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Abstract— This paper extends the gossip algorithm, widely
studied in the literature on distributed computing and control
algorithms, to networks of quantum systems. In doing so, we
reinterpret the classical algorithm and the average consensus
task as a symmetrization problem with respect to the action
of the permutation group. This allows us to extend in a
natural way the gossip consensus algorithm to the quantum
setting and prove its convergence properties to symmetric
states while preserving the expectation of permutation-invariant
global observables.

I. INTRODUCTION

Among the recent trends in control and systems theory, the
field of distributed control, estimation and optimization on
networks has stimulated an impressive amount of research,
see e.g. [1], [2], [3], [4], [5]. A basic task for distributed
information processing is reaching consensus about the mean
of some shared value or slack variable. For several ap-
plications, an asynchronous pairwise interaction setting is
relevant, which has led to the study of so-called gossip
algorithms [6].

The present paper extends this well-studied gossip al-
gorithm to networks of quantum systems. Exploring the
links between information processing tasks and stochastic
dynamics on networks has recently opened new research
directions towards “distributed” quantum information appli-
cations. Among these, we recall quantum computation [7],
[8] in its potential implementation via dissipative means [9],
and its connection to quantum random walks [10], [11].
Other applications include entanglement generation through
stabilizing dissipative dynamics [12], [13], as well as most
tasks in the control of open quantum systems [14].

A first attempt to bring consensus to the quantum context
has been presented in [15]. It is based on a “cone geometry”
approach, viewing open quantum dynamics as the non-
commutative generalization of Markov chains that model
consensus algorithms. The authors show how Birkhoff’s The-
orem and Hilbert’s projective metric lead to a general con-
vergence result and contraction ratio estimation. However,
by describing the dynamics of the whole system of interest
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as governed by a single Markov transition mechanism, this
formulation does not account for subsystem structure or
network connections.

We here approach quantum consensus from an “opera-
tional”, multi-agent control perspective including the basic
classical ingredients: a network of subsystems, an interaction
protocol with locality constraints, and a target consensus
situation. In particular, we focus on a non-commutative
equivalent of the well-known gossip algorithm1. To this
aim, we reinterpret the gossip algorithm as a way to obtain
symmetrization with respect to the permutation group of
all subsystems in the network (Section II-A). From this
reformulation, we construct the quantum equivalent of the
gossip interaction (Section II-B). The main result of the
paper is given in Section II-C: we show that the algorithm
converges to a permutation-invariant state, and in doing so
it “computes” the average of a class of global physical
observables in a distributed way. Section III further ex-
plores the analogy between the classical and quantum setting
from a more abstract, group theoretic viewpoint. In this
reformulation, convergence of both methods is equivalent
to symmetrization with respect to the action of a finite
group, which is in turn implied by convergence of a suitably
constructed Markov chain to the uniform distribution. A brief
refresher about quantum systems and notations is given in
the appendix.

In the light of this result, we believe that our work offers
not only a generalization of the well-known consensus
algorithm to quantum networks, but also a new viewpoint
on the classical case, based on group symmetrization, that
could be useful for a number of issues in distributed control.
It is worth remarking that in the quantum control literature
a wealth of methods for noise protection and dynamical
error-correction are based on symmetrization techniques
[16], [17], [18], [19], [20], [21].

II. GOSSIP ITERATIONS FROM PERMUTATIONS

The distributed computation context for consensus is for-
malized by assigning local agents (subsystems) to vertices
1, 2, ...,m ∈ V of a graph. Possible interactions between
agents at time t are modeled by the edges E(t) ⊂ {(j, k) :
j, k ∈ V } of the graph. An undirected interaction graph
identifies (j, k) with (k, j); we restrict ourselves to this case.

1The lift to the non-commutative setting is motivated by the fact that gen-
eral quantum observables cannot be measured simultaneusly. This implies
that their corresponding operators do not commute.



A. Classical Gossip Interactions

The so called gossip algorithm is usually described as
follows [6]. Consider m subsystems, each one associated to
a configuration variable xk ∈ Rn. The goal of consensus
is reaching a situation where x1 = x2 = ... = xm. In
the gossip context, the subsystems evolve in discrete time
through bilateral interactions. At each iteration, a single edge
(j, k) is selected from the set E(t) of available edges at that
time. The associated agents move towards each other / their
mean value, according to:

xj(t+ 1) = xj(t) + α(xk(t)− xj(t))
= (1− β)xj(t) + β

xj(t)+xk(t)
2

xk(t+ 1) = xk(t) + α(xj(t)− xk(t))

= (1− β)xk(t) + β
xj(t)+xk(t)

2

x`(t+ 1) = x`(t) for all ` /∈ {j, k} , (1)

where α ∈ (0, 1) and β = 2α.
This can also be interpreted as a convex combination of

two discrete operations, [keep your state] and [swap your
state]. Namely:

(xj(t+ 1), xk(t+ 1)) = (1− α) (xj(t), xk(t))

+α (xk(t), xj(t)) (2)
x`(t+ 1) = x`(t) for all ` /∈ {j, k} (3)

with α ∈ (0, 1). As we shall see, this permutation oriented
viewpoint turns out to have a natural quantum counterpart.

The way in which the active links are selected at each
time leads to different evolutions for the whole system. We
consider the following situations.
• Random single interaction: at each time t one link

(j(t), k(t)) is selected at random, (j(t), k(t)) being a
single-valued random variable onto the edge set E(t).

• Cyclic single interaction: at each time t one link
(j(t), k(t)) is selected deterministically by cycling
through the elements of a time-invariant edge set E.

In either case, since the set of all pairwise swaps generates
the whole permutation group [22], it is easy to see that the
evolution up to time t can always be written as a convex
combination of permutation operators on the initial subsys-
tem states. Let P denote the set of all permutations π of the
integers 1, 2, ...m and let us pack all the xi in a single vector
x = (x1, x2, ..., xm). We define Pπ as the unique matrix
associated to π such that Pπ x = (xπ(1), xπ(2), ..., xπ(m))
for any x1, x2, ..., xm. The result that gossip iterations – both
random and cyclic – lead to consensus under sufficient graph
connectivity assumptions [6], can be reformulated by saying
that the evolution asymptotically drives the state towards the
symmetric set

C = {x ∈ Rmn : Pπ x = x for all π ∈ P} . (4)

In addition, one easily checks that gossip evolutions preserve
the total average x̄ = 1

m

∑m
k=1 xk, so the state converges to

xk = x̄ for all k. Gossip iterations thus allow for computation
of the mean in a distributed, robust way.

B. Quantum Gossip Interactions

Let us now introduce a way to implement gossip-type
interactions in a quantum setting. For a brief introduction
on quantum system modeling, we refer the reader to the
Appendix. Consider a multipartite system composed of m
isomorphic quantum subsystems, labeled with indices i =
1, . . . ,m, with associated Hilbert space Hm := H1 ⊗ · · · ⊗
Hm ' H⊗m, with dim(Hi) = dim(H) = n and n > 2.
We shall refer to this multipartite system as to our quantum
network. Recall that states for the quantum systems are
associated to density operators ρ and physical observables
to self-adjoint operators X = X†. Expectations of physical
quantities are computed as Eρ(X) = Tr(ρX).

Given an operator σ ∈ B(H), we denote by σ(i) the local
(i.e. acting non-trivially on a single subsystem) operator:

σ(i) := I ⊗... ⊗I︸ ︷︷ ︸
(i−1) times

⊗σ ⊗ I ⊗... ⊗I︸ ︷︷ ︸
(m−i) times

.

The action of a permutation π of the quantum subsystems
on the observables is obtained by the conjugate action of a
unitary operator Uπ ∈ U(Hm), uniquely defined by

U†π(X1 ⊗ . . .⊗Xm)Uπ = Xπ(1) ⊗ . . .⊗Xπ(m)

for all bounded linear operators X1, . . . Xm in B(H). In the
dual viewpoint (see the Appendix), where the permutation
acts on the state ρ, the corresponding action is obtained by
swapping Uπ and U†π . A state or observable is said to be
permutation invariant if it commutes with all the subsystem
permutations. It is worth noting that given any self-adjoint
operator Q ∈ H(Hm) characterizing an observable on the
network, we can define a permutation invariant observable
X by considering:

X = ĒB(Q) :=
1

m!

∑
π∈P

U†πQUπ . (5)

We will see in Section III that ĒB(·) is the projection
onto the fixed points of the conjugate unitary action of the
permutation group on the linear operators on Hm.

As in the classical case, a graph can be used to model
the possible interactions among subsystems. In a controlled
quantum network, one can typically engineer unitary trans-
formations affecting neighboring subsystems. In particular,
transformations that implement the “identity” evolution and
the swapping of two subsystems are realistic. Let us denote
U(j,k) the operator that swaps subsystems j and k. Following
the analogy with the classical case (3), we define a quantum
gossip interaction as the map:

ρ(t+1) = Ej,k(ρ(t)) = (1-α) ρ(t)+αU(j,k)ρ(t)U†(j,k) , (6)

with α ∈ (0, 1). Such iteration is written in the so called
Operator Sum Representation (OSR) and therefore it defines
a quantum channel i.e. a completely positive (CP) and
trace preserving (TP) map from density operators to density
operators Ej,k : D(Hm) → D(Hm) (see the appendix).
Under the dynamics (6), the resulting evolution from ρ(t0)



to ρ(tf ) for any tf ≥ t0 is still described by a CPTP map.
Specifically, it admits an OSR in the form

Etft0 (ρ) =
∑
π∈P

pπ UπρU
†
π, (7)

where the pπ ∈ [0, 1] depend on the choice of gossip edges
between t0 and tf , and satisfy

∑
k pk = 1. Such a map

can thus be thought of as a probabilistic mixture of unitary
evolutions. In addition to being CPTP, this map is also unital
i.e. it preserves the identity.

C. Convergence to Consensus for the quantum algorithm

We study convergence under the two types of gossip dy-
namics introduced above: cyclic interaction, and trajectory-
wise for the random interaction. We begin by characterizing
the fixed points of maps like (7).

Proposition 1: (see e.g. [17]) Let {Vi}Ki=1 an OSR of a
unital CP map E(·) and define:

AE = {X ∈ B(Hm) : XVi = ViX for i = 1, . . . ,K} .
(8)

Then X̄ ∈ B(Hm) is a fixed point of E , i.e. E(X̄) = X̄ , if
and only if X̄ ∈ AE . �

Lemma 1: Let U(j,k) denote the pairwise swap operation
of subsystems (j, k) on Hm. If the edge set E defines a
connected graph, then the set of fixed points of any CP unital
map of the form

E(X) = q0X +
∑

(j,k)∈E

qj,k U
†
(j,k)XU(j,k) , (9)

with q0 +
∑
qj,k = 1 , q0, {qj,k} > 0, coincides with the

set of permutation-invariant operators.
Proof: According to Proposition 1 the fixed points

are the X satisfying XU(j,k) = U(j,k)X , or equivalently
U†(j,k)XU(j,k) = X , for all (j, k). The latter expresses that
X is invariant with respect to pairwise swaps on all the
graph edges. It is well known that sequences of pairwise
swaps on the edges of a connected graph generate the full
set of permutations on the set of nodes [22], which gives the
conclusion. �

The following lemma shows how the contribution of the
identity, i.e. the trivial permutation, in the CP map plays a
crucial role in the convergence.

Lemma 2: If a CPTP map E admits an OSR with a term
V1 =

√
α I , α > 0, then viewing it as a linear map on

B(Hm) its eigenvalues all have a modulus < 1, up to
eigenvalues that precisely equal 1.

Proof: If E is a CPTP map it is a contraction in trace
norm [7], [23], so its eigenvalues λk belong to the closed
unit disk. By virtue of the Kraus-Stinespring representation
theorem (see e.g. [24]), also F = 1

1−α (E −αI) is CPTP and
thus has eigenvalues µk in the closed unit disk. Therefore
the eigenvalues λk = (1−α)µk +α of E = (1−α)F +αI
in fact belong to the circle of radius (1− α) centered at α,
which is strictly inside the unit circle except for a tangency
point at 1 ∈ C. �

By combining the above properties we get the main result,
i.e. a convergence result for quantum gossip that ensures as
in the classical case a distributed computation of the mean
for a class of operators.

Theorem 1: Assume that there exists a T > 0 such that
the union of graphs associated to possible interactions in
the time interval [t, t + T ] is connected for all t. Then the
quantum gossip algorithm (6) ensures global convergence to
the permutation invariant state

ρ∗ =
1

m!

∑
π∈P

Uπρ0U
†
π ; (10)

- deterministically, when the edges on which a gossip in-
teraction occurs at a given time are selected by periodically
cycling, in any predefined way, through the set of edges;
- in probability, when the edges on which a gossip interaction
occurs at a given time are selected randomly from a bounded
probability distribution. 2

In addition, consider

S =
1

m

m∑
i

σ(i), (11)

where σ is any self-adjoint operator on H. Then

lim
t→∞

Tr(σ(`)ρ(t)) = lim
t→∞

Tr(Sρ(t)) = Tr(Sρ0) (12)

holds for all ` ∈ {1, . . . ,m} and for all ρ0.
Proof: Recall that, for any CPTP map E the dual

dynamics E† is the unital CP map such that

Tr(XE(ρ)) = Tr(E†(X)ρ)

for any X, ρ. Using the fact that the pairwise permutation
operators are self-adjoint, one easily sees that any S of the
form (11) is invariant under the dual map of (6). This readily
yields

Tr[Ej,k(ρ)S] = Tr[ρE†j,k(S)] = Tr[ρS] ∀ ρ , (13)

proving the second equality in (12).
For a cyclic evolution, we consider EC the map that

concatenates the gossip evolutions over one cycle. Thanks to
the presence of the identity in each gossip interaction step,
all the pairwise swaps are still present with a weight different
from zero in the OSR of EC . Therefore the necessary part
of Lemma 1 holds (any fixed point must be permutation-
invariant); the sufficient part holds trivially. Now consider
the dynamics associated to EC as a linear, time-invariant map
acting on the space of hermitian matrices. From Lemma 2
and the fact that the time-invariant linear map leaves D(Hm)
invariant (excluding unstable Jordan blocks), we have that
all the modes of the LTI system are asymptotically stable

2By a bounded probability distribution, we mean that there exists a
constant γ > 0 such that any edge (j, k) ∈ E(t) has a probability
qj,k(t) > γ to be chosen. By convergence in probability, we mean that
for any initial state ρ0 and any δ, ε > 0, there exists a time T > 0 such
that

P[ Tr((ρ(T )− ρ∗)2) > ε ] < δ .

when ρ(t) is computed according to the gossip algorithm.



except those corresponding to the fixed-point set, namely the
permutation-invariant set: every initial state converges to a
fixed point ρ∞ in this set. Thus the permutation invariant set
is globally asymptotically stable, and in fact exponentially
stable since the map is linear. Let us now prove that ρ∞ has
the form (10). For all permutation invariant X , from (13)
we have that:

Tr[XEtC(ρ0)] = Tr[Xρ0] for any number of iterations t .
(14)

Combining the latter with the fact that ρ∞ is permutation-
invariant, that the set of all permutations is self-adjoint, and
using (5), we get for arbitrary Q ∈ H(Hm):

Tr[Qρ∞] = Tr[Q
1

m!

∑
π∈P

Uπρ∞U
†
π]

= Tr[
1

m!

∑
π∈P

UπQU
†
πρ∞]

= Tr[
1

m!

∑
π∈P

UπQU
†
πρ0]

= Tr[Q
1

m!

∑
π∈P

Uπρ0U
†
π] .

This implies that indeed ρ∞ = ρ∗ as described in (10).
Replacing Q by σ(`) and noting that 1

m!

∑
π∈P Uπσ

(`)U†π =
1
m

∑m
i=1 σ

(i), the second line directly yields the first equality
in (12).

For the random trajectory evolution, we repeat a proof
similar to the classical case. Since E for a single interaction
is linear, self-adjoint, with eigenvalues in the closed unit
disk, it is a contraction for the Frobenius norm distance
Tr((ρA − ρB)2) between any two states ρA, ρB ∈ D(Hm).
Indeed, E has non-increasing orthonormal modes, so by
writing any operator X ∈ H(Hm) in the modal basis we
directly get Tr(E(X)† E(X)) ≤ Tr(X†X); taking X =
ρA − ρB yields the contraction. This is exactly analogous
to the non-increasing Euclidean norm xTx = ‖x‖2 under
a classical consensus interaction with an undirected graph,
and the related contraction of ‖xA − xB‖2. Now taking in
particular ρA = ρ and ρB = ρ∗, we get that the Frobenius
distance from ρ to ρ∗ can never increase. Moreover, by tran-
sitivity of the permutation operators, 1

m!

∑
π∈P UπρU

†
π =

1
m!

∑
π∈P Uπρ0U

†
π = ρ∗ for any ρ along the trajectory

of the gossip algorithm. Now given the convergence under
cyclic evolution, there must exist some λ < 1 and integer
M > 0 such that

Tr((EMC (ρ)− ρ∗)2) ≤ λTr((ρ− ρ∗)2)

for any ρ for which 1
m!

∑
π∈P UπρU

†
π = ρ∗. The proof then

concludes by observing that the probability to obtain an edge
sequence which includes successions of M cyclic evolutions
a sufficiently large number of times to have ε-convergence,
gets arbitrarily close to 1 if we wait long enough. �

The theorem thus shows that the mean value of any
(global) observable S = 1

m

∑
` σ

(`), with arbitrary σ, can

be asymptotically retrieved from the state of any single
subsystem after having applied one of the quantum gossip
algorithms. The convergence speed for the random case
can be quite low, and a faster map would be obtained by
effectively taking a mixture of all possible updates at each
time – some sort of synchronous quantum gossip.

Example: Consider a network of m = 4 two-level
systems, i.e. H ∼= C2. Denoting (|0〉, |1〉) an orthonormal
basis for H, take as initial state: ρ0 = |1, 0, 1, 0〉〈1, 0, 1, 0|,
which is pure, and is not permutation invariant. Depending
on how well a particular quantum subsystems swap can
succeed, we will have different evolutions of the gossip
algorithm. However, as long as the union of swap-links forms
in expectation a connected graph (i.e. a path, a 3-branch star,
or anything containing one of those), Theorem 1 ensures that
the state asymptotically converges to:

lim
t−→∞

ρ(t) = ρ∗ =
1

3!

∑
π∈P

Uπρ0U
†
π =

=
1

6
(|1, 1, 0, 0〉〈1, 1, 0, 0|+ |1, 0, 1, 0〉〈1, 0, 1, 0|

+ |1, 0, 0, 1〉〈1, 0, 0, 1|+ |0, 1, 1, 0〉〈0, 1, 1, 0|
+ |0, 1, 0, 1〉〈0, 1, 0, 1|+ |0, 0, 1, 1〉〈0, 0, 1, 1|).

(15)

This expression is clearly invariant under all the subsystem
permutations. We can also check by direct computation that

Tr(σ(`)ρ∗) = Tr(Sρ∗) = Tr(Sρ0) ,

for any σ = a|0〉〈0|+b|1〉〈1|+c(|0〉〈1|+|1〉〈0|)+id(|0〉〈1|−
|1〉〈0|) ∈ H(Hm), with a, b, c, d ∈ R. Hence the expectation
of σ at the end of the evolution is equal to the initial
expectation of S = 1

4

(
σ(1) + σ(2) + σ(3) + σ(4)

)
.

III. SYMMETRIZATION AS A UNIFYING PICTURE

To conclude, we present and analyze an alternative view-
point that unifies classical and quantum gossip in a common
framework, and allows for proving convergence by study-
ing the asymptotic properties of a Markov chain over the
elements of the permutation group.

Given a finite group G and an algebra X we consider the
so called action of the group, namely a map a : G×X → X
which is linear in X such that for each g, h ∈ G, x ∈ X
• a(h, a(g, x)) = a(hg, x),
• a(e, x) = x

where e is the identity element of the group.
The set P of all the permutations of an m-elements set

defines a finite group of order (i.e. number of elements)
|P| = m!. Furthermore, Rd is an algebra for every d ∈ N>0.
We can then define aR(π, x) = Pπ x, such that an interaction
of the classical gossip (1) rewrites as:

x(t+ 1) = αaR(πj,k, x) + (1− α) aR(e, x) (16)

with α ∈ (0, 1) and πj,k denoting the permutation that
performs the pairwise swap of j and k only. Henceforth we



have that:
x(t) =

∑
π∈P

pπ(t) aR(π, x(0)) , (17)

with pπ(t) > 0 such that
∑
π∈P pπ(t) = 1, for every t.

On the other hand in the quantum case, since also B(Hm)
is an algebra, we can define aB(π, x) = Uπ xU

†
π and from

(6) we get again:

ρ(t) =
∑
π∈P

pπ(t) aB(π, ρ(0)) , (18)

with pπ(t) > 0 such that
∑
π∈P pπ(t) = 1, for every t.

Thus in both cases, an evolution under the gossip algo-
rithm can be described as a probabilistic mixture of the
actions of the elements of the permutation group. If we pack
all the pπ(t) into the single vector p(t) and let (j(t), k(t))
be the edge activated at time t, the gossip-induced dynamics
is associated in both the classical and the quantum case to
the same Markov chain on the weights p:

p(t+ 1) = M(j(t),k(t)) p(t). (19)

Note that here the “nodes” of the Markov chain are not the
subsystems, but the elements π of the permutation group,
so the Markov transition matrix M has dimension m! times
m!. Now the behavior of both the classical and the quantum
gossip algorithms — and maybe of other variants — can be
studied by analyzing the properties of the same transition
matrices Mj(t),k(t), for the specific initial state p(0) having
all zero entries except an entry 1 at π = e. The convergence
to average consensus of the gossip algorithm then means that
the Markov chain, at least when starting at this particular
p(0), converges to:

lim
t→∞

p(t) =
1

m!
1 (20)

where 1 is the vector whose entries are all equal to 1. Note
that, at this level, convergence is independent of the specific
algebra and action that are being considered.

Therefore, once the convergence of the Markov chain for
the particular initial state is proven, it directly follows that
both the classical and quantum gossip converge respectively
toward:

x∞ =
1

m!

∑
π∈P

aR(π, x(0)) =: ĒR(x(0)) ,

ρ∞ =
1

m!

∑
π∈P

aB(π, ρ(0)) =: ĒB(ρ(0)) .

Using the properties of the group action and the fundamental
laws of a group, it is easy to see that independently of
the algebra X on which the group acts, the operator ĒX(·)
projects any state on the set of permutation invariant states.
Indeed, let us consider any µ ∈ P. Then

aX(µ, ĒX(·)) =
1

m!

∑
π∈P

aX(µπ, ·)

=
1

m!

∑
ν∈P

aX(ν, ·) = ĒX(·) .

IV. CONCLUSIONS AND RESEARCH DIRECTIONS

In this paper we develop a quantum version of the well-
known gossip algorithm. Our approach follows the analogy
with the classical setting as closely as possible, maintaining
an operational viewpoint and working with a multipartite
system (a quantum network). We propose a reformulation of
the classical gossip-type algorithm in terms of the action
of the permutation group, which leads to an immediate
non-commutative counterpart. We then directly prove that
the quantum version asymptotically prepares permutation
invariant states while preserving the expectation of global
permutation-invariant observables. The reformulation also
leads to a unifying viewpoint on consensus problems as
symmetrization problems, which in turn can be studied by
resorting to a classical Markov dynamics on the group
elements. Effective symmetrization can be asymptotically
obtained if the auxiliary Markov dynamics converges to a
uniform equilibrium.

A number of questions remain open. Among these an
interesting point is to find further problems that can fit
this symmetrization framework. Indeed, a number of quan-
tum control problems are explicitly formulated in terms of
symmetrization with respect to some unitary subgroup, see
e.g. techniques related to quantum dynamical decoupling
[16], [21]. It would also be interesting to assess the potential
of devising continuous-time quantum consensus algorithms.
This could build on some sort of “continuous swapping”
Hamiltonian dynamics and lead to connections with prob-
lems of thermalization and quantum chaos in closed system
dynamics [25].

Lastly, let us remark that in this paper we proposed a
quantum algorithm in which the gossip-type interactions are
selected in a classical way. The potential advantage of a
fully quantum implementation, along with its connection to
quantum random walks and Markov chain mixing properties
[10], [11], is definitely worth further investigation.

APPENDIX

This paper considers finite-dimensional quantum systems.
Their mathematical description starts by considering a finite
dimensional complex Hilbert space H ' Cd. The (Dirac’s)
notation |ψ〉 denotes an element of H (called a ket), while
〈ψ| = |ψ〉† is used for its dual (a bra), and 〈ψ|ϕ〉 for
the associated inner product. We denote the set of linear
operators on H by B(H). The adjoint operator X† ∈ B(H)
of an operator X ∈ B(H) is the unique operator that satisfies
(X|ψ〉)† |χ〉 = 〈ψ| (X†|χ〉) for all |ψ〉, |χ〉 ∈ H. We then
denote H(H) ⊂ B(H) the subset of self-adjoint operators,
and U(H) ⊂ B(H) the subset of unitary operators. The stan-
dard inner product in B(H) is the Hilbert-Schmidt product
〈X,Y 〉 = Tr(X†Y ), where Tr is the usual trace functional
(which is canonically defined in a finite dimensional setting).
We denote by I the identity operator. Working in a finite
dimensional setting, we often consider vectors and operators
as represented by complex matrices of suitable dimensions:
|ψ〉 ∈ H ' Cd are represented by column vectors, so



〈φ| ∈ H† ' Cd are row vectors; X ∈ B(H) ' Cd×d
are d× d complex matrices, the adjoint X† is the transpose
conjugate of X , self-adjoint and unitary properties carry over
to the associated matrices.

In statistical quantum theory, the state of a quantum system
is represented by a density operator ρ, that is any self-adjoint,
positive semi-definite operator with trace one. We denote the
convex set of these operators (the state space) by D(H). The
extreme points of this set, namely the rank-one operators
ρ = |ψ〉〈ψ| with |ψ〉 ∈ H and 〈ψ|ψ〉 = 1, are called pure
states. All the predictions about physical observations on
the quantum system are then computed through the Hilbert-
Schmidt product Tr(ρX) of ρ with “observables” X ∈
H(H) that characterize the measurement. Hence, one can
equivalently describe the effect of a quantum evolution either
on its state ρ ∈ D(H) (this is called Schrödinger’s picture),
or in the dual representation on its observables X ∈ H(H)
(Heisenberg’s picture).

A general framework for quantum evolution is offered
by quantum channels [24], [7], that is, linear, completely
positive (CP) and trace preserving (TP) maps from states to
states E : D(Hm) → D(Hm). It can be shown [24] that
such maps admit an Operator Sum Representation (OSR):

E(ρ) =

K∑
k=1

AkρA
†
k with

K∑
k=1

A†kAk = I (21)

where K 6 dim(H)2. Given a linear, CPTP map E , we can
define its dual map with respect to the Hilbert-Schmidt inner
product, E† : B(H)→ B(H) through the relation:

Tr[XE(ρ)] = Tr[E†(X)ρ] (22)

The dual map, modeling the quantum channel in the Heisen-
berg picture, is still linear and CP but instead of TP it is unital
i.e. E†(I) = I .

If two quantum systems3, with associated Hilbert spaces
H1 and H2 respectively, are taken together to form a larger
bipartite quantum system, the Hilbert space H1,2 associated
to the composite quantum system is the tensor product of
the individual quantum subsystem Hilbert spaces, H1 ⊗H2.

Let {|ψk〉}d1k=1 and {|φl〉}d2l=1 be orthonormal bases for H1

and H2 respectively, then an orthonormal basis for H1,2 can
be written as:

{|ψk〉 ⊗ |φl〉}d1,d2k,l=1 , (23)

from which we get that dim(H1,2) = dim(H1) dim(H2) =
d1d2. We use the short notation |ψ, φ〉 := |ψ〉 ⊗ |φ〉 for any
|ψ〉 ∈ H1 and |φ〉 ∈ H2. The composite Hilbert space is
naturally endowed with the inner-product 〈u1, u2|v1, v2〉 :=
〈u1|v1〉〈u2|v2〉 . A representation and basis for operators
in B(H1,2) is derived from this vector counterpart in the
standard way. In particular, given two operators X1 ∈ B(H1)
and X2 ∈ B(H2), one defines X1 ⊗ X2 ∈ B(H1,2) such
that

X1 ⊗X2(|u1〉 ⊗ |u2〉) =

= X1|u1〉 ⊗X2|u2〉 ∀|u1〉 ∈ H1 , |u2〉 ∈ H2 .
(24)

3The general case of n > 2 systems is easily obtained by iteration.

This rule for combining subsystems enriches quantum theory
with the phenomenon of entangled states, associated to
vectors in |ξ〉 ∈ H1,2 that cannot be factorized as |ξ〉 =
|ψ〉 ⊗ |φ〉 into separate subsystems states.
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