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Abstract— A general way to implement state preparation for
a register of qubits in a finite number of steps is proposed. Our
splitting-subspace approach relies on control resources that are
typically available in experimental implementations of quantum
information (a universal set of unitary operations on the system,
a controlled-not gate, and an ancillary resettable qubit), and
can be seen as a “quantum-controller” implementation of a
sequence of classical feedback loops. The realizability of the
scheme with different control resources is discussed, along with
an existing protocol used in state preparation and entanglement
generation in experimental ion-trap systems.

I. INTRODUCTION

State preparation problems are important for a variety of
application of quantum information. If the preparation is to
be achieved irrespective of the initial state of the system,
from a control viewpoint they can be translated into stabiliza-
tion problems. From a physical viewpoint, one is compelled
to make the quantum evolution irreverisible, by introducing
open-system features: a very natural way to address the
problem is to consider measurements, and feedback control
techniques. The emerging stabilization problems have been
studied in some depth in the continuous-time case [16], [14],
[9], [13], for either “output feedback” or strategies based
on state reconstruction by quantum filtering. It is worth
remarking that in this continuous-time scenario the desired
state can be typically reached only asymptotically. Recently
a linear-algebraic framework for analysis and synthesis has
been extended to the discrete-time case. In particular, for a
given indirect measurement and unconstrained unitary con-
trols it has been shown in [3] that pure states are generically
stabilizable. This is always true if the measurement is of
projective type and, furthermore, if it is associated to a non
degenerate observable, the desired state can be prepared in
a single step (of measurement plus control) [4].

However, the needed control resources may be (and typi-
cally are) unavailable for many state-of-the-art experimental
systems. Here we investigate how to prepare a desired state
in finite time by means of a reasonable set of resources for a
multipartite qubit system. In particular, the whole feedback
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loop will be “encoded” in a finite sequence of coherent
feedback actions [6], [15], where the controller is a qubit
itself and there is no-measurement involved. In addition, we
will assume to be able to implement a universal set of gates
(unitary control actions) on the target qubits. For certain
experimental, and most notably ion traps, these control
resources are not only achievable in principle, but have been
experimentally demonstrated up to 5 qubits [2]. We will
illustrate how the “stabilizer pumping” strategy proposed in
[2] fits in our framework, and how control actions achieving
stabilization of arbitrary targets can be designed.

Let us first recall a few basic notations and ideas about
quantum systems and measurements. Consider a finite-
dimensional quantum system of interest associated to a
Hilbert space H ∼ Cd. Observable quantities on the sys-
tems (or simply observables) are associated to self-adjoint
operators on H , here represented by Hermitian matrices
X = X† ∈ H(H), and the system state is associated to a
density matrices ρ ∈ D(H) = {ρ ∈ H(H)|ρ ≥ 0, tr(ρ) =
1}. Unitary matrices are denoted by U ∈ U(H). The (real)
spectrum of an observable represents the set of the possible
outcomes. Suppose that we are interested in measuring X,
which admits spectral decomposition X =

∑
i xiΠi. The

basic postulates that describe the quantum (projective, or
von Neumann’s) measurements state that the probability of
obtaining ci on a system in the state ρ is pi = Tr(ρΠi).
Immediately after a measurement that gives ci as an outcome
the system state becomes: ρ|i = 1

tr(ΠiρΠi)
ΠiρΠi.

If a quantum system is obtained by composition of two
physically distinguishable subsystems associated to Hilbert
spaces H1, H2, the corresponding mathematical description
is carried out in the tensor product space, H12 = H1 ⊗H2

[11], and observables and density operators remain asso-
ciated with Hermitian and positive-semidefinite, trace-one
operators on H12, respectively. If we get information about
a quantum subsystem by measuring another one which is
correlated to the former, we can obtain a reduced description
of the effect of the measurement on the subsystem of interest
by using the formalism of generalized measurements. To a
set of k possible outcomes is associated a set of operators
{Mk} such that

∑
kM

†
kMk = I, where I is the identity

operator. The probability of obtaining the k-th outcome is
thus computed as pk = tr(M†kMkρ), ρ being the (reduced)
state on the subsystem of interest which after the outcome
is recorded is updated to ρ|k = 1

tr(MkρM
†
k)
MkρM

†
k .

If now take the average over the possible outcomes,
we obtain a Trace-Preserving, Completely Positive (TPCP)



linear transformation of the state in the form of a Kraus map
[5]:

E(ρ) =
∑
k

MkρM
†
k .

The standard, projective-measurement rules are recovered by
choosing Mk = Πk.

II. FEEDBACK STABILIZATION

Suppose that a generalized measurement operation can be
performed on the system at times t = 1, 2, . . ., resulting
in an open system, discrete-time dynamics described by a
given Kraus map, with associated Kraus operators {Mk}.
Suppose moreover that we are allowed to enact arbitrarily
control action on the state of the system, i.e. ρ′′ = UρU†,
U ∈ U(H), and the controls are fast with respect to the
measurement time scale, or the measurement and the control
act in distinct “time slots”.

We can then in principle implement a Markovian feedback
law, consisting in a map from the set of measurement
outcomes to the set of unitary matrices, U(k) : k 7→ Uk ∈
U(HI). The measurement-control loop is then iterated: If we
average over the measurement results at each step, this yields
a different TPCP map, which describes the evolution of the
state immediately after each application of the controls:

ρ(t+ 1) =
∑
k

UkMkρ(t)M†kU
†
k .

Controllability and stabilizability for this class of discrete-
time, closed-loop dynamics have been studied in detail in [8],
[4], [3], [1]. In particular, from the results of [3], [1] it is
immediate to see that if the following resources are available:
1) Arbitrary unitary control actions Uk on the system;
2) A non-degenerate projective measurement, associated to
a resolution of the identity {Πk = |φk〉〈φk|}dk=1,
then the system can be prepared in any desired pure state
in one step. Let ρd = |ψ〉〈ψ| be the target pure state: this
is simply achieved by choosing control operations Uk such
that

Uk|φk〉 = |ψ〉.

This is indeed an abstract description of the most commonly
used experimental strategies to prepare a given state: first
measure the system projecting to some known state, and
then enact some open-loop, controlled transition to steer it
to the desired state. However, in many relevant cases this
is prevented by the unavailability of suitable measurement
procedures (measurement may be destructive, slow, inaccu-
rate or not having the needed resolution). In what follows,
focusing on multi-qubit systems, we illustrate a way to tackle
the same pure-state preparation by replacing the single, full
resolution measurement above with ability of using an extra
qubit as a resettable quantum controller [6], [7].

III. THE SPLITTING SUBSPACE APPROACH

Let us consider an N -qubit system HQ =
⊗

j Hj ∼ C2N

,

with {|φj〉}2
N

j=1 denoting the standard basis of HQ, |φ1〉 =
|0 . . . 00〉, |φ2〉 = |0 . . . 01〉, |φ3〉 = |0 . . . 10〉, . . . .

Assume the following control resources are available:
a) A universal set of unitary control actions {U} on the target
qubits;
b) An auxiliary control qubit, with Hilbert space Hc, that
can be reset to a known pure state, say |1〉;
c) Controlled-not unitaries Cout = I2 ⊗ |0〉〈0| + σx ⊗
|1〉〈1|, Cin = |0〉〈0| ⊗ I2 + |1〉〈1| ⊗ σx ∈ U(Hc ⊗ Hj)
between the control qubit and one of the first target qubits.
We next show that a simple approach can be developed in
order to design “circuits” preparing in a finite number of
steps the target pure state. The first step is to provide a
characterization of the target state in terms of a family of
splitting subspaces.

Lemma 3.1: (Splitting subspaces) Any |ψ〉 ∈ HQ can be
described as the unique unit-norm vector in the intersection
of N subspaces Sk of dimension 2N−1, i.e.

span{|ψ〉} =
⋂
k

Sk.

Proof. It is sufficient to provide an explicit way to construct
the Sk: start by relabeling |ψ1〉 := |ψ〉 and complete it
with 2N vectors so that {|ψi〉}i=1 is an orthonormal basis1.
Then define S1 = span{|φk〉, k = 1, ..., 2N−1}, S2 =
span{|φk〉, k = 1, ..., 2N−2, 2N−1 + 1, . . . , 2N−1 + 2N−2},
and so on for the next subspaces, as depicted in Figure 1.

Formally, by defining the matrices I2 =
[

1 0
0 1

]
and

Π(k) = I⊗k−1
2 ⊗

[
1 0
0 0

]
⊗ I⊗n−k2 ,

in the |ψk〉-basis, we can define the splitting subspace as

Sk = range(Π(k)).

By construction, that the only vector in the intersection of
the subspaces is |ψ1〉. 2

It is worth noting that for stabilizer states [10], the splitting
subspaces can be taken to be the 1-eigenspaces of the
associated stabilizer operators. However, as showed in the
Lemma above, there is no need to restrict to this subset of
pure states.

The next step is to show that the system state can be
prepared in a splitting subspace S in one step given the
available control resources. If we could perform a projective
measurement of ΠS ,Π⊥S , the orthogonal projection onto S
and its orthogonal complement, it would be be sufficient to
use a feedback law that does nothing if ΠS is measured, and
for the other outcome applies a U⊥ such that U⊥Π⊥SU

†
⊥ =

ΠS . Notice, again, that this control action would be highly
not unique (at least there is freedom on the unitary mapping
from S⊥ to S, which is an element of SU(2N−1)). The
average total evolution would be of the form:

ρ(t+ 1) = ES(ρt) = ΠSρ(t)ΠS + U⊥Π⊥S ρ(t)Π⊥SU
†
⊥, (1)

1Of course, there is a lot of freedom in doing so, equivalent to choosing
an element of SU(2N − 1), that can be potentially exploited in reducing
the complexity of the unitary operations in what follows.



Fig. 1. Splitting subspaces.

and it is easy to see that the support of ρ(t+ 1) is contained
in S:

tr(ΠSρ(t+ 1)) = tr(ΠSρ(t)) + tr(U†⊥ΠSU⊥Π⊥S ρ(t)Π⊥S )
= tr(ΠSρ(t)) + tr(Π⊥S ρ(t)) = 1,

where we used the fact that we chose U⊥ such that
U⊥Π⊥SU

†
⊥ = ΠS . The exact same TPCP map can be im-

plemented using the extra qubit as a quantum controller: let
us assume without loss of generality that it can interact with
the first target qubit, and denote as {|ψk〉} an orthonormal
basis for HQ, such that the first 2N−1 elements are a basis
for S. Then proceed as it follows:

1) Perform the unitary U†ψ on the target qubits, where
Uψ|φk〉 = |ψk〉. This “maps” the information on
whether or not the state of the system is in S on the
state of the first qubit.

2) Perform Cout on the control and the first qubit, mapping
the information of the first qubit on the state of the
control qubit;

3) Perform Cin on the control and the first qubit, changing
the state of the first qubit depending on the projection
of the control qubit on |0〉;

4) Perform the change of basis Uψ to return to the original
basis and (if needed for successive steps) reset the
control qubit.

The net effect on the target qubits of these operations is:

Utot = UψCinCoutU
†
ψ

= UψCinU
†
ψUψCoutU

†
ψ = ĈinĈout

= (|1〉〈1| ⊗ I2N + |0〉〈0| ⊗ U⊥)(I2 ⊗ΠS + σx ⊗Π⊥S ),

where U⊥ satisfies the condition U⊥Π⊥SU
†
⊥ = ΠS . Hence,

by averaging over the control-qubit degrees of freedom by

use of the partial trace [10], we get:

ρ(t+ 1) = trHc(Utot(|1〉〈1| ⊗ ρ(t))U†tot)
= ΠSρ(t)ΠS + U⊥Π⊥S ρ(t)Π⊥SU

†
⊥ = ES(ρt).

(2)

If we have N − 1 splitting subspace constructed as in the
proof of Lemma 3.1, the basis {|ψk〉} can be chosen at each
step to be a reordering of the first one. With this choice, the
desired state-preparation result can be then easily proven.

Proposition 3.1: Any target state ρd = |ψ〉〈ψ| can be
prepared using control resources a)-b)-c) in N feedback steps
irrespective of the initial state of the qubit system ρ.

Proof. Let {Si} be splitting subspace description for |ψ〉 con-
structed as in the proof of Lemma 1, with ESi the associated
TPCP maps defined as in (1), and implement ESN

◦ . . . ◦
ES1(ρ). By construction, each ESi

maps
(⋂i−1

k=1 Sk
)
∩ S⊥i

onto
(⋂i−1

k=1 Sk
)
∩ Si. Thus, at the N -th control step, any

initial state is driven into
(⋂N

k=1 Sk
)

= span{|ψ〉}. 2

We want to stress that, while the controlled-not operation
entangling the control and the first qubits, as well as the
resetting of the control qubit, are the same at each step, and
hence in real-world implementation will take a fixed time
to be enacted, the Uψ will be different since it will include
a reshuffling of the basis elements in order to obtain the
“nested” subspace structure we used for the proof (it can be
shown that this will need in general up to (N−i)/2 swaps of
qubit at step i). This can add up to the total implementation
time, making initial the choice of the (non-unique) basis
{|ψk〉} critical for efficient implementation.

A. Effective entangling operations

In real-world experimental settings, engineering exactly
the controlled-not gate we assumed may still be hard to
do. However, it is easy to see that the way of realizing the
“feedback” map (1) with quantum controllers is highly not
unique. Even if the controlled-not gates are achievable in
principle, it is very likely that other choices may turn out to
be more convenient to implement.

More precisely, it is easy to verify that any pair of
entangling operators of the following form could achieve the
desired task (possibly up to some extra unitary operation on
the system qubits):

C̃out = W
(
Dc ⊗ (USΠS) +Oc ⊗ (USΠ⊥S )

)
, (3)

C̃in = (|1〉〈1| ⊗ VS + |0〉〈0| ⊗ (VSU⊥))W †, (4)

where Dc, Oc are unitary and diagonal (off-diagonal) in the
standard basis of Hc, while US and VS are unitary operators
for which both S and S⊥ are invariant, and finally W is an
arbitrary unitary operator on the whole system.



This implies that [US ,ΠS ] = [VS ,ΠS ] = 0, and similarly
for Π⊥S . The total dynamics then reads:

ρ(t+ 1) = trHc
(Utot(|1〉〈1| ⊗ ρ(t))U†tot)

= VSΠSUSρ(t)U†SΠSV
†
S

+VSU⊥Π⊥SUSρ(t)U†SΠ⊥SU
†
⊥V
†
S = ẼS(ρ).

(5)

The presence of US , VS could slow down, or even prevent,
the desired state preparation since in general it is no longer
true that

(⋂i−1
k=1 Sk

)
∩S⊥i is mapped onto

(⋂i−1
k=1 Sk

)
∩Si,

a key step in the convergence proof. However, their effect
can be eliminated by suitable (open loop) unitary gates on
the system qubits alone.

IV. CASE STUDY: TRAPPED IONS

A. Experimental Bell-State Pumping

In [2], a toolbox for simulating and controlling dynamics
of a quantum system with up to five qubits has been
presented. It is based on an trapped ions experimental system
(in a linear trap) that implements a circuit-model quantum
computer, combining multi-qubit gates with optical pumping
to implement coherent operations as well as dissipative
processes. We here review the proposed two-qubit Bell-state
pumping procedure in the light of our splitting subspace ap-
proach. The same approach has been successfully employed
to create GHZ states on up to 5 qubits.

Let us denote the four Bell-states as:

|Φ±〉 =
1√
2

(|00〉 ± |11〉), |Ψ±〉 =
1√
2

(|01〉 ± |10〉). (6)

The system, initially in an unknown density ρS , is deter-
ministically prepared in the Bell-state |Ψ−〉 by realizing in
two steps the quantum operation ρS 7→ |Ψ−〉〈Ψ−|. The Bell-
states are stabilizer states2: for instance |Φ+〉 is associated to
the commuting stabilizer operators Z1Z2 and X1X2, (it is the
only two-qubit state being simultaneously an eigenstate of
eigenvalue +1 of both, Z1Z2|Φ+〉 = +|Φ+〉, X1X2|Φ+〉 =
+|Φ+〉), or equivalently X1X2 and Y1Y2. In fact, each of the
four Bell-states (6) is uniquely determined as an eigenstate
with eigenvalues ±1 with respect to Y1Y2 and X1X2. The
considered strategy engineers two maps under which the
system qubit states are transferred from the +1 into the -
1 eigenspace of Y1Y2 and X1X2.

In order to implement experimentally the first map, three
unitary operations and a dissipative one have been used. All
act on the two system qubits, denoted by subscript S, and an
ancillary one, with subscript C. A key role is played by the
Mølmer-Sørensen (MS) gates [12] UX2(θ) = exp(−i θ4Sx

2)
and UY 2(θ) = exp(−i θ4Sy

2), where Sx and Sy denote
collective spin operators: Sx =

∑n
i=0Xi and Sy =

∑n
i=0 Yi.

The main steps of this experimental quantum circuit are listed
below:

2We shall use the standard notation for stabilizer states: Xk, Yk, Zk
denote the operators acting as the Pauli matrices σx, σy , σz on the k-th
qubit, and the identity on the rest.

(i) Information about whether the system is in the +1 or -1
eigenspace of X1X2 is mapped by MS gate UX2(π/2) onto
the logical states |0〉 and |1〉 of the ancilla.
(ii) A controlled gate performs a conversion from the +1
eigenvalue of the stabilizer X1X2 to -1 by acting on the first
system qubit3:

C(p) = |0〉〈0|E ⊗ Z1 + |1〉〈1|E ⊗ I. (7)

(iii) The MS gate UX2(π/2) is re-applied, in order to move
the state back to the initial basis representation.
(iv) The ancilla qubit is then reinitialized dissipatively in
state |1〉.

Next, the whole circuit is repeated, but this time using
UY 2(π/2) gates (while the controlled-gate Cin remains the
same). In order to show that this can be seen as an instance of
of our splitting-subspace approach, we need to take a closer
look at the structure of the MS gate.

B. The MS gate

The MS entangling gate is based on pairwise two-ion
interaction terms and can be parametrized by two angles θ
and φ:

UMS(θ, φ) = exp
(
− iθ

4
(cosφSx + sinφSy)2

)
, (8)

The sum in the collective spin operators Sx =
∑n
i=0Xi and

Sy =
∑n
i=0 Yi, is understood to be performed over all ions

involved in the gate.
On the rest of the work we suppose φ = 0, so (8) can be
rewritten as:

UX2(θ) = exp
(
− iθ

4

( n∑
i=0

Xi

)2)
. (9)

In the experimental Bell-state pumping protocol we are
examining, we need MS gates with a phase angle θ = π/2.
In this case the UX2(π/2) operator can be decomposed in
a more explicit form with respect to the HC ⊗ HS tensor
decomposition:

UX2

(π
2

)
= U ′X(I ⊗Π−1 +X ⊗Π+1), (10)

where U ′X is a unitary 8× 8 matrix of the form:

U ′X = I ⊗ 1
2
e−iπ/8


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 = I ⊗ U ′′X .

(11)

3In the experiment the gate is realized through the following sequence of
operators (C, 1 denoting the control and the first system qubit, respectively):
C(p) = UZ1 (α)UY (π/2)U

(C,1)

X2 (−α)UY (−π/2) with U(C,1)

X2 (−α) =

exp(i(α/2)XCX1), and UZ1 = eiαZ1 and p = sin2(α).



The action of the unitary operator U ′′X on the Bell states basis
(6) is described as:

U ′′X |Φ+〉 = − 1√
2
e−iπ/8 · |Ψ+〉

U ′′X |Φ−〉 =
1√
2
e−iπ/8 · |Φ−〉

U ′′X |Ψ+〉 = − 1√
2
e−iπ/8 · |Φ+〉

U ′′X |Ψ−〉 =
1√
2
e−iπ/8 · |Ψ−〉

Hence, U ′′X is not harmful for our purpose since it swaps
the Bell-states in +1 eigenspace of X1X2 and does not
change, except for a constant, the other Bell-states in the
-1 eigenspace. Explicitely, in the Bell U ′′ basis, BBell =
{|Φ+〉, |Ψ+〉, |Φ−〉, |Ψ−〉}, can be written as:

U ′′X,Bell =
1√
2
e−iπ/8

[
X O
O I

]
, (12)

where symbol O denotes a 2 × 2 matrix of zeros. We have
thus obtained a decomposition of the MS gate UX2(π/2) in
a form that includes two terms:

1) The conditional operation CXout = I ⊗ Π−1 + X ⊗
Π+1 that coherently transfer to the ancilla qubit the
information about in which of the two subspaces the
system state is;

2) An additional unitary U ′X that is not harmful for stabi-
lization purposes, since [U ′X ,Π

X1X2
± ] = 0.

This means that the UX2(π/2) gate can be decomposed pre-
cisely in the form of (3), and then it is a viable resource for
implementing a splitting-subspace approach for preparation
of the desired subspace.

Similarly, the MS gate UY 2(π/2) can be decomposed in
the form:

UY 2

(π
2

)
= U ′Y (Z ⊗Π′−1 +X ⊗Π′+1), (13)

where in this case unitary operator U ′Y admits a decomposi-
tion:

U ′Y = Z ⊗ 1
2
e−iπ/8


1 1 1 1
−1 1 −1 1
−1 −1 1 1

1 −1 −1 1

 = Z ⊗ U ′′Y .

(14)
In conclusion, we have found a decomposition of the MS

gate UY 2(π/2) in the form (3) which involves a conditional
unitary CYout = Z⊗Π′−1+X⊗Π′+1, and an additional unitary
U ′Y with the same roles as for the X1X2 case. This means
that also UY 2(π/2) is a potential resource for the splitting
subspace method.

In the implementation of the protocol described above, the
second application of the MS gates in step (iii) has essentially
the effect of canceling the effect of U ′X , U

′
Y on the system

qubits. However, it is easy to see that for the first map there
is no actual need for this MS gate. In fact, the net effect of
the “residual” U ′X is to swap the state that were in the +1

UX2

(
π
2

)
Cin UY 2

(
π
2

)
Cin

|1〉

C
X o
u
t

U
′ X

•  |1〉

C
Y o
u
t

U
′ Y

•  |1〉

Z Z
|Ψ−〉
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Fig. 2. Simplified version (a single MS gate is used in each control step)
of the Bell-state pumping protocol proposed by Barreiro et al. [2].

eigenvalue of X1X2, but they end up being “pumped” in the
correct subspace anyway.

In an analogous fashion, by direct calculation using (14),
one can check that the action of U ′Y on the subspace that
is prepared by the first map, namely the one generated by
|Φ−〉, |Ψ−〉, is:

U ′′Y |Φ−〉 = − 1√
2
e−iπ/8 · |Ψ+〉,

U ′′Y |Ψ−〉 =
1√
2
e−iπ/8 · |Ψ−〉.

The desired state |Ψ−〉 is not perturbed: if now we apply the
controlled-σz to the other case we get:

Z1|Ψ+〉 = |Ψ−〉,

so state preparation is achieved without need for step (iii),
or, equivalently, without undoing U ′X , U

′
Y . This simplified

version of the control protocol, which in fact corresponds to
the experimentally implemented one in [2] as noted in the
supplementary material, is depicted in Figure 2.

V. CONCLUSIONS

We presented a general framework to design stabilizing
controls that prepare arbitrary pure states in finite time:
once a representation of the state via splitting subspaces is
chosen, this can be achieved either by measurements and
feedback [3], [4], or by resorting to coherent controllers [6].
The measurement and feedback steps are then substituted
by suitable conditional operations Cout, Cin, respectively,
enacting the necessary quantum-information flows directed
out of the system towards the controller, and reverse. This
implementation can be convenient in a number of situations
where measurements are slow, inaccurate or destructive for
the system itself. The method leaves freedom of choice in
constructing a suitable basis for the system space, that can be
exploited to minimize the complexity of control operations
required, and allows for some flexibility in the needed
conditional operations. A recently proposed algorithm for
Bell-state state preparation in ion traps [2] is reviewed in
the light of our splitting-subspace approach, demonstrating
its applicability in experimental situations, and its potential
utilization in design protocols that prepare arbitrary states in
finite time.
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