have been said that “[. . .] if you want to define an
instance of person you shouldn’t be able to access directly to
its fields.[. . .]”, but we have done that, few slides above...
The Python interpreter, by default, assumes that any fields are
public, hence they can be modify directly. To make them
private, so to protect them, have to implement the
encapsulating paradigm: this can be simply done, by prepend
to their name the characters __ .

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Encapsulation

In our example, it is advisable to make all the fields private:

class person :
__address = ’’
__phone = ’’
__status = ’’
def __init__ (self ,n,s):

self. __name = n
self. __surname = s

def change_address (self ,s):
self. __address = s

def change_phone (self ,s):
self. __phone = s

def change_status (self ,s):
self. __status = s

def display (self):
print self.__name , self. __surname ,

self.__address , self. __status

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Encapsulation

If you try:

>>> p1 = person (’Luca ’,’Schenato ’)
>>> p1. display ()
Luca Schenato
>>> p1. __nome = ’pippo ’
>>> p1. display ()
Luca Schenato
>>> p1.nome = ’pippo ’
>>> p1. display ()
Luca Schenato

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Operators overloading

In this example we have define a complex number class (how to
kill your time. . .):

class comp_num :
def __init__ (self ,r,i):

self. __real_part = r
self. __imag_part = i

def real_part (self):
return self. __real_part

def imag_part (self):
return self. __imag_part

def sum(self ,num):
self. __real_part = self. __real_part +

num. real_part ()
self. __imag_part = self. __imag_part +

num. imag_part ()
def display (self):

print str(self. __real_part) + ’+’ +
str(self. __imag_part) + ’i’

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Operators overloading

And we can use it in the following way:

>>> n1 = comp_num (1 ,2)
>>> n2 = comp_num (3 ,4)
>>> n1. display ()
1+2i
>>> n1. real_part ()
1
>>> n1.sum(n2)
>>> n1. display ()
4+6i

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Operators overloading

It would be better to use the “+” operator and Python allows
for it:

class comp_num :
def __init__ (self ,r,i):

self. __real_part = r
self. __imag_part = i

def real_part (self):
return self. __real_part

def imag_part (self):
return self. __imag_part

def __add__ (self ,num):
ris = comp_num (self. __real_part +

num. real_part () , self. __imag_part +
num. imag_part ())

return ris
def display (self):

print str(self. __real_part) + ’+’ +
str(self. __imag_part) + ’i’

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Operators overloading

And here is how to use it:
>>> n1 = comp_num (1 ,2)
>>> n2 = comp_num (3 ,4)
>>> r = n1+n2
>>> r. display ()
4+6i

Python

L. Schenato

Outline

Classes in
Python

Credit

[
1 Classes in Python

2 Credit

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Credit

Credit goes to www.python.org and programmazione.html.it
and herein contents.

Python

L. Schenato

Outline

Classes in
Python

Credit

[

Acknoledgements

Thank you
for your
attention.

	Classes in Python
	Credit

