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Abstract— The theory of Schrödinger bridges for diffusion
processes is extended to discrete-time Markov chains, and to
some problems for quantum discrete-time processes. Taking into
account the past-future lack of symmetry of the discrete-time
setting, results bear a striking resemblance to the classical ones.
In particular, the solution of the path space maximum entropy
problems is always obtained from the prior model by means of
a suitable multiplicative functional transformation.

Index Terms— Markov chain, maximum entropy problem,
Schrödinger bridge, time reversal evolution, space-time har-
monic function, quantum operation.

I. INTRODUCTION

In two remarkable papers [19], [20], published before
the very foundations of probability had been laid down,
Schrödinger considered, and basically solved, the following
abstract probabilistic problem: Suppose a large number N of
independent Brownian particles have been observed to have
density ρ0(x) at time t0 and density ρ1(x) at some later time
t1. Suppose the latter density considerably differs from what
is predicted by the law of large numbers. It is apparent that
the particles have been transported in an unlikely way. But of
the many unlikely ways in which this could have happened,
which one is the most likely? In modern terminology, this is
a problem of large deviations of the empirical distribution.

Using a coarse graining approach, Schrödinger computed
the most likely endpoint distribution under the “prior” tran-
sition density of the Brownian motion p(s, x, t, y) and with
the prescribed marginals. It turned out that the solution,
namely the bridge from ρ0 to ρ1 over Brownian motion,
has at each time a density q that factors as q(x, t) =
ϕ(x, t)ϕ̂(x, t), where ϕ and ϕ̂ are, in the language of Doob, a
p-harmonic and a p-coharmonic functions, respectively. The
existence and uniqueness of such a pair (ϕ, ϕ̂) satisfying the
factorization above and the boundary conditions was guessed
by Schrödinger on the basis of his intuition. He was later
shown to be quite right in various degrees of generality by
Fortet [9], Beurling [4], Jamison [11], Föllmer [8].

In our recent paper [18], we have derived corresponding
results for discrete-time, classical and quantum Markovian
evolutions: The solution process is obtained, in analogy to the
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diffusion case, via a suitable multiplicative functional trans-
formation of the “prior” Markov process, see Theorem 2.3.
As in the diffusion case, an abstract result of Beurling and
Jamison can be used to prove existence and uniqueness of
the solution of the Schrödinger system for finite, irreducible
and aperiodic Markov chains, see Corollary 2.5. (The only
previous discrete-time paper on this topic is [2], which deals
with the continuous state space case and ignores by and large
all the delicate points in the construction of the bridge).

This paper is basically a shortened version of [18] without
proofs. In Section III, however, we make some ancillary
observations on the role of space-time harmonic functions in
the problem of feedback steering of a chain without altering
the topology of the associated graph.

We then consider quantum channels, namely trace-
preserving and completely-positive maps from density ma-
trices to density matrices, representing the natural analogue
of Markov chains transition operators. In order to derive
corresponding results for these evolutions, we first develop
various kinematical results. These concern extending the re-
sults on time-reversal of the channel, and developing space-
time harmonic processes. In spite of the obvious difficulties
one can expect from the non commutative structure, we are
actually able to solve two key maximum entropy problems
on path space. Remarkably, in the second case, the solution
does not depend on the particular “quantum path” chosen.
Moreover, with the appropriate understanding of objects and
properties, in both cases it bears a striking similarity to the
classical case. For quantum systems, this framework may be
useful to attack steering problems [3] and to complement or
improve quantum process tomography techinques (see e.g.
[15] for a recent review of different methods). Exploring
the relations of our framework with the theory of quantum
error correction [12] appears to be a particularly promising
research direction.

II. SCHRÖDINGER BRIDGES FOR MARKOV CHAINS

Consider a Markov chain X = {X(t); t = 0, 1, 2, . . .}
taking values in the finite or countably infinite set X . Since
X is countable, we can identify X with a subset of N.
Let us introduce the distribution of X(t) given by pi(t) =
P(X(t) = i) and the transition probabilities pij(t) :=
P(X(t + 1) = j|X(t) = i). They are connected through

pj(t + 1) =
�

i

pij(t)pi(t). (1)

Let us agree that † always indicates adjoint with respect to
the natural inner product. Hence, in the case of matrices,

Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010 •  5–9 July, 2010 • Budapest, Hungary

ISBN 978-963-311-370-7 2327



it denotes transposition and, in the complex case below,
transposition plus conjugation. We can then rewrite (1) as
p(t+1) = P †(t)p(t), where p(t)† = (p0(t), p1(t), p2(t), . . .)
and P (t) = (pij(t)) is the transition matrix. The latter is
stochastic, i.e. all elements are nonnegative and rows sum to
one. Let us introduce the n-step transition probabilities

p(n)
ij (t) := P(X(t + n) = j|X(t) = i), (2)

and the corresponding (stochastic) matrix P (n)(t) =
(p(n)

ij (t)). Then, by the Markov property,

P (n) = P (t + n− 1) · P (t + n− 2) · · ·P (t). (3)

Definition 2.1: A function h : N × X → R is called
space-time harmonic for the transition mechanism {P (t); t =
0, 1, . . .} of a chain if, for every t ≥ 0 and all i, j ∈ X , it
satisfies the backward equation

h(t, i) =
�

j

pij(t)h(t + 1, j). (4)

Space-time harmonic functions, a terminology due to Doob
and motivated by the case of diffusion processes, play a
central role in constructing Schrödinger bridges. They are
closely related to a class of martingales that are instanta-
neous functions of X(t), see [5].

Definition 2.2: Let p and q be probability distributions on
a finite or countably infinite set. The Information Divergence
or Relative Entropy or Kullback-Leibler Index of q from p is

D(p�q) =

� �
i p(i) log p(i)

q(i) , supp(p) ⊆ supp(q),
+∞, supp(p) �⊆ supp(q).

, (5)

where, by definition, 0 · log 0 = 0.
Let X = {X(0), X(1), . . .} be a Markov chain with state
space X , transition probabilities (πij(t)) and marginal prob-
abilities P(X(t) = i) = πi(t). Let Π denote the corre-
sponding joint distribution of {X(0), X(1), . . . ,X(T )} (dis-
tributions on X T+1 are always denoted by capital, boldface
letters). Let D(0, T ; p0, p1) denote the family of Markovian
distributions P on X T+1 that have marginals p0 at time 0
and p1 at time T , respectively, and have support contained
in the support of Π. We consider the following “path space”
Maximum Entropy Problem (MEP):

minimize
�
D(P�Π);P ∈ D(0, T ; p0, p1)

�
. (6)

Theorem 2.3: Suppose there exists a pair of nonnegative
functions (ϕ, ϕ̂) satisfying on [0, T ]×X the system

ϕ(t, i) =
�

j

πij(t)ϕ(t + 1, j), (7)

ϕ̂(t + 1, j) =
�

i

πij(t)ϕ̂(t, i), (8)

and the boundary conditions

ϕ(0, i) · ϕ̂(0, i) := p0
i , ϕ(T, i) · ϕ̂(T, i) := p1

i , ∀i ∈ X .
(9)

Suppose moreover that ϕ(t, i) > 0, ∀0 ≤ t ≤ T,∀i ∈ X .
Then, the Markov distribution P̂ in D(0, T ; p0, p1) having
transition probabilities

p̂ij(t) = πij(t)
ϕ(t + 1, j)

ϕ(t, i)
(10)

solves problem (MEP) (6).
If (ϕ, ϕ̂) satisfy (7)-(8)-(9), so does the pair (cϕ, 1

c ϕ̂) for
all c > 0. Hence, uniqueness for the Schrödinger system
is always intended up to such multiplications. As in the
diffusion case, the problem is now reduced to establish,
under suitable assumptions, existence and uniqueness for the
Schrödinger system (7)-(8)-(9). Existence and uniqueness of
the solution to the Schrödinger system (7)-(8)-(9) follows
from a very deep result of Beurling [4], suitably extended
by Jamison [10, Theorem 3.2].

Theorem 2.4: [18] Let X = {X(0), X(1), . . .} be a
Markov chain with state space X and transition probabilities
πij(t). Assume

1) p1 is a distribution on X with p1
x > 0,∀x ∈ X ;

2) p(0, x, T, y) > 0,∀x, y ∈ X .
Then the Schrödinger system (7)-(8)-(9) has a unique solu-
tion with ϕ(t, x) > 0, ∀0 ≤ t ≤ T,∀x ∈ X .
In many important applications, the prior transition proba-
bilities do not depend on time. We get the following result
for ergodic Markov chains.

Corollary 2.5: Let {X(0), X(1), . . .} be a Markov chain
with state space X and transition matrix Π = (πij). Assume

1) p1 is a distribution on X with p1
x > 0,∀x ∈ X ;

2) the matrix ΠT has all positive elements.
Then the Schrödinger system (7)-(8)-(9) has a unique solu-
tion with ϕ(t, x) > 0, ∀0 ≤ t ≤ T,∀x ∈ X .

III. CONTROLLING MARKOV CHAINS VIA
MULTIPLITICATIVE FUNCTIONAL TRANSFORMATIONS

Suppose, for simplicity, that X has cardinality N . Let
Π(n) = Πn and P̂ (n)(t) denote the matrices of old and new
n-step transition probabilities, respectively. Then, thanks to
a series of cancellations, (10) yields

P̂ (n)(t) = diag (ϕ(t, 1), ϕ(t, 2), . . . , ϕ(t, N))−1 Πn
×

diag (ϕ(t + n, 1), ϕ(t + n, 2), . . . , ϕ(t + n, N)) . (11)

Thus, we see that also the n-step transition probabilities
are obtained from the corresponding “prior” probabilities
in a simple way. It is worthwhile to observe that this
property is not peculiar of the Schrödinger bridge, but it
is shared by any multiplicative functional transformation.
Indeed, suppose h(t, i) is positive and satisfies (4) for t ≥ 0
and i, j ∈ X , where pij(t) are the transition probabilities of
the uncontrolled chain. Then

ph
ij(t) := pij(t)

h(t + 1, j)
h(t, i)

, (12)

provide a new Markov transition mechanism. Indeed, in view
of (4),

�

j

ph
ij(t) =

�

j

pij(t)
h(t + 1, j)

h(t, i)
= 1.
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This occurs also in the diffusion case where the latter
property follows from the Girsanov transformation, see e.g.
[8]. It is important to stress that feedback control of a Markov
chain through a multiplicative functional transformation does
not require to change the topology of the underlying graph.
Indeed, as it is apparent from (12), no new edge is required.
This seems particularly appealing considering applications
where the prior transition matrix is very sparse or building
new edges is technologically unfeasible. We finally observe
that h may be precomputed in order to obtain, in the light
of (11), a desired evolution on a given finite time horizon.

IV. QUANTUM PROBABILITIES, ENTROPY AND QUANTUM
OPERATIONS

Consider a finite-dimensional quantum system Q, with as-
sociated Hilbert space HQ isomorphic to Cn. In the quantum
probability formalism, random variables or observables for
the system are represented by Hermitian matrices X ∈ H(n).
They admit a spectral representation X =

�
j xjΠj , where

each real eigenvalue xj represents the random outcome asso-
ciated to the quantum event corresponding to the orthogonal
projection Πj . The role of the probability distributions is
played here by positive-definite, unit-trace matrices ρ ≥

0, tr(ρ) = 1, called density matrices. The set D(n) of
density matrices is convex and has the rank-one orthogonal
projections as extreme points. Assume that the density matrix
associated to the state of the system is ρ. The probability
of measuring xj , or in general the probability associated
to the quantum event Πj , is Pρ(Πj) = tr(ΠjρΠj). If the
outcome corresponding to an event Πj has been measured,
the density matrix conditioned on the measurement record is
ρ|Πj

= 1
tr ΠjρΠj

ΠjρΠj .
Notice that this implies that if the measurement has

occurred, but the outcome has not been recorded, the correct
conditional density matrix is: ρ|X =

�
j

1
tr ΠjρΠj

ΠjρΠj ·

Pρ(Πj) =
�

j ΠjρΠj , which is in general different from the
pre-measurement ρ, in contrast with the classical case. We
refer to these “blind” measurement processes as non-selective
measurements. For any matrix M , the support of M , denoted
supp(M), is the orthogonal complement of ker(M). Given
two density matrices ρ, σ, the quantum relative entropy is
defined by D(ρ�σ) = tr(ρ(log ρ − log σ)), if supp(ρ) ⊆
supp(σ), and +∞ otherwise.

As in the classical case, quantum relative entropy has the
property of a pseudo-distance (see e.g. [17]): The Klein’s
Inequality D(ρ||σ) ≥ 0 holds, equality occurring if and only
if ρ = σ. Moreover, quantum relative entropy is continuous
where it is not infinite and it is jointly convex, but not
symmetric, in its arguments. A wide class of physically
relevant, Markovian transition mechanisms are represented
by linear, Trace Preserving and Completely Positive (TPCP)
maps from density matrices to density matrices. A TPCP map
E†, in turn, can be represented by a Kraus operator-sum [13],
i.e.:

ρt+1 = E
†(ρt) =

�

j

MjρtM
†
j ,

where the n × n matrices Mj must satisfy
�

j M†
j Mj =

I in order for E† to be trace preserving. Notice that we
employ the adjoint for maps acting on states to be consistent
with the classical notation, where the transition matrix P †

acts on probability distributions while P acts on functions,
see [16] and [21] for a discussion on the role of duality
relations for Markov evolutions. The action of the dynamics
on observables can be derived by duality with respect to the
Hilbert-Schmidt inner product tr(XE†(ρt)) = tr(E(X)ρt),
where E(X) =

�
j M†

j XMj . It follows that if E†(·) is trace-
preserving, then E(·) is identity preserving and vice-versa.
Consider now a quantum Markov process, generated by ρ0

and a sequence of TPCP maps {E†t }t∈[0,T−1].
Definition 4.1: A sequence of observables {Yt}t∈[0,T−1]

is said to be space-time harmonic with respect to the family
{Et}t∈[0,T−1] if Yt = Et(Yt+1).
As in the classical case, space-time harmonic processes will
be shown to play a central role in the solution of maximum
entropy problems on path spaces.

V. TIME-REVERSAL OF QUANTUM OPERATIONS

Another key ingredient in the study of maximum entropy
problems on path space, is, very much like for classical
Markov chains, the reverse-time transition mechanism. De-
fine Rj(E , ρt) = ρ

− 1
2

t+1Mjρ
1
2
t , and the Kraus map:

R
†
E,ρt

(·) =
�

j

Rj(E , ρt)(·)R†
j(E , ρt). (13)

In [21], it is shown that this map is in fact a quantum
operation, that it can be augmented to a trace-preserving
quantum operation, and that it is the correct time-reversal for
E with respect to the initial density ρt. This is established
also in the case rank(ρt+1) < n, thereby extending the results
in [1]. For any ρ and E† with Kraus operators {Mk}, define
the map Tρ from quantum operations to quantum operations
Tρ : E† �→ Tρ(E†), where Tρ(E†) has Kraus operators
{ρ

1
2 M†

k(E(ρ))− 1
2 }. The results of [1] show that the action

of Tρ is independent of the particular Kraus representation
of E†. With this definition, we have that Tρt(E†) = R

†
E,ρt

.
Theorem 5.1 ([21]): Let E† be a TPCP map. If ρt+1 =

E†(ρt), then for any ρt ∈ D(n), R†
E,ρt

(·) defined as in (13)
is the time-reversal of E for ρt, i.e. ρt = Tρt(E†)(ρt+1) =
R
†
E,ρt

(ρt+1), and Tρt+1(R
†
E,ρt

)(σt) = E†(σt), for all σt ∈

D(H) such that supp(σt) ⊆ supp(ρt). Moreover, it can
be augmented to be TPCP without affecting the above
properties. 1

Remark 5.2: Notice that if ρt is full rank, Tρt+1 ◦ Tρt is
the the identity map on quantum operations. In general, the
time-reversal mechanism is not unique [21], just as in the
classical case. While studying error-correction problems ,
the same R

†
E,ρ(·) has been suggested by Barnum and Knill

[1] as a near-optimal correction operator. It has also been

1By augmenting a Kraus map E with Kraus operators {Mk}k=1,...,m
to a TPCP map, we mean adding a finite number N of Kraus operators
{Mk}k=m+1,...,m+N such that

P
k M†

kMk = I.
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proven there that R†
E,ρ(·) is independent of the particular

Kraus representation of E .
Given a quantum Markov process, generated by ρ0 and
a sequence of TPCP maps {E

†
t }t∈[0,T−1], a sequence of

observables {Yt}t∈[0,T−1] is said to be space-time harmonic
in reverse-time with respect to the family {REt,ρt}t∈[0,T−1]

if Yt+1 = REt,ρt(Yt), extending Definition 4.1 in analogy
with the classical case.

VI. PATH SPACE FOR QUANTUM MARKOV EVOLUTIONS

In the quantum case, the definition of a path-space for a
Markov process is not obvious. Here, we build up quantum
trajectories associating at each time an observable quantity
and conditioning the state and the evolution to measurements
of such observables. We get results that are in striking
analogy with the classical case.

Consider a quantum Markov process for a finite dimen-
sional system Q with associated Hilbert space HQ, generated
by an initial density matrix σ0 and a sequence of TPCP maps
{E

†
t }t∈[0,T−1], with each E†t admitting a Kraus representation

with matrices {Mk(t)}. We define a set of possible trajecto-
ries, or quantum paths, by considering a time-indexed family
of observables {Xt}, Xt =

�mt

i=1 xiΠi(t), with t ∈ [0, T ].
The paths are then all the possible time-ordered sequences
of events (Πi0(0),Πi1(1), . . . ,ΠiT (T )) , with it ∈ [1, mt].
We can compute the joint probability for a given path with
the nested expression:

wE
(i0,i1,...,iT )(σ0) = tr

�
ΠiT (T )E†T−1(ΠiT−1(T − 1) . . .

. . . E†0(Πi0(0)σ0Πi0(0)) . . .)ΠiT (T )
�

.

Lemma 6.1: Define the path-conditioned density matrices
for t ∈ [0, T ] via the relations

σ̂E,0 =
�

i0

Πi0(0)σ0Πi0(0),

σ̂E,t+1 = Ê
†
t (σ̂E,t)

=
�

it+1

Πit+1(t + 1)E†t (σ̂E,t)Πit+1(t + 1), (14)

where Ê
†
t is TPCP and can be represented with double-

indexed Kraus operators {Πi(t + 1)Mk(t)}. The marginal
distribution wE

it
(σ0) at time t ∈ [0, T ], is then given by:

wE
it
(σ0) = tr

�
Πit(t)σ̂E,tΠit(t)

�
. (15)

Remark 6.2: Imposing a (finite) set of possible trajectories
by choosing the {Xt}, we have to condition the density
matrix at time t on the past measurements. Unlike classical
probability, even “non-selective” conditioning influences the
state.
Observe moreover the following fact:

Proposition 6.3: The joint probabilities can be re-written
in terms of the time reversal transitions for the path-
conditioned states as:

wE
(i0,i1,...,iT )(σ0) = tr

�
Πi0(0)R†

Ê0,σ̂E,0
(Πi1(1) . . .

R
†
ÊT−1,σ̂E,T−1

(ΠiT (T )σ̂E,T ΠiT (T )) . . .)Πi0(0)
�

.

This “backward” representation will play a key role in the
solution of the maximum entropy problems we discuss in the
next Section.

VII. MAXIMUM ENTROPY PROBLEMS ON QUANTUM PATH
SPACES

We consider the simpler maximum entropy problems
where only the initial or final density matrices are prescribed.
The solution to these problems exhibit the same structure of
their classical analogues, involving a “symmetrized” multi-
plicative functional transformation.

Let {E†t } be a family of TPCP maps generating a quantum
Markov process over [0, T ] with initial density matrix σ0.
Assume that at time T the density matrix of the system
has been found to be ρ̄T , being different from the expected
σT = E

†
T−1◦. . .◦E

†
0(σ0). Let {Xt} be a time-indexed family

of observables defining a path space as above. We constraint
only XT to be such that [XT , ρ̄T ] = 0, and it admits a
spectral decomposition with rank one Πj(T )’s (this is quite
natural, since ρ̄T is given). Let as above wE(σ0) denote
the path-space distribution induced by the initial condition
σ0 and the TPCP transitions {E

†
t }. For simplicity, in the

reminder of the section, the reverse-time quantum operations
are assumed to be trace preserving. The general case is
simply obtained by augmenting the Kraus operators in order
to have a trace preserving transformation, as detailed in
Section V. Consider now the
Quantum Maximum Entropy Problem (QMEP1):

minimize
�
D(wF (ρ0)�wE(σ0));wF (ρ0) ∈ Ω(ρ̄T )

�

(16)
with Ω(ρ̄T ) the set of path space distribution induced
by a quantum Markov process generated by a family of
TPCP maps {F†

t } and some initial ρ0 such that their path-
conditioned, final density matrix satisfies ρ̂F,T = ρ̄T .

Since we required the Πi(T )’s to be rank-one, it follows
that for all i ∈ [1, mT ]:

Πi(T )ρT Πi(T ) = tr
�
ρT Πi(T )

�
Πi(T ) = wF

iT
(ρ0)Πi(T ).

Hence, we can write

wF
(i0,i1,...,iT )(ρ0) = wF

(i0,i1,...,iT−1|iT ) · w
F
iT

(ρ0), (17)

defining the conditional probabilities:

wF
(i0,i1,...,iT−1|iT ) = tr

�
Πi0(0)R†

F̂0,ρ̂0
(Πi1(1) . . .

R
†
F̂T−1,ρ̂T−1

(ΠiT (T )) . . .)Πi0(0)
�

.

By employing (17) and its equivalent for wE
(i0,i1,...,iT )(σ0),

one is able to obtain a convenient relative entropy decompo-
sition that allows to prove the following:

Theorem 7.1: A solution to (QMEP1) (16) is given by the
quantum Markov process with path-conditioned final density
ρ̄T at time T and reverse-time transition mechanism equal
to that of {Êt}, namely

R
†
F̂t,ρ̂F,t

(·) = R
†
Ê,σ̂E,t

(·), ∀t ∈ [0, T − 1]. (18)

M. Pavon and F. Ticozzi • Schrödinger Bridges for Discrete-Time, Classical and Quantum Markovian Evolutions 

2330



Notice that with this optimal choice, the total cost is
bounded by the relative entropy of the conditioned final
density matrices:

�
iT

wF
iT

(ρ0) log
wFiT

(ρ0)

wEiT
(σ0)

= D(ρ̄T �σ̂E,T ).
Let us compute the “forward” quantum operations, which,

as in the classical case, will turn out to be time depen-
dent even when the reference process is time-homogeneous.
By Theorem 5.1, recalling that the conditioned transition
mechanism Ê

†
t admits a Kraus representation with opera-

tors Πj(t + 1)Mk(t), see (14), one finds that the Kraus
operators of R

†
Et,σ̂E,t

are given by the double-indexed

Rj,k(Êt, σ̂E,t) = σ̂
1
2
E,tM

†
k(t)Πj(t + 1)σ̂−

1
2

E,t+1. Reversing this
TPCP map, now with respect to the state ρ̂F,t+1, we get:
Fj,k(t) = ρ̂

1
2
F,t+1σ̂

− 1
2

E,t+1

�
Πj(t + 1)Mk(t)

�
σ̂

1
2
E,tρ̂

− 1
2

F,t. which
can be consider as a non-commutative, “symmetrized” ver-
sion of a multiplicative functional transformation in the
classical case. In fact, define Nt = ρ̂

1
2
F,tσ̂

− 1
2

E,t . Then we have

that Yt = N†
t Nt = σ̂

− 1
2

E,t ρ̂F,tσ̂
− 1

2
E,t is space-time harmonic

with respect to the transition Êt, completing the analogy to
the classical case. We remark that, since every time-reversal
can be augmented to be TPCP by Theorem 5.1, one can
always complete R†

Êt,σ̂E,t
(·), and then F

†
t (·), to be TPCP.

Consider now the case where the initial state is constrained
to be equal to ρ̄0, different from the a-priori initial condition
σ0. Consider a path-space induced by observables {Xt} such
that X0 has non-degenerate spectrum. By arguing as above,
we get:

Theorem 7.2: A solution to (QMEP2)

minimize
�
D(wF (ρ̄0)�wE(σ0));wF (ρ̄0) ∈ Ω(ρ̄0)

�
(19)

with Ω(ρ̄0) the set of path space probability distributions
induced by a family of TPCP maps {F†

t } and initial state ρ̄0,
is given by the quantum Markov process with initial density
ρ̄0 and forward transitions:

Ft(·) = Et(·), ∀t ∈ [0, T − 1]. (20)
Remark 7.3: Altough the QMEP2 problem apparently de-

pends on the choice of the quantum path-space, that is the
observables {Xt}t∈[0,T ], we remark that its solution does
not. The difference between problems QMEP1 and QMEP2
is given by the fact that in QMEP2 we are concerned with
the forward transitions, and we do not need to use the
path-conditioned density matrices (14). The classical case
does not present this asymmetry since classical non-selective
measurements do not alter the state.

The final cost admits a bound similar to that in Problem
QMEP1, that can be easily related to the unconditioned
states. In fact, using monotonicity of relative entropy with
respect to conditioning we get:

�
iT

wF
i0(ρ̄0) log

wFi0 (ρ̄0)

wEi0
(σ0)

=

D(ρ̂0�σ̂E,0) = D(Ē†(ρ̄0)�Ē†(σ0)) ≤ D(ρ̄0�σ0), with
Ē†(ρ) =

�
i Πi(0)ρΠi(0).

Notice that the operator-sum of the two reverse-time
evolutions RF,ρt ,RE,σt satisfy, under appropriate restriction
on the support of ρt, σt: Rk(Ft, ρt) = ρ

1
2
t M†

k(t)ρ−
1
2

t+1 =

ρ
1
2
t σ

− 1
2

t Rk(Et, σt)σ
1
2
t+1ρ

− 1
2

t+1, which is again as a quantum
symmetrized “multiplicative” functional transformation.

VIII. CONCLUSION AND OUTLOOK

The classical theory of Schrödinger bridges is connected to
a variety of other fascinating topics besides large deviations.
First of all, there is Schrödinger’s original motivation: He had
observed the strong analogy between the time reversibility
of the solution bridge and that of quantum mechanics:
“Merkwürdige Analogien zur Quantenmechanik, die mir
sehr des Hindenkens wert erscheinen”. There is, however,
another motivation: (Reverse-time) space-harmonic functions
are involved in a strong form of the second law, see [21].

The Markov chain Schrödinger bridges appear as a flexible
tool to be tested on a variety of applications, given the recent
surfacing of the full modeling and computational power of
Markov chains, cf. e.g. [5], [14]. For quantum systems, this
framework may be useful to attack steering problems [3]
and to complement or improve quantum process tomography
techinques (see e.g. [15] for a recent review of different
methods). Exploring the relations of our framework with
the theory of quantum error correction [12] appears to be
a particularly promising research direction. The problem of
finding the time-reversal of quantum operations or quantum
Markov semigroups representing the effect of noisy channels
on some quantum code is strictly related to many central
problems in quantum information and its realizations. More-
over, our path-space problems appear to be compatible with
the general setting proposed in [6] to develop a quantum
version of Sanov’s theorem for product states. This suggests
that our results may play a role in hypothesis testing and
large deviation theory for quantum Markov evolution, once
more in remarkable analogy with the classical setting.
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